Skip to main content

Failure Mechanisms in MEMS/NEMS Devices

  • Reference work entry
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

The commercialization of MEMS/NEMS devices is proceeding slower than expected, because the reliability problems of microscopic components differ from macroscopically known behavior. In this chapter, we provide an overview of the state of the art in MEMS/NEMS reliability. We discuss the specific, MEMS-related problems caused by stiction due to surface forces and electric charge. Materials issues such as creep and fatigue are treated as well. Nanoscale wear is covered briefly. MEMS packaging is also discussed, because the reliability of MEMS/NEMS components critically depends on the available protection from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

DLC:

diamond like carbon

DMD:

digital micromirror device

FEM:

finite element modeling

FFM:

friction force microscope

FIB:

focused ion beam

HF:

hydrofluoric acid

MEMS:

microelectromechanical system

MTTF:

mean time to failure

NEMS:

nanoelectromechanical system

OTS:

octadecyltrichlorosilane

RF:

radio-frequency

SAM:

scanning acoustic microscopy

SAM:

self-assembled monolayer

SEM:

scanning electron microscopy

SFA:

surface force apparatus

SPM:

scanning probe microscopy

TEM:

transmission electron microscopy

TV:

television

References

  1. W. M. Miller, D. M. Tanner, S. L. Miller, K. A. Peterson: MEMS Reliability. The Challenge and the Promise. In: Proc. 4th Annual “The Reliability Challenge” (Dublin, Ireland 1998) pp. 4.1-4.7

    Google Scholar 

  2. M. R. Douglass: DMD reliability. A MEMS success story, Proc. SPIE 4980, 1–11 (2003)

    Article  Google Scholar 

  3. J. Bienstman: From product to production in automotive MEMS: In: Proc. MicroMechanics Europe, ed. by R. Puers (Leuven, Belgium 2004) pp. 107-108

    Google Scholar 

  4. W. M. van Spengen: MEMS reliability from a failure mechanisms perspective, Microelectron. Reliab. 43, 1049–1060 (2003)

    Article  Google Scholar 

  5. W. M. van Spengen, R. Puers, R. Mertens, I. De Wolf: High resolution optical investigation of small out-of-plane movements and fast vibrations; characterization and failure analysis of MEMS, Microsyst. Technol. 10, 89–96 (2004)

    Article  Google Scholar 

  6. B. Stark (ed): MEMS Reliability Assurance Guidelines for Space Applications (National Aeronautics Space Administration (NASA) and Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena 1999)

    Google Scholar 

  7. D. M. Tanner, N. F. Smith, D. J. Bowman, W. P. Eaton, K. A. Peterson: First reliability test of a surface micromachined microengine using SHiMMeR, Proc. SPIE 3224, 14–23 (1997)

    Article  CAS  Google Scholar 

  8. G. F. LaVigne, S. L. Miller: A Performance Analysis System for MEMS using Automated Imaging Methods. In: Proc. IEEE Int. Test Conference (IEEE, Washington DC 1998) pp. 442–447

    Google Scholar 

  9. P. Krehl, S. Engemann, C. Rembe, E. P. Hofer: High-speed visualization, a powerful diagnostic tool for microactuators – retrospect and prospect, Microsyst. Technol. 5, 113–132 (1999)

    Article  Google Scholar 

  10. C. Rembe, L. Muller, R. S. Muller, R. T. Howe: Full three-dimensional motion characterization of a gimballed electrostatic microactuator. In: Proc. IEEE Annual International Reliability Physics Symposium (IRPS), ed. by E. S. Sneyder (IEEE, Orlando, Florida 2001) pp. 91–98

    Google Scholar 

  11. J. S. Burdess, A. J. Harris, D. Wood, R. J. Pitcher, D. Glennie: A system for the dynamic characterization of microstructures, J. MEMS 6, 322–328 (1997)

    Google Scholar 

  12. M. R. Hart, R. A. Conant, K. Y. Lau, R. S. Muller: Stroboscopic interferometer system for dynamic MEMS characterization, J. MEMS 9, 409–418 (2000)

    Google Scholar 

  13. M. P. de Boer, J. A. Knapp, T. M. Mayer, T. A. Michalske: The role of interfacial properties on MEMS performance and reliability, Proc. SPIE 3825, 2–15 (1999)

    Article  Google Scholar 

  14. C. H. Mastrangelo, C. H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces – part I: Basic theory, J. MEMS 2, 33–43 (1993)

    CAS  Google Scholar 

  15. C. H. Mastrangelo, C. H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces – part II: Experiments, J. MEMS 2, 44–55 (1993)

    CAS  Google Scholar 

  16. F. P. Bowden, D. Tabor: The Friction and Lubrication of Solids (Clarendon, Oxford 1950)

    Google Scholar 

  17. R. Maboudian, R. T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B 15, 1–20 (1997)

    Article  CAS  Google Scholar 

  18. R. Legtenberg, H. A. C. Tilmans, J. Elders, M. Elwenspoek: Stiction of surface micromachined structures after rinsing and drying: Model and investigation of adhesion mechanisms, Sensors Actuat. A 43, 230–238 (1994)

    Article  CAS  Google Scholar 

  19. N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, M. Elwenspoek: Stiction in surface micromachining, J. Micromech. Microeng. 6, 385–397 (1996)

    Article  CAS  Google Scholar 

  20. J. Israelachvili: Intermolecular and Surface Forces (Academic, London 1991)

    Google Scholar 

  21. K. Komvopoulos: Surface engineering and microtribology for microelectro-mechanical systems, Wear 200, 305–327 (1996)

    Article  CAS  Google Scholar 

  22. W. M. van Spengen, W. M. R. Puers, I. De Wolf: A physical model to predict stiction in MEMS, J. Micromech. Microeng. 12, 702–713 (2002)

    Article  Google Scholar 

  23. J. A. Greenwood, J. B. P. Williamson: Contact of nominally flat surfaces, Proc. R. Soc. A 295, 300–319 (1966)

    Article  CAS  Google Scholar 

  24. B. Bhushan: Methodology for roughness measurement and contact analysis for optimization of interface roughness, IEEE Trans. Mag. 32, 1819–1825 (1996)

    Article  Google Scholar 

  25. B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)

    Google Scholar 

  26. L. Kogut, K. Komvopoulos: Analysis of interfacial adhesion based on electrical contact resistance, J. Appl. Phys. 94, 6386–6390 (2003)

    Article  CAS  Google Scholar 

  27. Y.-P. Zhao, L. S. Wang, T. X. Yu: Mechanics of adhesion in MEMS – a review, J. Adhes. Sci. Technol. 17, 519–546 (2003)

    Article  CAS  Google Scholar 

  28. J. Elders, H. V. Jansen, M. Elwenspoek: Materials analysis of fluorocarbon films for MEMS applications. In: Proc. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems (New York, USA 1994) pp. 170-175

    Google Scholar 

  29. P. F. Man, B. P. Gogoi, H. Mastrangelo: Elimination of post-release adhesion in microstructures using conformal fluorocarbon coatings, J. MEMS 6, 25–34 (1997)

    CAS  Google Scholar 

  30. U. Srinivasan, M. R. Houston, R. T. Howe, R. Maboudian: Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines, J. MEMS 7, 252–260 (1998)

    CAS  Google Scholar 

  31. R. Maboudian, W. R. Ashurst, C. Carraro: Self-assembled monoayers as anti-stiction coatings for MEMS: Characteristics and recent developments, Sensors Actuat. A 82, 219–223 (2000)

    Article  Google Scholar 

  32. B.-H. Kim, C.-H. Oh, K. Chun, T.-D. Chung, J.-W. Byun, Y.-S. Lee: A new class of surface modifiers for stiction reduction. In: Proc. 12th International Conference on Micro Electro Mechanical Systems (Piscataway, USA 1999) pp. 189-193

    Google Scholar 

  33. K. A. Peterson, P. Tangyunyong, A. A. Pimentel: Failure analysis of surface micromachined microengines, Proc. SPIE 3512, 190–200 (1998)

    Article  Google Scholar 

  34. J. Wibbeler, G. Pfeifer, M. Hietschold: Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS), Sensors Actuat. A 71, 74–80 (1998)

    Article  Google Scholar 

  35. A. R. Knudson, S. Buchner, P. McDonald, W. J. Stapor, A. B. Campbell, K. S. Grabowski, D. L. Knies: The effects of radiation on MEMS accelerometers, IEEE Trans. Nucl. Sci. 43, 3122–3126 (1996)

    Article  CAS  Google Scholar 

  36. C. I. Lee, A. H. Johnston, W. C. Tang, C. E. Barnes: Total dose effects on microelectromechanical systems (MEMS): Accelerometers, IEEE Trans. Nucl. Sci. 43, 3127–3132 (1996)

    Article  Google Scholar 

  37. G. M. Rebeiz: RF MEMS: Theory, Design and Technology (Wiley, Hoboken 2003)

    Book  Google Scholar 

  38. C. L. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eshelman, Z. Yao, J. Brank, M. Eberly: Lifetime characterization of capacitive RF MEMS switches. In: Proc. IEEE MTT-S International Microwave Symposium (IEEE, New York 2001) pp. 227–230

    Google Scholar 

  39. S. Zafar, A. Callegari, E. Gusev, M. V. P. Fischetti: Charge trapping in high k gate dielectric stacks. In: Proc. International Electron Devices Meeting (IEDM), ed. by S. Ikeda (IEEE, San Francisco, California 2002) pp. 517–520

    Google Scholar 

  40. J. C. Ehmke, C. L. Goldsmith, Z. J. Yao, S. M. Eshelman: Method and apparatus for switching high frequency signals, Texas Instruments Inc., US Patent 6391675 (1999)

    Google Scholar 

  41. J. R. Reid: Simulation and measurement of dielectric charging in electrostatically actuated capacitive microwave switches. In: Proc. Modeling and Simulation of Microsystems (MSM), ed. by M. Laudon, B. Romanowicz (NSTI, San Juan, Puerto Rico 2002) pp. 250–253

    Google Scholar 

  42. W. M. van Spengen, R. Puers, R. Mertens, I. De Wolf: A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches, Micromech. Microeng. 14, 514–521 (2004)

    Article  Google Scholar 

  43. X. Rottenberg, B. Nauwelaers, W. De Raedt, H. A. C. Tilmans: Distributed dielectric charging and its impact on RF MEMS devices. In: Proc. 34th European Microwave Conference (Artech house, Amsterdam, The Netherlands 2004) pp. 77–80

    Google Scholar 

  44. W. M. van Spengen, R. Puers, I. De Wolf: RF MEMS Reliability – The Challenge, the Physics, and the Reward. In: Proc. MME, ed. by R. Puers (Leuven, Belgium 2004) pp. 319-325

    Google Scholar 

  45. H. E. Boyer: Atlas of Creep and Stress-Rupture Curves (ASM International, Metals Park 1988)

    Google Scholar 

  46. F. N. R. Nabarro, H. L. de Villiers: The Physics of Creep (Taylor Francis, New York 1995)

    Google Scholar 

  47. Hoo-Jeong Lee, G. Cornella, J. C. Bravman: Stress relaxation of free-standing aluminum beams for microelectromechanical systems applications, Appl. Phys. Lett. 76, 3415–3417 (2000)

    Article  CAS  Google Scholar 

  48. P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, M. R. Douglass: A MEMS-based projection display, Proc. IEEE 86, 1687–1704 (1998)

    Article  Google Scholar 

  49. H. S. Cho, K. J. Hemker, K. Lian, J. Goettert, G. Dirras: Measured mechanical properties of LIGA Ni structures, Sensors Actuat. A 103, 59–63 (2003)

    Article  Google Scholar 

  50. K. P. Larsen, A. A. Rasmussen, J. T. Ravnkilde, M. Ginnerup, O. Hansen: MEMS devices for bending test: Measurements of fatigue and creep of electroplated nickel, Sensors Actuat. A 103, 156–164 (2003)

    Article  Google Scholar 

  51. W. M. Yin, S. H. Whang, R. Morshams, C. H. P. Xiao: Creep behavior of nanocrystalline nickel at 290 and 373 K, Mater. Sci. Eng. A 2301, 18–22 (2001)

    Google Scholar 

  52. R. Modlinski, A. Witvrouw, P. Ratchev, V. Simons, A. Jourdain, H. A. C. Tilmans, R. Puers, J. den Toonder, I. De Wolf: Creep as a reliability problem in MEMS, J. Microelectron. Reliab. 44, 1733–1738 (2004)

    Article  Google Scholar 

  53. J. D. Brazzle, W. P. Taylor, B. Ganesh, J. J. Price, J. J. Bernstein: Solution hardened platinum alloy flexure materials for improved performance and reliability of MEMS devices, J. Micromech. Microeng. 15, 43–48 (2005)

    Article  CAS  Google Scholar 

  54. B. D. Jensen, J. L. Volakis, K. Saitou, K. Kurabayashi: Impact of skin effect on thermal behavior of RF-MEMS switches. In: The 6th ASME-JSME Conf., ed. by S. Nishio, A. Lavine (Kona, Hawaii 2003) TED-AJ03-420

    Google Scholar 

  55. X. Rottenberg, B. Nauwelaers, W. De Raedt, H. A. C. Tilmans: RF current and power handling of RF-MEMS shunt switches. In: Proceedings of MEMSWAVE (Sweden 2004) pp. C1-C4

    Google Scholar 

  56. M. R. Douglass: Lifetime estimates and unique failure mechanisms of the digital micromirror device. In: 36th International Reliability Physics Symposium (IRPS), ed. by A. N. Campbell (IEEE, Reno, Nevada 1998) pp. 9–16

    Google Scholar 

  57. J. J. Yao: RF MEMS from a device perspective, J. Micromech. Microeng. 10, R9–R38 (2000)

    Article  CAS  Google Scholar 

  58. D. T. Read, J. W. Dally: Fatigue of microlithographically patterned free-standing aluminum thin film under axial stresses, J. Electron. Packaging 117, 1–6 (1995)

    Article  Google Scholar 

  59. G. Cornella, R. P. Vinci, R. Suryanarayanan Iyer, R. H. Dauskardt, J. C. Bravman: Observations of low-cycle fatigue of Al thin films for MEMS applications, Mater. Res. Soc. Symp. Proc. 518, 81–86 (1998)

    CAS  Google Scholar 

  60. J. Bagdahn, W. N. Sharpe Jr.: Fatigue of polysilicon silicon under long-term cyclic loading, Sensors Actuat. A 103, 9–15 (2003)

    Article  Google Scholar 

  61. S. M. Wiederhorn, E. R. Fuller Jr., R. Thomson: Micromechanisms of crack growth in ceramics and glasses in corrosive environments, Met. Sci. 14, 450–458 (1980)

    CAS  Google Scholar 

  62. W. W. van Arsdell, S. B. Brown: Subcritical crack growth in silicon MEMS, J. MEMS 8, 319–327 (1999)

    Google Scholar 

  63. J. A. Connally, S. B. Brown: Micromechanical fatigue testing. In: TRANSDUCERS '91, International Conference on Solid-State Sensors and Actuators Digest (New York, USA 1991) pp. 953-956

    Google Scholar 

  64. S. B. Brown, W. van Arsdell, C. L. Muhlstein: Materials reliability in MEMS devices. In: TRANSDUCERS '97, International Conference on Solid-State Sensors and Actuators Digest, Vol. 1 (New York, USA 1997) pp. 591-594

    Google Scholar 

  65. S. B. Brown, E. Jansen: Reliability and long term stability of MEMS. In: Summer Topical Meetings Digest, Optical MEMS and their Applications (New York, USA 1996) pp. 9-10

    Google Scholar 

  66. S. B. Brown, G. Povirk, J. Connally: Measurement of slow crack growth in silicon and nickel micromechanical devices. In: Proc. Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (IEEE, New York 1993) pp. 99–102

    Google Scholar 

  67. C. L. Muhlstein, S. B. Brown, R. O. Ritchie: High cycle fatigue and durability of polycrystalline silicon thin films in ambient air, Sensors Actuat. A 94, 177–188 (2001)

    Article  Google Scholar 

  68. H. Kapels, R. Aigner, J. Binder: Fracture strength and fatigue of polysilicon determined by a novel thermal actuator, Trans. Electron. Dev. 47, 1522–1528 (2000)

    Article  Google Scholar 

  69. H. Kahn, N. Tayebi, R. Ballerini, R. L. Mullen, A. H. Heuer: Fracture toughness of polysilicon MEMS devices, Sensors Actuat. A 82, 274–280 (2000)

    Article  Google Scholar 

  70. A. D. Romig Jr., M. T. Dugger, P. J. McWorther: Materials issues in microelectromechanical devices: Science, engineering, manufacturability and reliability, Acta Materialia 51, 5837–5866 (2003)

    Article  CAS  Google Scholar 

  71. K. J. Gabriel, F. Behi, R. Mahadevan: In-situ friction and wear measurements in integrated polysilicon mechanisms, Sensors Actuat. A A21-A23, 184–188 (1990)

    Article  Google Scholar 

  72. M. Mehregany, S. D. Senturia, J. H. Lang: Friction and wear in microfabricated harmonic side-drive motors. In: Technical Digest IEEE Solid-State Sensor and Actuator Workshop (IEEE 1990) pp. 17-22

    Google Scholar 

  73. D. M. Tanner, W. M. Miller, W. P. Eaton, L. W. Irwin, K. A. Peterson, M. T. Dugger, D. C. Senft, N. F. Smith, P. Tanyunyong, S. L. Miller: The effect of frequency on the lifetime of a surface micromachined microengine driving a load. In: International Reliability Physics Symposium Proceedings (IRPS), ed. by A. N. Campbell (IEEE, Reno, Nevada 1998) pp. 26–35

    Google Scholar 

  74. D. M. Tanner: MEMS Reliability: Infrastructure, Test Structures, Experiments and Failure Modes, Sandia Rep. (Sandia National Laboratories, Livermore 2000), available from National Technical Information Service, U.S. Department of Commerce, Springfield VA 22161, USA or http://www.sandia.gov/mstc/technologies/micromachines/tech-info/bibliography/biblog_char.html

    Book  Google Scholar 

  75. K. Komvopoulos: Surface engineering and microtribology for microelectro-mechanical systems, Wear 200, 305–327 (1996)

    Article  CAS  Google Scholar 

  76. J. A. Ruan, B. Bhushan: Atomic-scale friction measurement using friction force microscopy. 1. General – Principles and new measurement techniques, J. Tribol. 116, 378–388 (1994)

    Article  CAS  Google Scholar 

  77. H. Lui, B. Bhushan: Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel triboapparatus, J. Vac. Sci. Technol. A 21, 1528–1538 (2003)

    Google Scholar 

  78. M. P. de Boer: A hinged-pad test structure for sliding friction measurement in micromachining, Proc. SPIE 3512, 241–250 (1998)

    Article  Google Scholar 

  79. S. L. Miller, J. J. Sniegowski, G. LaVigne, P. J. McWorther: Friction in surface micromachined microengines, Proc. SPIE 2722, 197–204 (1996)

    Article  Google Scholar 

  80. D. C. Senft, M. T. Dugger: Friction and wear in surface micromachined tribological test devices, Proc. SPIE 3224, 31–38 (1997)

    Article  CAS  Google Scholar 

  81. M. P. de Boer, T. M. Mayer: Tribology of MEMS, MSR Bull. 26, 302–304 (2001)

    Article  Google Scholar 

  82. Z. Rymuza: Control tribological and mechanical properties of MEMS surfaces. Part 1: Critical review, Microsyst. Technol. 5, 173–180 (1999)

    Article  Google Scholar 

  83. Z. Rymuza, M. Misiak, L. Kuhn, K. Schmidt-Szalowski, Z. Ranek-Boroch: Control tribological and mechanical properties of MEMS surfaces. Part 2: Nanomechanical behavior of self-lubricating ultrathin films, Microsyst. Technol. 5, 181–188 (1999)

    Article  Google Scholar 

  84. J. G. Fleming, S. S. Mani, J. J. Sniegowski, R. S. Blewer: Tungsten coating for improved wear resistance and reliability of microelectromechanical devices, US Patent 6290859 (2001)

    Google Scholar 

  85. U. Beerschwinger, D. Mathieson, R. L. Reuben, S. J. Yang: A study of wear on MEMS contact morphologies, J. Micromech. Microeng. 4, 95–105 (1994)

    Article  CAS  Google Scholar 

  86. R. Bandorf, H. Lüthje, T. Staedler: Influencing factors on microtribology of DLC films for MEMS and microactuators, Diamond Rel. Mater. 13, 1491–1493 (2004)

    Article  CAS  Google Scholar 

  87. A. P. Musinho, R. D. Mansano, M. Massi, J. M. Jaramillo: Micro-machine fabrication using diamond-like carbon films, Diamond Rel. Mater. 12, 1041–1044 (2003)

    Article  Google Scholar 

  88. A. Erdemir: Superlubricity and wearless sliding in diamondlike carbon films, Proc. Mater. Res. Soc. 697, 391–403 (2002)

    CAS  Google Scholar 

  89. A. Erdemir: Design criteria for superlubricity in carbon films and related microstructures, Tribol. Int. 37, 577–583 (2004)

    Article  CAS  Google Scholar 

  90. A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, M. Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diamond Rel. Mater. 10, 1952–1962 (2001)

    Article  CAS  Google Scholar 

  91. W. R. Ashurst, M. B. J. Wijesundra, C. Carraro, R. Maboudian: Tribological impact of SiC encapsulation of released polycrystalline silicon microstructures, Tribol. Lett. 71, 195–198 (2004)

    Article  Google Scholar 

  92. S. Sundararajan, B. Bhushan: Micro/nanotribological studies of polysilicon and SiC films for MEMS applications, Wear 217, 251–261 (1998)

    Article  CAS  Google Scholar 

  93. X. Li, B. Bhushan: Micro/nanotribological characterization of ceramic films for microdevices, Thin Solid Films 340, 210–217 (1999)

    Article  CAS  Google Scholar 

  94. R. Maboudian, W. R. Ashurst, C. Carraro: Tribological challenges in microelectromechanical systems, Tribol. Lett. 12, 95–100 (2002)

    Article  Google Scholar 

  95. H. A. C. Tilmans, H. Ziad, H. Jansen, O. Di Monaco, A. Jourdain, W. De Raedt, X. Rottenberg, E. De Backer, A. De Caussemaeker, K. Baert: Wafer-level packaged RF-MEMS switches fabricated in a CMOS fab. In: Proc. IEDM 2001 (IEEE, Washington, DC December 3-5 2001) pp. 921–924

    Google Scholar 

  96. I. De Wolf, W. Merlijn van Spengen, R. Modlinski, A. Jourdain, A. Witvrouw, P. Fiorini, H. A. C. Tilmans: Reliability and failure analysis of RF MEMS switches. In: Proc. ISTFA 2002 (ASM, Phoenix, AZ 2002) pp. 275–281

    Google Scholar 

  97. Military Standard (MIL-STD-883): Test Methods and Procedures for Microelectronics

    Google Scholar 

  98. A. Jourdain, P. De Moor, S. Pamidighantam, H. A. C. Tilmans: Investigation of the hermeticity of BCB-sealed cavities for housing (RF-)MEMS devices. In: Proc. MEMS 2002 (IEEE, Las Vegas, USA 2002) pp. 677–680

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Spengen Ph.D. , Robert Modlinski Ph.D. , Robert Puers Prof. or Anne Jourdain Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Spengen, W., Modlinski, R., Puers, R., Jourdain, A. (2007). Failure Mechanisms in MEMS/NEMS Devices. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29857-1_52

Download citation

Publish with us

Policies and ethics