Skip to main content

Rooted Maximum Agreement Supertrees

  • Conference paper
LATIN 2004: Theoretical Informatics (LATIN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2976))

Included in the following conference series:

Abstract

Given a set \(\mathcal{T}\) of rooted, unordered trees, where each \(T_{i} \in \mathcal{T}\) is distinctly leaf-labeled by a set Λ(T i ) and where the sets Λ(T i ) may overlap, the maximum agreement supertree problem (MASP) is to construct a distinctly leaf-labeled tree Q with leaf set \(\Lambda(Q)\subseteq \bigcup_{Ti\epsilon\mathcal{T}}\Lambda(Ti)\) such that |Λ(Q)| is maximized and for each \(T_{i}\in \mathcal{T}\), the topological restriction of T i to Λ(Q) is isomorphic to the topological restriction of Q to Λ(T i ). Let \(n = |\bigcup{T_{i}\in\mathcal{T}}\bigwedge(T_{i})|, k=|\mathcal{T}|, and D=maxt_{i}\in \mathcal{T}\{deg(T_{i}\}\). We first show that MASP with k = 2 can be solved in \(O(\sqrt{D}n {log}(2n/D))\) time, which is O(nlogn) when D = O(1) and O(n 1.5) when D is unrestricted. We then present an algorithm for MASP with D = 2 whose running time is polynomial if k = O(1). On the other hand, we prove that MASP is NP-hard for any fixed k ≥ 3 when D is unrestricted, and also NP-hard for any fixed D ≥ 2 when k is unrestricted even if each input tree is required to contain at most three leaves. Finally, we describe a polynomial-time (n/log n)-approximation algorithm for MASP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM Journal on Computing 10(3), 405–421 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Akutsu, T., Halldórsson, M.M.: On the approximation of largest common subtrees and largest common point sets. Theoretical Computer Science 233(1–2), 33–50 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amir, A., Keselman, D.: Maximum agreement subtree in a set of evolutionary trees: Metrics and efficient algorithms. SIAM Journal on Computing 26(6), 1656–1669 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bininda-Emonds, O., Gittleman, J., Steel, M.: The (super)tree of life: Procedures, problems, and prospects. Annual Review of Ecology and Systematics 33, 265–289 (2002)

    Article  Google Scholar 

  5. Bryant, D.: Building Trees, Hunting for Trees, and Comparing Trees: Theory and Methods in Phylogenetic Analysis. PhD thesis, Univ. of Canterbury, N.Z. (1997)

    Google Scholar 

  6. Bryant, D.: Optimal agreement supertrees. In: Gascuel, O., Sagot, M.-F. (eds.) JOBIM 2000. LNCS, vol. 2066, pp. 24–31. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Chor, B., Hendy, M., Penny, D.: Analytic solutions for three-taxon ML MC trees with variable rates across sites. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 204–213. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T., Thorup, M.: An O(n log n) algorithm for the maximum agreement subtree problem for binary trees. SIAM Journal on Computing 30(5), 1385–1404 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Farach, M., Przytycka, T., Thorup, M.: On the agreement of many trees. Information Processing Letters 55, 297–301 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Farach, M., Thorup, M.: Sparse dynamic programming for evolutionary-tree comparison. SIAM Journal on Computing 26(1), 210–230 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Finden, C.R., Gordon, A.D.: Obtaining common pruned trees. Journal of Classification 2, 255–276 (1985)

    Article  Google Scholar 

  12. Ganapathysaravanabavan, G., Warnow, T.: Finding a maximum compatible tree for a bounded number of trees with bounded degree is solvable in polynomial time. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 156–163. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Garey, M., Johnson, D.: Computers and Intractability – A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  14. Gąsieniec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing evolutionary trees. Journal of Combinatorial Optimization 3, 183–197 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Discrete Applied Mathematics 71, 153–169 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica 24(1), 1–13 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fullydynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM 48(4), 723–760 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jansson, J.: On the complexity of inferring rooted evolutionary trees. In: Proc. of the Brazilian Symp. on Graphs, Algorithms, and Combinatorics (GRACO 2001). Electronic Notes in Discrete Mathematics, vol. 7, pp. 121–125. Elsevier, Amsterdam (2001)

    Google Scholar 

  19. Kao, M.-Y., Lam, T.-W., Sung, W.-K., Ting, H.-F.: An even faster and more unifying algorithm for comparing trees via unbalanced bipartite matchings. Journal of Algorithms 40(2), 212–233 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kearney, P.: Phylogenetics and the quartet method. In: Jiang, T., Xu, Y., Zhang, M.Q. (eds.) Current Topics in Computational Molecular Biology, pp. 111–133. The MIT Press, Massachusetts (2002)

    Google Scholar 

  21. Meyers, A., Yangarber, R., Grishman, R.: Alignment of shared forests for bilingual corpora. In: Proc. of the 16th International Conference on Computational Linguistics (COLING 1996), pp. 460–465 (1996)

    Google Scholar 

  22. Sanderson, M.J., Purvis, A., Henze, C.: Phylogenetic supertrees: assembling the trees of life. TRENDS in Ecology & Evolution 13(3), 105–109 (1998)

    Article  Google Scholar 

  23. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9(1), 91–116 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Steel, M., Warnow, T.: Kaikoura tree theorems: Computing the maximum agreement subtree. Information Processing Letters 48, 77–82 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jansson, J., Ng, J.H.K., Sadakane, K., Sung, WK. (2004). Rooted Maximum Agreement Supertrees. In: Farach-Colton, M. (eds) LATIN 2004: Theoretical Informatics. LATIN 2004. Lecture Notes in Computer Science, vol 2976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24698-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24698-5_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21258-4

  • Online ISBN: 978-3-540-24698-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics