Skip to main content

Inferring a Level-1 Phylogenetic Network from a Dense Set of Rooted Triplets

  • Conference paper
Computing and Combinatorics (COCOON 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3106))

Included in the following conference series:

Abstract

Given a set \({\cal T}\) of rooted triplets with leaf set L, we consider the problem of determining whether there exists a phylogenetic network consistent with \({\mathcal{T}}\), and if so, constructing one. If no restrictions are placed on the hybrid nodes in the solution, the problem is trivially solved in polynomial time by a simple sorting network-based construction. For the more interesting (and biologically more motivated) case where the solution is required to be a level-1 phylogenetic network, we present an algorithm solving the problem in O(n 6) time when \({\mathcal{T}}\) is dense (i.e., contains at least one rooted triplet for each cardinality three subset of L), where n = |L|. Note that the size of the input is Θ(n 3) if \({\mathcal{T}}\) is dense. We also give an O(n 5)-time algorithm for finding the set of all phylogenetic networks having a single hybrid node attached to exactly one leaf (and having no other hybrid nodes) that are consistent with a given dense set of rooted triplets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM Journal on Computing 10(3), 405–421 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bryant, D.: Building Trees, Hunting for Trees, and Comparing Trees: Theory and Methods in Phylogenetic Analysis. PhD thesis, University of Canterbury, Christchurch, New Zealand (1997)

    Google Scholar 

  3. Chor, B., Hendy, M., Penny, D.: Analytic solutions for three-taxon MLMC trees with variable rates across sites. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 204–213. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Choy, C., Jansson, J., Sadakane, K., Sung, W.-K.: Computing the maximum agreement of phylogenetic networks. In: Proc. of Computing: the 10th Australasian Theory Symposium (CATS 2004), pp. 33–45. Elsevier, Amsterdam (2004)

    Google Scholar 

  5. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. The MIT Press, Massachusetts (1990)

    MATH  Google Scholar 

  6. Ga̧sieniec, L., Jansson, J., Lingas, A., Östlin, A.: Inferring ordered trees from local constraints. In: Proc. of Computing: the 4th Australasian Theory Symposium (CATS 1998). Australian Computer Science Communications, vol. 20(3), pp. 67–76. Springer, Singapore (1998)

    Google Scholar 

  7. Ga̧sieniec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing evolutionary trees. Journal of Combinatorial Optimization 3, 183–197 (1999)

    Article  MathSciNet  Google Scholar 

  8. Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic networks with constrained recombination. In: Proc. of the Computational Systems Bioinformatics Conference (CSB 2003), pp. 363–374 (2003)

    Google Scholar 

  9. Hein, J.: Reconstructing evolution of sequences subject to recombination using parsimony. Mathematical Biosciences 98(2), 185–200 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica 24(1), 1–13 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fullydynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM 48(4), 723–760 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jansson, J.: On the complexity of inferring rooted evolutionary trees. In: Proc. of the Brazilian Symp. on Graphs, Algorithms, and Combinatorics (GRACO 2001). Electronic Notes in Discrete Mathematics, vol. 7, pp. 121–125. Elsevier, Amsterdam (2001)

    Google Scholar 

  13. Jansson, J., Ng, J.H.-K., Sadakane, K., Sung, W.-K.: Rooted maximum agreement supertrees. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 499–508. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Jiang, T., Kearney, P., Li, M.: A polynomial time approximation scheme for inferring evolutionary trees from quartet topologies and its application. SIAM Journal on Computing 30(6), 1942–1961 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kannan, S., Lawler, E., Warnow, T.: Determining the evolutionary tree using experiments. Journal of Algorithms 21(1), 26–50 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kearney, P.: Phylogenetics and the quartet method. In: Jiang, T., Xu, Y., Zhang, M.Q. (eds.) Current Topics in Computational Molecular Biology, pp. 111–133. The MIT Press, Massachusetts (2002)

    Google Scholar 

  17. Nakhleh, L., Warnow, T., Linder, C.R.: Reconstructing reticulate evolution in species – theory and practice. In: Proc. of the 8th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2004) (to appear)

    Google Scholar 

  18. Posada, D., Crandall, K.A.: Intraspecific gene genealogies: trees grafting into networks. TRENDS in Ecology & Evolution 16(1), 37–45 (2001)

    Article  Google Scholar 

  19. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9(1), 91–116 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. Journal of Computational Biology 8(1), 69–78 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jansson, J., Sung, WK. (2004). Inferring a Level-1 Phylogenetic Network from a Dense Set of Rooted Triplets. In: Chwa, KY., Munro, J.I.J. (eds) Computing and Combinatorics. COCOON 2004. Lecture Notes in Computer Science, vol 3106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27798-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27798-9_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22856-1

  • Online ISBN: 978-3-540-27798-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics