Skip to main content

Removing Some ‘A’ from AI: Embodied Cultured Networks

  • Chapter
Embodied Artificial Intelligence

Abstract

We embodied networks of cultured biological neurons in simulation and in robotics. This is a new research paradigm to study learning, memory, and information processing in real time: the Neurally-Controlled Animat. Neural activity was subject to detailed electrical and optical observation using multi-electrode arrays and microscopy in order to access the neural correlates of animat behavior. Neurobiology has given inspiration to AI since the advent of the perceptron and consequent artificial neural networks, developed using local properties of individual neurons. We wish to continue this trend by studying the network processing of ensembles of living neurons that lead to higher-level cognition and intelligent behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiler, I.J., Hawrylak, N., Greenough, W.T.: Morphogenesis in Memory Formation - Synaptic and Cellular Mechanisms. Behavioural Brain Research 66, 1–6 (1995)

    Article  Google Scholar 

  2. Dennett, D.C.: Consciousness Explained. Little, Brown and Co., Boston (1991)

    Google Scholar 

  3. Morris, C.G.: Psychology: An Introduction. Appleton-Century-Crofts, New York (1973)

    Google Scholar 

  4. Potter, S.M.: Distributed processing in cultured neuronal networks. In: Nicolelis, M.A.L. (ed.) Progress In Brain Research: Advances in Neural Population Coding, pp. 49–62. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  5. Potter, S.M., DeMarse, T.B.: A new approach to neural cell culture for long-term studies. J. Neurosci. Methods 110, 17–24 (2001)

    Article  Google Scholar 

  6. Watanabe, S., Jimbo, Y., Kamioka, H., Kirino, Y., Kawana, A.: Development of low magnesium-induced spontaneous synchronized bursting and GABAergic modulation in cultured rat neocortical neurons. Neuroscience Letters 210, 41–44 (1996)

    Article  Google Scholar 

  7. Gross, G.W., Rhoades, B.K., Kowalski, J.K.: Dynamics of burst patterns generated by monolayer networks in culture. In: Bothe, H.W., Samii, M., Eckmiller, R. (eds.) Neurobionics: An Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System, North-Holland, Amsterdam, pp. 89–121 (1993)

    Google Scholar 

  8. Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H.P.C., Kawana, A.: Spontaneous periodic n synchronized bursting during formation of mature patterns of connections in cortical cultures. Neuroscience Letters 206, 109–112 (1996)

    Article  Google Scholar 

  9. Potter, S.M.: Two-Photon Microscopy for 4D Imaging of Living Neurons. In: Yuste, R., Lanni, F., Konnerth, A. (eds.) Imaging Neurons: A Laboratory Manual, pp. 20.1-20.16. CSHL Press, Cold Spring Harbor (2000)

    Google Scholar 

  10. Potter, S.M.: Vital imaging: Two photons are better than one. Current Biology 6, 1595–1598 (1996)

    Article  Google Scholar 

  11. Potter, S.M., Lukina, N., Longmuir, K.J., Wu, Y.: Multi-site two-photon imaging of neurons on multi-electrode arrays. In: SPIE Proceedings, vol. 4262, pp. 104–110 (2001)

    Google Scholar 

  12. Wheeler, B.C.: Automatic discrimination of single units. In: Nicolelis, M.A.L. (ed.) Methods for Neural Ensemble Recordings, pp. 61–77. CRC Press, Boca Raton (1999)

    Google Scholar 

  13. Wagenaar, D.A., Potter, S.M.: A versatile all-channel stimulator for electrode arrays with real-time control. Journal of Neural Engineering 1, 1–7 (2004)

    Article  Google Scholar 

  14. Meyer, J.A., Wilson, S.W.: From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge (1991)

    Google Scholar 

  15. Potter, S.M., Fraser, S.E., Pine, J.: Animat in a Petri Dish: Cultured Neural Networks for Studying Neural Computation. In: Proc. 4th Joint Symposium on Neural Computation, UCSD, pp. 167–174 (1997)

    Google Scholar 

  16. DeMarse, T.B., Wagenaar, D.A., Blau, A.W., Potter, S.M.: The Neurally Controlled Animat: Biological Brains Acting with Simulated Bodies. Autonomous Robots 11, 305–310 (2001)

    Article  MATH  Google Scholar 

  17. DeMarse, T.B., Wagenaar, D.A., Potter, S.M.: The neurally-controlled artificial animal: A neural-computer interface between cultured neural networks and a robotic body. Society for Neuroscience Abstracts 28 ,347.1 (2002)

    Google Scholar 

  18. Reger, B.D., Fleming, K.M., Sanguineti, V., Alford, S., Mussa-Ivaldi, F.A.: Connecting brains to robots: The development of a hybrid system for the study of learning in neural tissues. In: Proc. of the VIIth Intl. Conf. on Artificial Life, pp. 263–272 (2000)

    Google Scholar 

  19. Sharp, A.A., Abbott, L.F., et al.: The Dynamic Clamp: Computer-generated conductances in real neurons (1992) (pre-print)

    Google Scholar 

  20. Butera, R.J., Wilson, C.G., DelNegro, C.A., Smith, J.C.: A methodology for achieving high-speed rates for artificial conductance injection in electrically excitable biological cells. Ieee Transactions on Biomedical Engineering 48, 1460–1470 (2001)

    Article  Google Scholar 

  21. Simoni, M., Cymbaluyk, G., Sorensen, M., Calabrese, R., DeWeerth, S.: Development of Hybrid Systems: Interfacing a Silicon Neuron to a Leech Heart Interneuron. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems 13, NIPS 2000, pp. 173–179. MIT Press, Boston (2001)

    Google Scholar 

  22. Braitenberg, V.: Vehicles, experiments in synthetic psychology. MIT Press, Cambridge (1984)

    Google Scholar 

  23. Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1999)

    Google Scholar 

  24. Brooks, R.A.: Cambrian Intelligence: The Early History of the New AI. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  25. Clark, A.: Being There: Putting Brain, Body, and the World Together Again. MIT Press, Cambridge (1997)

    Google Scholar 

  26. Shkolnik, A.C.: Neurally Controlled Simulated Robot: Applying Cultured Neurons to Handle and Approach/Avoidance Task in Real Time, and a Framework for Studying Learning In Vitro. In: Potter, S.M., Lu, J. (eds.) Dept. of Mathematics and Computer Science, Emory University, Atlanta (2003)

    Google Scholar 

  27. Engert, F., Bonhoeffer, T.: Dendritic spine changes associated with hippocampal longterm synaptic plasticity. Nature 399, 66–70 (1999)

    Article  Google Scholar 

  28. Choi, Y., et al.: High aspect ratio SU-8 structures for 3-D culturing of neurons. In: ASME International Mechanical Engineering Congress and RD&D Expo. Washington, D. C. (2003)

    Google Scholar 

  29. Blum, R.A., et al.: A custom multielectrode array with integrated low-noise preamplifiers. In: Akay, M. (ed.) Proceedings of the IEEE Engineering in Medicine and Biology Conference, pp. 3396–3399 (2003)

    Google Scholar 

  30. Jimbo, Y., Tateno, T., Robinson, H.P.C.: Simultaneous induction of pathway-specific potentiation and depression in networks of cortical neurons. Biophysical Journal 76, 670–678 (1999)

    Article  Google Scholar 

  31. Tateno, T., Jimbo, Y.: Activity-dependent enhancement in the reliability of correlated spike timings in cultured cortical neurons. Biological Cybernetics 80, 45–55 (1999)

    Article  MATH  Google Scholar 

  32. Marom, S., Shahaf, G.: Development, learning and memory in large random networks of cortical neurons: Lessons beyond anatomy. Quarterly Reviews of Biophysics 35, 63–87 (2002)

    Article  Google Scholar 

  33. Eytan, D., Brenner, N., Marom, S.: Selective adaptation in networks of cortical neurons. Journal of Neuroscience 23, 9349–9356 (2003)

    Google Scholar 

  34. Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B 237, 37–72 (1953)

    Article  Google Scholar 

  35. Yamamoto, T., Kuniyoshi, Y.: Stability and controllability in a rising motion: a global dynamics approach. In: International Conference on Intelligent Robots and Systems (IROS). Lausanne, Switzerland, pp. 2467–2472 (2002)

    Google Scholar 

  36. Fodor, J.A.: Methodological Solipsism Considered as a Research Strategy in Cognitive- Psychology. Behavioral and Brain Sciences 3, 63–73 (1980)

    Article  Google Scholar 

  37. Vera, A.H., Simon, H.A.: Situated Action - a Symbolic Interpretation. Cognitive Science 17, 7–48 (1993)

    Article  Google Scholar 

  38. Edelman, G.M., Tononi, G.: A universe of consciousness: how matter becomes imagination. Basic Books, New York (2000)

    Google Scholar 

  39. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)

    Article  Google Scholar 

  40. James, W.: The principles of psychology. H. Holt, New York (1890)

    Google Scholar 

  41. Nakanishi, K., Kukita, F.: Functional synapses in synchronized bursting of neocortical neurons in culture. Brain Research 795, 137–146 (1998)

    Article  Google Scholar 

  42. Corner, M.A., Ramakers, G.J.: Spontaneous bioelectric activity as both dependent and independent variable in cortical maturation. Chronic tetrodotoxin versus picrotoxin effects on spike-train patterns in developing rat neocortex neurons during long-term culture. Ann. N Y Acad. Sci. 627, 349–353 (1991)

    Article  Google Scholar 

  43. Latham, P.E., Richmond, B.J., Nelson, P.G., Nirenberg, S.: Intrinsic dynamics in neuronal networks. I. Theory. Journal of Neurophysiology 83, 808–827 (2000)

    Google Scholar 

  44. Tabak, J., Latham, P.E.: Analysis of spontaneous bursting activity in random neural networks. Neuroreport 14, 1445–1449 (2003)

    Article  Google Scholar 

  45. Latham, P.E., Richmond, B.J., Nirenberg, S., Nelson, P.G.: Intrinsic dynamics in neuronal networks. II. Experiment. Journal of Neurophysiology 83, 828–835 (2000)

    Google Scholar 

  46. Rutter, M.: Developmental catch-up, and deficit, following adoption after severe global early privation. Journal of Child Psychology and Psychiatry and Allied Disciplines 39, 465–476 (1998)

    Article  Google Scholar 

  47. O’Connor, T.G., Rutter, M., Beckett, C., Keaveney, L., Kreppner, J.M.: The effects of global severe privation on cognitive competence: Extension and longitudinal follow-up. Child Development 71, 376–390 (2000)

    Article  Google Scholar 

  48. Black, J.E., Isaacs, K.R., Anderson, B.J., Alcantara, A.A., Greenough, W.T.: Learning Causes Synaptogenesis, Whereas Motor-Activity Causes Angiogenesis, in Cerebellar Cortex of Adult-Rats. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 87, pp. 5568–5572 (1990)

    Google Scholar 

  49. Diamond, M.: Morphological cortical changes as a consequence of learning and experience. In: Scheibel, A.B., Wechsler, A.F. (eds.) Neurobiology of Higher Cognitive Function, p. 370. Guilford Press, New York (1990)

    Google Scholar 

  50. Gross, C.G.: Neurogenesis in the adult brain: death of a dogma. Nature Reviews Neuroscience 1, 67–73 (2000)

    Article  Google Scholar 

  51. Kuhl, P.K., et al.: Cross-language analysis of phonetic units in language addressed to infants Science, vol. 227, pp. 684–686 (1997)

    Google Scholar 

  52. Buonomano, D.V., Merzenich, M.M.: Cortical plasticity: From synapses to maps. Annual Review of Neuroscience 21, 149–186 (1998)

    Article  Google Scholar 

  53. Ramachandran, V.S., Hirstein, W.: The perception of phantom limbs - The D.O. Hebb lecture. Brain 121, 1603–1630 (1998)

    Article  Google Scholar 

  54. Varela, F.J., Thompson, E., Rosch, E.: The embodied mind: cognitive science and human experience. MIT Press, Cambridge (1993)

    Google Scholar 

  55. Pfeifer, R., Scheier, C.: Understanding Intelligence. The MIT Press, Cambridge (1999)

    Google Scholar 

  56. Damasio, A.R.: Descartes’ Error: Emotion, Reason, and the Human Brain. Gosset/Putnam Press, New York (1994)

    Google Scholar 

  57. Wagenaar, D.A., Potter, S.M.: Real-time multi-channel stimulus artifact suppression by local curve fitting. J. Neurosci. Methods 120, 113–120 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bakkum, D.J., Shkolnik, A.C., Ben-Ary, G., Gamblen, P., DeMarse, T.B., Potter, S.M. (2004). Removing Some ‘A’ from AI: Embodied Cultured Networks. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds) Embodied Artificial Intelligence. Lecture Notes in Computer Science(), vol 3139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27833-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27833-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22484-6

  • Online ISBN: 978-3-540-27833-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics