Skip to main content

Applications of Algal Nanoparticles in Agriculture

  • Chapter
  • First Online:
Nanoscience for Sustainable Agriculture

Abstract

Agriculture is considered as a backbone for most of the developing countries around the world. Since the population is continuously increasing, it is necessary to use modern technologies of nano- and biotechnology in agricultural sciences. Nano-biotechnology offers solution in all stages of growth, processing, production, storing, packaging and transportation of agricultural products. Nano-biotechnology can revolutionize both food and agroindustries by proving better crop protection against several diseases, better shelf life, enhanced yield, more nutritional value and better resistance to harsh environmental conditions. Nanoparticles can now be easily synthesized via biological routes and can be instantly applied for agricultural purposes. Algae (macro/micro) are leading front runner in producing nanoparticles that can successfully provide several versatile applications. Algae play an important role in agriculture. Seaweeds (macroalgae) are used as fertilizers, resulting in less nitrogen and phosphorous run-off than the one from the use of livestock manure. This chapter provides an insight on various species of algae that can be used in nanoparticle synthesis and the advantages it can provide in agricultural activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Enazi NM, Ibraheem IB (2017) Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 10:S3029–S3039

    Article  CAS  Google Scholar 

  • Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM, Alharbi RM, Alkhulaifi MM (2018) Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi J Biol Sci 26(6):1207–1215

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Raouf N, Al-Homaidan A, Ibraheem I (2012) Agricultural importance of algae. Afr J Biotechnol 11:11648–11658

    Article  Google Scholar 

  • Ahmadi F, Tanhaeian A, Habibi-Pirkoohi M (2016) Biosynthesis of silver nanoparticles using Chlamydomonas reinhardtii and its inhibitory effect on growth and virulence of listeria monocytogenes. Iran J Biotechnol 14:163–168

    Article  Google Scholar 

  • Ali DM, Sasikala M, Gunasekaran M, Thajuddin N (2011) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Dig J Nanomater Biostruct 6:385–390

    Google Scholar 

  • Annamalai J, Nallamuthu T (2015) Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl Nanosci 5:603–607

    Article  CAS  Google Scholar 

  • Antonacci A, Arduini F, Moscone D, Palleschi G, Scognamiglio V (2018) Nanostructured (Bio)sensors for smart agriculture. TrAC Trends Anal Chem 98:95–103

    Article  CAS  Google Scholar 

  • Arora M, Sahoo D (2015) Growth forms and life histories in green algae. In: Sahoo D, Seckbach J (eds) The algae world. Springer, Dordrecht, pp 121–175

    Chapter  Google Scholar 

  • Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 2014:28

    Article  CAS  Google Scholar 

  • Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B 103:283–287

    Article  CAS  Google Scholar 

  • Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277

    Article  CAS  Google Scholar 

  • Bakir E, Younis N, Mohamed M, El Semary N (2018) Cyanobacteria as nanogold factories: chemical and anti-myocardial infarction properties of gold nanoparticles synthesized by Lyngbya majuscula. Mar Drugs 16:217

    Article  PubMed Central  CAS  Google Scholar 

  • Baweja P, Sahoo D (2015) Classification of algae. In: Sahoo D, Seckbach J (eds) The algae world. Springer, Dordrecht, pp 31–55

    Chapter  Google Scholar 

  • Bullock KW (1978) Observations on hypnospores in Ulothrix zonata (Chlorophyceae). Can J Bot 56:1660–1664

    Article  Google Scholar 

  • Campbell RD (1990) Transmission of symbiotic algae through sexual reproduction in hydra: movement of algae into the oocyte. Tissue Cell 22:137–147

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: New tools for sustainable development. Trends Food Sci Technol 22:585–594

    Article  CAS  Google Scholar 

  • Dahoumane SA, Djediat C, Yepremian C, Couté A, Fiévet F, Coradin T, Brayner R (2012) Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnol Bioeng 109:284–288. https://doi.org/10.1002/bit.23276

    Article  PubMed  CAS  Google Scholar 

  • Deng R, Chow T-J (2010) Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovas Ther 28:e33–e45

    Article  CAS  Google Scholar 

  • Devi Lamabam S, Thangjam R (2016) 19—Emerging trends in the application of nanobiosensors in the food industry. In: Grumezescu AM (ed) Novel approaches of nanotechnology in food. Academic Press, Cambridge, pp 663–696

    Chapter  Google Scholar 

  • Dodds WK, Whiles MR (2010) Chapter 8—Types of Aquatic organisms. In: Dodds WK, Whiles MR (eds) Freshwater ecology, 2nd edn. Academic Press, London, pp 167–183

    Chapter  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • El-Sheekh MM, El-Kassas HY (2016) Algal production of nano-silver and gold: Their antimicrobial and cytotoxic activities: A review. J Genet Eng Biotechnol 14:299–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Elumalai S, Infant Santhose B, Devika R, Revathy S (2013) Collection, isolation, identification, and biosynthesis of silver nanoparticles using microalga Chlorella pyrenoidosa. Nanosci Technol Int J 4:59–66

    Google Scholar 

  • Farnia A, Omidi MM (2015) Effect of nano-zinc chelate and nano-biofertilizer on yield and yield components of Maize (Zea mays L.), under water stress condition. Indian J Nat Sci 5:4614–4646

    Google Scholar 

  • Ferro Y, Perullini M, Jobbagy M, Bilmes SA, Durrieu C (2012) Development of a biosensor for environmental monitoring based on microalgae immobilized in silica hydrogels. Sens (Basel, Switzerland) 12:16879–16891

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803. https://doi.org/10.1016/j.biotechadv.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  • Gogos A et al (2016) Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment. J Nanobiotechnol 14:40

    Article  CAS  Google Scholar 

  • Guo H, White JC, Wang Z, Xing B (2018) Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr Opin Environ Sci Health 6(41):77–83. ISSN: 2468–5844

    Google Scholar 

  • Hamouda RAEF, Abd El-Mongy Mahmoud, Eid KF (2018a) Antibacterial activity of silver nanoparticles using Ulva fasciata extracts as reducing agent and sodium dodecyl sulfate as stabilizer. Int J Pharmacol 14:359–368. https://doi.org/10.3923/ijp.2018.359.368

    Article  Google Scholar 

  • Hamouda RAEF, El-Mongy MA, Eid KF (2018b) Antibacterial activity of silver nanoparticles using ulva fasciata extracts as reducing agent and sodium dodecyl sulfate as stabilizer. Int J Pharmacol 14(3):359–368

    Article  Google Scholar 

  • Hassaan MA, Hosny S (2018) Green synthesis of Ag and Au nanoparticles from micro and macro algae—review. Int J Atmos Ocean Sci 2:10–22

    Google Scholar 

  • Huang B et al (2018) Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials 8:102

    Article  PubMed Central  CAS  Google Scholar 

  • Husain S, Sardar M, Fatma T (2015) Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World J Microbiol Biotechnol 31:1279–1283

    Article  PubMed  Google Scholar 

  • Ishwarya R, Vaseeharan B, Kalyani S, Banumathi B, Govindarajan M, Alharbi NS, Kadaikunnan S, Al-anbr MN, Khaled JM, Benelli G (2018) Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol, B 178:249–258

    Article  CAS  Google Scholar 

  • Jha D, Jain V, Sharma B, Kant A, Garlapati VK (2017) Microalgae-based pharmaceuticals and nutraceuticals: an emerging field with immense market potential. ChemBioEng Reviews 4:257–272

    Article  CAS  Google Scholar 

  • Kannan RRR, Stirk WA, Van Staden J (2013) Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). South Afr J Bot 86:1–4

    Article  CAS  Google Scholar 

  • Kapoor I (1988) Fungi involved in tomato wilt syndrome in Delhi, Maharashtra and Tamil Nadu. Indian Phytopathol 41:208–213

    Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  PubMed  Google Scholar 

  • Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T (2015) Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens Applied. Nanoscience 5:499–504

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2017a) Nanoparticles: properties, applications and toxicities. Arab J Chem 1:2. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan S, Siddique R, Sajjad W, Nabi G, Hayat KM, Duan P, Yao L (2017b) Biodiesel production from algae to overcome the energy crisis HAYATI. J Biosci 24:163–167

    Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Protection 35:64–70

    Article  CAS  Google Scholar 

  • Kim D-Y, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G (2018) Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food Agric 98:849–864

    Article  CAS  PubMed  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)—chloride complex. Environ Sci Technol 40:6304–6309

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Cherepakhin V, Kapenstein T, Williams TJ (2018) Upgrading biodiesel from vegetable oils by hydrogen transfer to its fatty esters. ACS Sustain Chem Eng 6:5749–5753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK (2013) Nanobiosensors: Concepts and Variations ISRN Nanomaterials 2013:9

    Article  CAS  Google Scholar 

  • Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:491206

    Article  Google Scholar 

  • Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B (2017) Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today 22(12):1825–1834

    Article  CAS  PubMed  Google Scholar 

  • Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D (2011) Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. Bioimpacts 1:149–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monica F, Ioan IA, Constantin C, Simion A (2011) Interplay between gold nanoparticle biosynthesis and metabolic activity of cyanobacterium Synechocystis sp. PCC 6803. Nanotechnology 22:485101

    Article  CAS  Google Scholar 

  • Mufamadi MS, Sekhejane PR (2017) Nanomaterial-based biosensors in agriculture application and accessibility in rural smallholding farms: food security. In: Nanotechnology. Springer, Singapore, pp 263–278

    Chapter  Google Scholar 

  • Murugesan S, Bhuvaneswari S, Shanthi N, Murugakoothan P, Sivamurugan V (2015) Red alga Hypnea musciformis (Wulf) Lamour mediated environmentally benign synthesis and antifungal activity of gold nano particles. Int J Nanosci Nanotech 6:71–83

    Google Scholar 

  • Muthusamy G, Thangasamy S, Raja M, Chinnappan S, Kandasamy S (2017) Biosynthesis of silver nanoparticles from Spirulina microalgae and its antibacterial activity. Environ Sci Pollut Res 24(23):19459–19464

    Article  CAS  Google Scholar 

  • Naessens M, Tran-Minh C (1999) Biosensor using immobilized Chlorella microalgae for determination of volatile organic compounds. Sens Actuat B Chem 59:100–102

    Article  CAS  Google Scholar 

  • Namvar F, Azizi S, Ahmad MB, Shameli K, Mohamad R, Mahdavi M, Tahir PM (2015) Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Res Chem Intermed 41:5723–5730

    Article  CAS  Google Scholar 

  • Ngan Y, Price IR (1980) Seasonal growth and reproduction of intertidal algae in the townsville region (Queensland, Australia). Aquat Bot 9:117–134

    Article  Google Scholar 

  • Nicoletti M (2016) Microalgae. Foods (Basel, Switzerland) 5:54

    Google Scholar 

  • Nirmaladevi D et al (2016) Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Sci Rep 6:21367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sustain Energy Rev 81:536–551

    Article  CAS  Google Scholar 

  • Ott DW, Oldham-Ott CK, Rybalka N, Friedl T (2015) Chapter 11—Xanthophyte, Eustigmatophyte, and Raphidophyte Algae. In: Wehr JD, Sheath RG, Kociolek JP (eds) Freshwater algae of North America, 2nd edn. Academic Press, Boston, pp 485–536

    Chapter  Google Scholar 

  • Parial D, Patra HK, Dasgupta AKR, Pal R (2012) Screening of different algae for green synthesis of gold nanoparticles. Eur J Phycol 47:22–29

    Article  CAS  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119

    Article  Google Scholar 

  • Pérez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5:12

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments. Chall Perspect Front Microbiol 8:1014

    Article  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  PubMed  Google Scholar 

  • Rajput VD et al (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review environmental nanotechnology. Monit Manag 9:76–84

    Google Scholar 

  • Rao DM, Gautam P (2014) A facile one-pot synthesis of gold nanoparticles by Chlamydomonas reinhardtii. Asian J Microbiol Biotechnol Environ Sci Pap 16:633–639

    Google Scholar 

  • Raven JA, Giordano M (2014) Algae. Curr Biol 24:R590–R595

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley MK, Vermerris W (2017) Recent advances in nanomaterials for gene delivery—a review. Nanomaterials (Basel, Switzerland) 7:94

    Article  CAS  Google Scholar 

  • Roy S, Anantharaman P (2017) Biosynthesis of silver nanoparticles by Chaetomorpha antennina (Bory de Saint-Vincent) Kutzing with its antibacterial activity and ecological implication. J Nanomed Nanotechnol 8(467):2

    Google Scholar 

  • Roy S, Anantharaman P (2018a) Biosynthesis of silver nanoparticles by Amphiroa anceps (Lamarck) Decaisne and its biomedical and ecological implications. J Nanomed Nanotechnol 9(2):2–5

    Article  Google Scholar 

  • Roy S, Anantharaman P (2018b) Biosynthesis of silver nanoparticles by Sargassum Ilicifolium (Turner) C. Agardh with their antimicrobial activity and potential for seed germination. J Appl Phys Nanotechnol 1(1):2

    Google Scholar 

  • Roy-Lachapelle A, Solliec M, Bouchard MF, Sauvé S (2017) Detection of cyanotoxins in algae dietary supplements. Toxins 9:76

    Article  PubMed Central  CAS  Google Scholar 

  • Sahayaraj K, Kalidas S (2011) Evaluation of nymphicidal and ovicidal effect of seaweed, Padina pavonica (Linn.) (Phaeophyceae) on cotton pest, Dysdercus cingulatus (Fab). Indian J Pharm Sci 40:125–129

    CAS  Google Scholar 

  • Salari Z, Danafar F, Dabaghi S, Ataei SA (2016) Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. J Saudi Chem Soc 20:459–464

    Article  CAS  Google Scholar 

  • San Keskin NO, Koçberber Kılıç N, Dönmez G, Tekinay T (2016) Green synthesis of silver nanoparticles using cyanobacteria and evaluation of their photocatalytic and antimicrobial activity. J Nano Res 40:120–127

    Article  CAS  Google Scholar 

  • Sanaeimehr Z, Javadi I, Namvar F (2018) Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol 9(1):3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schröfel A, Kratošová G, Bohunická M, Dobročka E, Vávra I (2011) Biosynthesis of gold nanoparticles using diatoms—silica-gold and EPS-gold bionanocomposite formation. J Nanopart Res 13:3207–3216

    Article  CAS  Google Scholar 

  • Servin AD, White JC (2016) Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1:9–12

    Article  Google Scholar 

  • Sharma G, Jasuja ND, Kumar M, Ali MI (2015) Biological synthesis of silver nanoparticles by cell-free extract of Spirulina platensis. J Nanotechnol 2015:6

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1–2):83–96

    Article  CAS  PubMed  Google Scholar 

  • Sheath RG, Wehr JD (2015) Chapter 1—Introduction to the freshwater algae. In: Wehr JD, Sheath RG, Kociolek JP (eds) Freshwater algae of North America, 2nd edn. Academic Press, Boston, pp 1–11

    Google Scholar 

  • Shofia SI, Jayakumar K, Mukherjee A, Chandrasekaran N (2018) Efficiency of brown seaweed (Sargassum longifolium) polysaccharides encapsulated in nanoemulsion and nanostructured lipid carrier against colon cancer cell lines HCT 116. RSC Adv 8:15973–15984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529

    PubMed  PubMed Central  Google Scholar 

  • Singh RP (2017) Application of nanomaterials toward development of nanobiosensors and their utility in agriculture. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology: an agricultural paradigm. Springer, Singapore, pp 293–303

    Chapter  Google Scholar 

  • Singh S, Singh BK, Yadav SM, Gupta AK (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5:1–5

    Article  Google Scholar 

  • Soleimani M, Habibi-Pirkoohi M (2017) Biosynthesis of silver nanoparticles using Chlorella vulgaris and evaluation of the antibacterial efficacy against Staphylococcus aureus. Avicenna J Med Biotechnol 9:120–125

    PubMed  PubMed Central  Google Scholar 

  • Srivastava AK, Dev A, Karmakar S (2018) Nanosensors and nanobiosensors in food and agriculture. Environ Chem Lett 16:161–182

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles nanomedicine: nanotechnology. Biol Med 6:257–262

    CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295

    Article  CAS  PubMed  Google Scholar 

  • Turdean GL (2011) Design and development of biosensors for the detection of heavy metal toxicity. Int J Electrochem 2011:1–15

    Article  CAS  Google Scholar 

  • Udayan A, Arumugam M, Pandey A (2017) Chapter 4—Nutraceuticals from algae and cyanobacteria. In: Rastogi RP, Madamwar D, Pandey A (eds) Algal green chemistry. Elsevier, Amsterdam, pp 65–89

    Chapter  Google Scholar 

  • Vashistha BR, Sinha AK, Singh VP (eds) (2010) Botany for degree students: algae, chapter 23: Order Ceramiales. S. Chand Publications, pp 516–536

    Google Scholar 

  • Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42

    Article  PubMed  CAS  Google Scholar 

  • Wehr JD, Sheath RG (2015) Habitats of freshwater algae. In: Wehr JD, Sheath RG, Kociolek JP (eds) Freshwater algae of North America, 2nd edn. Academic Press, Boston, pp 13–74

    Chapter  Google Scholar 

  • Wen J, Salunke BK, Kim BS (2017) Biosynthesis of graphene-metal nanocomposites using plant extract and their biological activities. J Chem Technol Biotechnol 92:1428–1435

    Article  CAS  Google Scholar 

  • Willis C, Papathanasopoulou E, Russel D, Artioli Y (2018) Harmful algal blooms: the impacts on cultural ecosystem services and human well-being in a case study setting, Cornwall, UK. Mar Policy 97:232–238

    Article  Google Scholar 

  • Xu L, Weathers PJ, Xiong X-R, Liu C-Z (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9:178–189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasha Nigam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, M., Sarup, R., Behl, K., Sharma, M., Nigam, S. (2019). Applications of Algal Nanoparticles in Agriculture. In: Pudake, R., Chauhan, N., Kole, C. (eds) Nanoscience for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-97852-9_12

Download citation

Publish with us

Policies and ethics