Skip to main content

Quantum Rings in Electromagnetic Fields

  • Chapter
  • First Online:
Physics of Quantum Rings

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter is devoted to optical properties of so-called Aharonov-Bohm quantum rings (quantum rings pierced by a magnetic flux resulting in Aharonov-Bohm oscillations of their electronic spectra) in external electromagnetic fields. It studies two problems. The first problem deals with a single-electron Aharonov-Bohm quantum ring pierced by a magnetic flux and subjected to an in-plane (lateral) electric field. We predict magneto-oscillations of the ring electric dipole moment. These oscillations are accompanied by periodic changes in the selection rules for inter-level optical transitions in the ring allowing control of polarization properties of the associated Terahertz radiation. The second problem treats a single-mode microcavity with an embedded Aharonov-Bohm quantum ring which is pierced by a magnetic flux and subjected to a lateral electric field. We show that external electric and magnetic fields provide additional means of control of the emission spectrum of the system. In particular, when the magnetic flux through the quantum ring is equal to a half-integer number of the magnetic flux quanta, a small change in the lateral electric field allows for tuning of the energy levels of the quantum ring into resonance with the microcavity mode, thus providing an efficient way to control the quantum ring-microcavity coupling strength. Emission spectra of the system are discussed for several combinations of the applied magnetic and electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the theoretical background on the electric dipole approximation for optical transitions please see Sect. 13.3.3 of this chapter.

  2. 2.

    For more details on MC-2LE interaction Hamiltonian, i.e. the Jaynes-Cummings Hamiltonian, please refer to Sects. 13.3.2.113.3.2.3 of this chapter.

  3. 3.

    For more details on the master equation approach for the full density matrix of a general MC-2LE system please see Sects. 13.3.2.413.3.2.5 of this chapter.

References

  1. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. A.M. Alexeev, M.E. Portnoi, Terahertz transitions in Aharonov-Bohm quantum rings in an external electric field. Phys. Stat. Sol. C 9, 1309 (2012)

    Google Scholar 

  3. A.M. Alexeev, M.E. Portnoi, Electric dipole moment oscillations in Aharonov-Bohm quantum rings. Phys. Rev. B 85, 245419 (2012)

    Article  ADS  Google Scholar 

  4. K.L. Koshelev, V. Yu Kachorovskii, M. Titov, Resonant inverse faraday effect in nanorings. Phys. Rev. B 92(23), 235426 (2015)

    Article  ADS  Google Scholar 

  5. A.M. Alexeev, I.A. Shelykh, M.E. Portnoi, Aharonov-bohm quantum rings in high-q microcavities. Phys. Rev. B 88(8), 085429 (2013)

    Article  ADS  Google Scholar 

  6. J.N. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J.L. Feng, A. Lorke, J. Kotthaus, P.M. Petroff, Intermixing and shape changes during the formation of InAs self-assembled quantum dots. Appl. Phys. Lett. 71, 2014 (1997)

    Article  ADS  Google Scholar 

  7. J.M. García, T. Mankad, P.O. Holtz, P.J. Wellman, P.M. Petroff. Electronic states tuning of InAs self-assembled quantum dots. Appl. Phys. Lett. 24:3172 (1998)

    Google Scholar 

  8. A. Lorke, R.J. Luyken, M. Fricke, J.P. Kotthaus, G. Medeiros-Ribeiro, J.M. Garcia, P.M. Petroff, Electronic structure of nanometer-size quantum dots and quantum rings. Microelectron. Eng. 47(1), 95 (1999)

    Article  Google Scholar 

  9. A. Lorke, L.R. Johannes, A.O. Govorov, J.P. Kotthaus, J.M. Garcia, P.M. Petroff, Spectroscopy of nanoscopic semiconductor rings. Phys. Rev. Lett. 84, 2223 (2000)

    Article  ADS  Google Scholar 

  10. E. Ribeiro, A.O. Govorov, W. Carvalho, G. Medeiros-Ribeiro, Aharonov-Bohm signature for neutral polarized excitons in type-II quantum dot ensembles. Phys. Rev. Lett. 92, 126402 (2004)

    Article  ADS  Google Scholar 

  11. T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai, T. Tateno, J. Kim, T. Noda, M. Kawabe, K. Sakoda, G. Kido et al., Self-assembly of concentric quantum double rings. Nano Lett. 5, 425 (2005)

    Article  ADS  Google Scholar 

  12. T. Kuroda, T. Mano, T. Ochiai, S. Sanguinetti, K. Sakoda, G. Kido, N. Koguchi, Optical transitions in quantum ring complexes. Phys. Rev. B 72, 205301 (2005)

    Article  ADS  Google Scholar 

  13. P. Offermans, P.M. Koenraad, J.H. Wolter, D. Granados, J.M. Garcia, V.M. Fomin, V.N. Gladilin, J.T. Devreese, Atomic-scale structure of self-assembled In(Ga)As quantum rings in GaAs. Appl. Phys. Lett. 87, 131902 (2005)

    Article  ADS  Google Scholar 

  14. M. Hanke, Y.I. Mazur, E. Marega Jr., Z.Y. AbuWaar, G.J. Salamo, P. Schäfer, M. Schmidbauer, Shape transformation during overgrowth of InGaAs/GaAs (001) quantum rings. Appl. Phys. Lett. 91, 043103 (2007)

    Article  ADS  Google Scholar 

  15. I.G. Kuskovsky, W. MacDonald, A.O. Govorov, L. Mourokh, X. Wei, M.C. Tamargo, M. Tadic, F.M. Peeters, Optical Aharonov-Bohm effect in stacked type-II quantum dots. Phys. Rev. B 76, 035342 (2007)

    Article  ADS  Google Scholar 

  16. C. Somaschini, S. Bietti, N. Koguchi, S. Sanguinetti, Fabrication of multiple concentric nanoring structures. Nano Lett. 9, 3419 (2009)

    Article  ADS  Google Scholar 

  17. J. Chen, W.S. Liao, X. Chen, T. Yang, S.E. Wark, D.H. Son, J.D. Batteas, P.S. Cremer, Evaporation-induced assembly of quantum dots into nanorings. ACS Nano 3, 173 (2009)

    Article  Google Scholar 

  18. M.D. Teodoro, V.L. Campo, V. Lopez-Richard, E. Marega, G.E. Marques, Y. Galv ao Gobato, F. Iikawa, M.J.S.P. Brasil, Z.Y. AbuWaar, V.G. Dorogan, Yu.I. Mazur, M. Benamara, G.J. Salamo, Aharonov-Bohm interference in neutral excitons: effects of built-in electric fields. Phys. Rev. Lett. 104, 086401 (2010)

    Google Scholar 

  19. F. Ding, N. Akopian, B. Li, U. Perinetti, A. Govorov, F.M. Peeters, C.C. Bufon, C. Deneke, Y.H. Chen, A. Rastelli et al., Gate controlled Aharonov-Bohm-type oscillations from single neutral excitons in quantum rings. Phys. Rev. B 82, 075309 (2010)

    Article  ADS  Google Scholar 

  20. B. Roy, H. Ji, S. Dhomkar, F.J. Cadieu, L. Peng, R. Moug, M.C. Tamargo, I.L Kuskovsky. Determination of excitonic size with sub-nanometer precision via excitonic Aharonov-Bohm effect in type-II quantum dots. Appl. Phys. Lett. 100, 213114 (2012)

    Google Scholar 

  21. M. Elborg, T. Noda, T. Mano, T. Kuroda, Y. Yao, Y. Sakuma, K. Sakoda, Self-assembly of vertically aligned quantum ring-dot structure by multiple droplet epitaxy. J. Crystal Growth (2017)

    Google Scholar 

  22. Y.D. Sibirmovskii, I.S. Vasilevskii, A.N. Vinichenko, I.S. Eremin, N.I. Kargin, O.S. Kolentsova, M.N. Strikhanov, Features of diffusion processes during drop epitaxy of quantum rings. Bull. Lebedev Phys. Inst. 41(9), 243–246 (2014)

    Article  ADS  Google Scholar 

  23. Y.D. Sibirmovskii, I.S. Vasilevskii, A.N. Vinichenko, I.S. Eremin, D.M. Zhigunov, N.I. Kargin, O.S. Kolentsova, P.A. Martyuk, M.N. Strikhanov, Photoluminescence of gaas/algaas quantum ring arrays. Semiconductors 49(5), 638–643 (2015)

    Article  ADS  Google Scholar 

  24. Y.I. Mazur, V. Lopes-Oliveira, L.D. de Souza, V. Lopez-Richard, M.D. Teodoro, V.G. Dorogan, M. Benamara, J. Wu, G.G. Tarasov, E. Marega Jr. et al., Carrier transfer in vertically stacked quantum ring-quantum dot chains. J. Appl. Phys. 117(15), 154307 (2015)

    Article  ADS  Google Scholar 

  25. H.D. Kim, R. Okuyama, K. Kyhm, M. Eto, Robert A. Taylor, Aurelien L. Nicolet, Marek Potemski, Gilles Nogues, Le Si Dang, Ku-Chul Je et al., Observation of a biexciton wigner molecule by fractional optical aharonov-bohm oscillations in a single quantum ring. Nano Lett. 16(1), 27–33 (2015)

    Article  ADS  Google Scholar 

  26. H. Kim, W. Lee, S. Park, K. Kyhm, K. Je, R.A Taylor, G. Nogues, L.S. Dang, J.D. Song, Quasi-one-dimensional density of states in a single quantum ring. Sci. Rep. 7 (2017)

    Google Scholar 

  27. H.D. Kim, K. Kyhm, R.A. Taylor, A.A.L. Nicolet, M. Potemski, G. Nogues, K.C. Je, E.H. Lee, J.D. Song, Excited exciton and biexciton localised states in a single quantum ring. Appl. Phys. Lett. 103(17), 173106 (2013)

    Google Scholar 

  28. V. Lopes-Oliveira, Y.I. Mazur, L. Dias, L.A. de Souza, Bernardes Maral, Wu Jiang, Marcio Daldin Teodoro, Angelo Malachias, Vitaliy G. Dorogan, Mourad Benamara, Georgiy G. Tarasov et al., Structural and magnetic confinement of holes in the spin-polarized emission of coupled quantum ring-quantum dot chains. Phys. Rev. B 90(12), 125315 (2014)

    Article  ADS  Google Scholar 

  29. A.M. Beltrán, E.A. Marquis, A.G. Taboada, J.M. Ripalda, J.M. García, S.I. Molina, Three dimensional atom probe imaging of gaassb quantum rings. Ultramicroscopy 111(8), 1073–1076 (2011)

    Article  Google Scholar 

  30. W.-H. Lin, K.-W. Wang, Y.-A. Liao, C.-W. Pao, Shih-Yen Lin, The formation mechanisms and optical characteristics of gasb quantum rings. J. Appl. Phys. 114(5), 053509 (2013)

    Article  ADS  Google Scholar 

  31. B. Roy, H. Ji, S. Dhomkar, M.C. Tamargo, I.L. Kuskovsky, Observation of oscillations in energy of aharonov-bohm excitons in type-ii znte/znse stacked submonolayer quantum dots. Phys. Status Solidi (c) 11(7—-8), 1248–1251 (2014)

    Article  ADS  Google Scholar 

  32. H. Ji, R. Wu, S. Dhomkar, V. Shuvayev, V. Deligiannakis, M.C. Tamargo, J. Ludwig, Z. Lu, D. Smirnov, A. Wang et al., Optical anisotropy in type-ii znte/znse submonolayer quantum dots. J. Appl. Phys. 119(22), 224306 (2016)

    Article  ADS  Google Scholar 

  33. M. Grochol, F. Grosse, R. Zimmermann, Optical exciton Aharonov-Bohm effect, persistent current, and magnetization in semiconductor nanorings of type I and II. Phys. Rev. B 74, 115416 (2006)

    Article  ADS  Google Scholar 

  34. A.G. Aronov, YuV Sharvin, Magnetic flux effects in disordered conductors. Rev. Mod. Phys. 59, 755 (1987)

    Article  ADS  Google Scholar 

  35. S. Viefers, P. Koskinen, P. Singha Deo, M. Manninen, Quantum rings for beginners: energy spectra and persistent currents. Phys. E (Amsterdam) 21, 1 (2004)

    Google Scholar 

  36. T. Ihn, A. Fuhrer, L. Meier, M. Sigrist, K. Ensslin, Quantum physics in quantum rings. Europhys. News 36, 78 (2005)

    Article  ADS  Google Scholar 

  37. I. Filikhin, S.G. Matinyan, B. Vlahovic, Quantum mechanics of semiconductor quantum dots and rings. ArXiv preprint arXiv:1206.1354 (2012)

  38. M. Manninen, S. Viefers, S.M. Reimann, Quantum rings for beginners ii: Bosons versus fermions. Phys. E: Low-Dimension. Syst. Nanostruct. 46, 119–132 (2012)

    Article  ADS  Google Scholar 

  39. W. Ehrenberg, R.E. Siday, The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. Lond. Sect. B 62, 8 (1949)

    Article  ADS  MATH  Google Scholar 

  40. H. Roy, B. Ji, S. Dhomkar, F.J. Cadieu, L. Peng, R. Moug, M.C. Tamargo, I.L. Kuskovsky, Distinguish ability of stacks in ZnTe/ZnSe quantum dots via spectral analysis of Aharonov-Bohm oscillations. Eur. Phys. J. B 86, 1 (2013)

    Google Scholar 

  41. A.V. Chaplik, Magnetoexcitons in quantum rings and in antidots. JETP 62, 900 (1995)

    Google Scholar 

  42. A.V. Chaplik, A.O. Govorov, Multiply-charged magnetoexcitons in quantum-well systems. Phys. B: Condens. Matter 256, 477 (1998)

    Article  ADS  Google Scholar 

  43. R.A. Römer, M.E. Raikh, Aharonov-Bohm effect for an exciton. Phys. Rev. B 62, 7045 (2000)

    Article  ADS  Google Scholar 

  44. T.V. Shahbazyan, I.E. Perakis, M.E. Raikh, Spin correlations in nonlinear optical response: light-induced Kondo effect. Phys. Rev. Lett. 84

    Google Scholar 

  45. K. Maschke, T. Meier, P. Thomas, S.W. Koch, Coherent dynamics of magnetoexcitons in semiconductor nanorings. Eur. Phys. J. B-Condens. Matter Complex Syst. 19, 599 (2001)

    Article  Google Scholar 

  46. T. Meier, P. Thomas, S.W. Koch, Linear and nonlinear optical properties of semiconductor nanorings with magnetic field and disorder-influence on excitons and biexcitons. Eur. Phys. J. B-Condens. Matter Complex Syst. 22, 249 (2001)

    Article  Google Scholar 

  47. H. Hu, D.-J. Li, J.-L. Zhu, J.-J. Xiong, Size effects on excitons in nano-rings. J. Phys. Condens. Matter 12

    Google Scholar 

  48. H. Hu, J.-L. Zhu, D.-J. Li, J.-J. Xiong, Aharonov-Bohm effect of excitons in nanorings. Phys. Rev. B 63, 195307 (2001)

    Article  ADS  Google Scholar 

  49. J. Song, S.E. Ulloa, Magnetic field effects on quantum ring excitons. Phys. Rev. B 63, 125302 (2001)

    Article  ADS  Google Scholar 

  50. I. Galbraith, F.J. Braid, R.J. Warburton, Magneto-excitons in semiconductor quantum rings. Phys. Stat. Sol. A 190, 781 (2002)

    Article  ADS  Google Scholar 

  51. A.O. Govorov, A.V. Kalameitsev, R. Warburton, K. Karrai, S.E. Ulloa, Excitons in quantum-ring structures in a magnetic field: optical properties and persistent currents. Phys. E: Low-Dimension. Syst. Nanostruct. 13, 297 (2002)

    Article  ADS  Google Scholar 

  52. L.G.G.V. Dias da Silva, S.E. Ulloa, A.O. Govorov, Impurity effects on the Aharonov-Bohm optical signatures of neutral quantum-ring magnetoexcitons. Phys. Rev. B 70, 155318 (2004)

    Article  ADS  Google Scholar 

  53. F. Palmero, J. Dorignac, J.C. Eilbeck, R.A. Römer, Aharonov-Bohm effect for an exciton in a finite-width nanoring. Phys. Rev. B 72, 075343 (2005)

    Article  ADS  Google Scholar 

  54. T.V. Bandos, A. Cantarero, A. Garcia-Cristobal, Finite size effects on the optical transitions in quantum rings under a magnetic field. Eur. Phys. J. B-Condens. Matter Complex Syst. 53, 99 (2006)

    Article  Google Scholar 

  55. Z. Barticevic, M. Pacheco, J. Simonin, C.R. Proetto, Coulomb-interaction effects on the electronic structure of radially polarized excitons in nanorings. Phys. Rev. B 73, 165311 (2006)

    Article  ADS  Google Scholar 

  56. Z. Dai, J.-L. Zhu, Dimensional effects on exciton states in nanorings. J. Phys. Condens. Matter 19, 346202 (2007)

    Article  Google Scholar 

  57. E.N. Bogachek, U. Landman, Edge states, Aharonov-Bohm oscillations, and thermodynamic and spectral properties in a two-dimensional electron gas with an antidot. Phys. Rev. B 52, 14067 (1995)

    Article  ADS  Google Scholar 

  58. W.C. Tan, J.C. Inkson, Electron states in a two-dimensional ring-an exactly soluble model. Semicond. Sci. Technol. 11, 1635 (1996)

    Article  ADS  Google Scholar 

  59. V.M. Kovalev, A.V. Chaplik, Aharonov-Bohm effect for plasmons in a finite-width quantum ring. JETP Lett. 90, 679 (2010)

    Article  ADS  Google Scholar 

  60. C. González-Santander, F. Domínguez-Adame, R.A. Römer, Excitonic Aharonov-Bohm effect in a two-dimensional quantum ring. Phys. Rev. B 84, 235103 (2011)

    Article  ADS  Google Scholar 

  61. A.V. Maslov, D.S. Citrin, Enhancement of the Aharonov-Bohm effect of neutral excitons in semiconductor nanorings with an electric field. Phys. Rev. B 67, 121304 (2003)

    Article  ADS  Google Scholar 

  62. A.M. Fischer, V.L. Campo, M.E. Portnoi, R.A. Römer, Exciton storage in a nanoscale Aharonov-Bohm ring with electric field tuning. Phys. Rev. Lett. 102, 096405 (2009)

    Article  ADS  Google Scholar 

  63. B. Li, F.M. Peeters, Tunable optical Aharonov-Bohm effect in a semiconductor quantum ring. Phys. Rev. B 83, 115448 (2011)

    Article  ADS  Google Scholar 

  64. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 20592 (1987)

    Article  Google Scholar 

  65. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  66. E. Yablonovitch, T.J. Gmitter, K.M. Leung, Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67

    Google Scholar 

  67. T.F. Krauss, R.M.D.L. Rue, S. Brand, Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383, 699 (1996)

    Article  ADS  Google Scholar 

  68. S. Noda, A. Chutinan, M. Imada, Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 407, 608 (2000)

    Article  ADS  Google Scholar 

  69. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, S. Noda, High-Q nanocavity with a 2-ns photon lifetime. Optics Express 15, 17206 (2007)

    Article  ADS  Google Scholar 

  70. Y. Tanaka, T. Asano, S. Noda, Design of photonic crystal nanocavity with Q-factor of \(\sim 10^9\). J. Lightwave Technol. 26, 1532 (2008)

    Article  ADS  Google Scholar 

  71. A.I. Nosich, E.I. Smotrova, S.V. Boriskina, T.M. Benson, P. Sewell, Trends in microdisk laser research and linear optical modelling. Opt. Quantum Electron. 39, 1253 (2007)

    Article  Google Scholar 

  72. E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  73. J.-M. Gérard, B. Gayral, Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Technol. 17, 2089 (1999)

    Article  ADS  Google Scholar 

  74. G.S. Solomon, M. Pelton, Y. Yamamoto, Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. Phys. Rev. Lett. 86, 3903 (2001)

    Article  ADS  Google Scholar 

  75. A.J. Bennett, D.J.P. Ellis, A.J. Shields, P. Atkinson, I. Farrer, D.A. Ritchie, Observation of the Purcell effect in high-index-contrast micropillars. Appl. Phys. Lett. 90, 191911 (2007)

    Article  ADS  Google Scholar 

  76. A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. Zhang, E. Hu, W.V. Schoenfeld, P.M. Petroff, Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure. Appl. Phys. Lett. 78, 3932 (2001)

    Article  ADS  Google Scholar 

  77. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu, Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett. 96, 117401 (2006)

    Article  ADS  Google Scholar 

  78. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P.M. Petroff, A. Imamoğlu, Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158 (2005)

    Article  ADS  Google Scholar 

  79. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature (London) 432, 200 (2004)

    Article  ADS  Google Scholar 

  80. J.P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Strong coupling in a single quantum dotsemiconductor microcavity system. Nature (London) 432, 197 (2004)

    Article  ADS  Google Scholar 

  81. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J.M. Gerard, J. Bloch, Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005)

    Article  ADS  Google Scholar 

  82. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E.L. Hu, A. Imamoğlu, Quantum nature of a strongly coupled single quantum dotcavity system. Nature (London) 445, 896 (2007)

    Article  ADS  Google Scholar 

  83. M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, Y. Arakawa, Large vacuum Rabi splitting in single self-assembled quantum dot-nanocavity system. Appl. Phys. Express 1 (2008)

    Google Scholar 

  84. A. Laucht, N. Hauke, J.M. Villas-Bôas, F. Hofbauer, G. Böhm, M. Kaniber, J.J. Finley, Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities. Phys. Rev. Lett. 103, 87405 (2009)

    Article  ADS  Google Scholar 

  85. A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, M.C. Amann, J.J. Finley, Electrical control of spontaneous emission and strong coupling for a single quantum dot. New J. Phys. 11

    Google Scholar 

  86. C. Kistner, K. Morgener, S. Reitzenstein, C. Schneider, S. Hofling, L. Worschech, A. Forchel, P. Yao, S. Hughes, Strong coupling in a quantum dot micropillar system under electrical current injection. Appl. Phys. Lett. 96, 221102 (2010)

    Article  ADS  Google Scholar 

  87. M. Lermer, N. Gregersen, F. Dunzer, S. Reitzenstein, S. Höfling, J. Mørk, L. Worschech, M. Kamp, A. Forchel, Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments. Phys. Rev. Lett. 108, 057402 (2012)

    Article  ADS  Google Scholar 

  88. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53, 2173 (1984)

    Article  ADS  Google Scholar 

  89. C. Gerry, P. Knight, Introductory Quantum Optics (Cambridge University Press, 2005)

    Google Scholar 

  90. S. Haroche, J.M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Graduate Texts in Mathematics, OUP Oxford, 2006)

    Book  MATH  Google Scholar 

  91. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995)

    Google Scholar 

  92. M.O. Scully, S. Zubairy, Quantum Optics (Cambridge University Press, 1997)

    Google Scholar 

  93. H.J. Carmichael. Statistical Methods in Quantum Optics. Number v. 1 in Statistical Methods in Quantum Optics (Springer, 1999)

    Google Scholar 

  94. H.J. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (Springer, Theoretical and Mathematical Physics, 2008)

    Book  MATH  Google Scholar 

  95. L.D. Landau, E.M. Lifshitz, Quantum mechanics. Course of Theoretical. Physics 3, 768 (1977)

    Google Scholar 

  96. A. Messiah, Quantum Mechanics, vol. 2 (North-Holland, Amsterdam, 1965)

    MATH  Google Scholar 

  97. H. Rigneault, S. Monneret, Field quantization and spontaneous emission in lossless dielectric multilayer structures. Quantum Semiclassical Opt.: J. Eur. Opt. Soc. Part B 9, 1017 (1999)

    Article  ADS  Google Scholar 

  98. G. Hétet, L. Slodička, A. Glätzle, M. Hennrich, R. Blatt, QED with a spherical mirror. Phys. Rev. A 82, 063812 (2010)

    Article  ADS  Google Scholar 

  99. M.A. Rippin, P.L. Knight, Modified spontaneous emission in cylindrical microcavities: waveguiding and distributed Bragg reflecting structures. J. Mod. Opt. 43, 807 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. L.C. Andreani, G. Panzarini, J.-M. Gérard, Strong-coupling regime for quantum boxes in pillar microcavities: theory. Phys. Rev. B 60, 13276 (1999)

    Article  ADS  Google Scholar 

  101. I. Schuster, A. Kubanek, A. Fuhrmanek, T. Puppe, P.W.H. Pinkse, K. Murr, G. Rempe, Nonlinear spectroscopy of photons bound to one atom. Nat. Phys. 4, 382 (2008)

    Article  Google Scholar 

  102. F.P. Laussy, E. del Valle, C. Tejedor, Strong coupling of quantum dots in microcavities. Phys. Rev. Lett. 101, 083601 (2008)

    Article  ADS  Google Scholar 

  103. F. Bloch, A. Siegert, Magnetic resonance for nonrotating fields. Phys. Rev. 57, 522 (1940)

    Article  ADS  Google Scholar 

  104. J. Von Neumann, Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Göttinger Nachr. 1(10), 245–272 (1927)

    MATH  Google Scholar 

  105. G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Mathem. Phys. 48

    Google Scholar 

  106. E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963)

    Google Scholar 

  107. T.R. Nielsen, P. Gartner, F. Jahnke, Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers. Phys. Rev. B 69, 235314 (2004)

    Article  ADS  Google Scholar 

  108. N.S. Averkiev, M.M. Glazov, A.N. Poddubnyi, Collective modes of quantum dot ensembles in microcavities. JETP 108, 836 (2009)

    Article  ADS  Google Scholar 

  109. C.W. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Vol. 56 (Springer, 2004)

    Google Scholar 

  110. Z. Barticevi, G. Fuster, M. Pacheco, Effect of an electric field on the Bohm-Aharonov oscillations in the electronic spectrum of a quantum ring. Phys. Rev. B 65, 193307 (2002)

    Article  ADS  Google Scholar 

  111. A. Bruno-Alfonso, A. Latgé, Aharonov-Bohm oscillations in a quantum ring: eccentricity and electric-field effects. Phys. Rev. B 71, 125312 (2005)

    Article  ADS  Google Scholar 

  112. O.V. Kibis, S.V. Malevannyy, L. Huggett, D.G.W. Parfitt, M.E. Portnoi, Superlattice properties of helical nanostructures in a transverse electric field. Electromagnetics 25, 425 (2005)

    Article  Google Scholar 

  113. O.V. Kibis, M.E. Portnoi, Semiconductor nanohelix in electric field: a superlattice of the new type. Tech. Phys. Lett. 33, 878 (2007)

    Article  ADS  Google Scholar 

  114. O.V. Kibis, M.E. Portnoi, Superlattice properties of semiconductor nanohelices in a transverse electric field. Phys. E (Amsterdam) 40 1899 (2008)

    Google Scholar 

  115. M.E. Portnoi, O.V. Kibis, V.L. Campo Jr., M. Rosenau da Costa, L. Huggett, S.V. Malevannyy, Helical nanostructures and Aharonov-Bohm quantum rings in a transverse electric field in Proceedings of 28th ICPS, AIP Conference Proceedings, vol 893, 703 (2007)

    Google Scholar 

  116. E.A. Avrutin, M.E. Portnoi, Estimate of the lifetimes of nonequilibrium carriers in a semiconductor irradiated with heavy ions. Sov. Phys. Semicond. 22, 968 (1988)

    Google Scholar 

  117. M.E. Portnoi, O.V. Kibis, M. Rosenau da Costa, Terahertz applications of carbon nanotubes. Superlatt. Microstruct. 43, 399 (2008)

    Article  ADS  Google Scholar 

  118. M.E. Portnoi, M. Rosenau da Costa, O.V. Kibis, I.A. Shelykh, Magnetically controlled terahertz absorption and emission in carbon nanotubes. Int. J. Mod. Phys. B 23, 2846 (2009)

    Article  ADS  Google Scholar 

  119. K.G. Batrakov, O.V. Kibis, P.P. Kuzhir, M. Rosenau da Costa, M.E. Portnoi, Terahertz processes in carbon nanotubes. J. Nanophoton. 4, 041665 (2010)

    Article  ADS  Google Scholar 

  120. R.R. Hartmann, I.A. Shelykh, M.E. Portnoi, Excitons in narrow-gap carbon nanotubes. Phys. Rev. B 84, 035437 (2011)

    Article  ADS  Google Scholar 

  121. K.V. Kavokin, M.A. Kaliteevski, R.A. Abram, A.V. Kavokin, S. Sharkova, I.A. Shelykh, Stimulated emission of terahertz radiation by exciton-polariton lasers. Appl. Phys. Lett. 97, 201111 (2010)

    Article  ADS  Google Scholar 

  122. E. del Valle, A. Kavokin, Terahertz lasing in a polariton system: quantum theory. Phys. Rev. B 83, 193303 (2011)

    Article  ADS  Google Scholar 

  123. I.G. Savenko, I.A. Shelykh, M.A. Kaliteevski, Nonlinear terahertz emission in semiconductor microcavities. Phys. Rev. Lett. 107, 027401 (2011)

    Article  ADS  Google Scholar 

  124. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314 (1992)

    Article  ADS  Google Scholar 

  125. See, e.g., a special volume devoted to the physics of microcavities. Phys. Stat. Sol. B 242(11) (2005)

    Google Scholar 

  126. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, Le Si Dang, Boseeinstein condensation of exciton polaritons. Nature (London) 443, 409 (2006)

    Article  ADS  Google Scholar 

  127. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Bose-einstein condensation of microcavity polaritons in a trap. Science 316, 1007 (2007)

    Article  ADS  Google Scholar 

  128. A. Amo, D. Sanvitto, F.P. Laussy, D. Ballarini, E. del Valle, A. Lemaître, M.D. Martin, J. Bloch, D.N. Krizhanovskii, M.S. Skolnick, C. Tejedor, L. Vina, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature (London) 457, 291 (2009)

    Article  ADS  Google Scholar 

  129. T.C.H. Liew, I.A. Shelykh, G. Malpuech, Polaritonic devices. Phys. E 43, 1543 (2011)

    Article  Google Scholar 

  130. S. Christopoulos, G. Baldassarri, Höger von Högersthal, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007)

    Google Scholar 

  131. C. Leyder, T.C.H. Liew, A.V. Kavokin, I.A. Shelykh, M. Romanelli, JPh Karr, E. Giacobino, A. Bramati, Interference of coherent polariton beams in microcavities: polarization-controlled optical gates. Phys. Rev. Lett. 99, 196402 (2007)

    Article  ADS  Google Scholar 

  132. A.V. Kavokin, I.A. Shelykh, T. Taylor, M.M. Glazov, Vertical cavity surface emitting terahertz laser. Phys. Rev. Lett. 108, 197401 (2012)

    Article  ADS  Google Scholar 

  133. C. Ciuti, Branch-entangled polariton pairs in planar microcavities and photonic wires. Phys. Rev. B 69, 245304 (2004)

    Article  ADS  Google Scholar 

  134. S. Savasta, O. Di Stefano, V. Savona, W. Langbein, Quantum complementarity of microcavity polaritons. Phys. Rev. Lett. 94, 246401 (2005)

    Article  ADS  Google Scholar 

  135. R. Johne, N.A. Gippius, G. Pavlovic, D.D. Solnyshkov, I.A. Shelykh, G. Malpuech, Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity. Phys. Rev. Lett. 100, 240404 (2008)

    Article  ADS  Google Scholar 

  136. M.A. Kaliteevski, S. Brand, R.A. Abram, A. Kavokin, Le Si Dang, Whispering gallery polaritons in cylindrical cavities. Phys. Rev. B 75, 233309 (2007)

    Article  ADS  Google Scholar 

  137. F.P. Laussy, E. del Valle, C. Tejedor, Luminescence spectra of quantum dots in microcavities. I. Bosons. Phys. Rev. B 79, 235325 (2009)

    Article  ADS  Google Scholar 

  138. E. del Valle, F.P. Laussy, C. Tejedor, Luminescence spectra of quantum dots in microcavities. II. Fermions. Phys. Rev. B 79, 235326 (2009)

    Article  ADS  Google Scholar 

  139. E. del Valle, F.P. Laussy, Mollow triplet under incoherent pumping. Phys. Rev. Lett. 105, 233601 (2010)

    Article  ADS  Google Scholar 

  140. I.G. Savenko, O.V. Kibis, I.A. Shelykh, Asymmetric quantum dot in a microcavity as a nonlinear optical element. Phys. Rev. A 85, 053818 (2012)

    Article  ADS  Google Scholar 

  141. P.A. George, C. Manolatou, F. Rana, A.L. Bingham, D.R. Grischkowsky, Integrated waveguide-coupled terahertz microcavity resonators. Appl. Phys. Lett. 91, 191122 (2007)

    Article  ADS  Google Scholar 

  142. C.M. Yee, M.S. Sherwin, High-Q terahertz microcavities in silicon photonic crystal slabs. Appl. Phys. Lett. 94, 154104 (2009)

    Article  ADS  Google Scholar 

  143. Y. Todorov, A.M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, C. Sirtori, Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies. Phys. Rev. Lett. 102, 186402 (2009)

    Article  ADS  Google Scholar 

  144. S. Sree Harsha, N. Laman, D. Grischkowsky, D. Grischkowsky, High-Q terahertz Bragg resonances within a metal parallel plate waveguide. Appl. Phys. Lett. 94, 091118 (2009)

    Google Scholar 

  145. O.V. Kibis, D.G.W. Parfitt, M.E. Portnoi, Superlattice properties of carbon nanotubes in a transverse electric field. Phys. Rev. B 71, 035411 (2005)

    Article  ADS  Google Scholar 

  146. M.O. Scully, M.S. Zubairy, Quantum Optics (University Press, Cambridge, 2001)

    MATH  Google Scholar 

  147. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, Chichester, 1998)

    Book  Google Scholar 

  148. C.A. Vera, H. Vinck-Posada, A. González, Polariton lasing in a multilevel quantum dot strongly coupled to a single photon mode. Phys. Rev. B 80, 125302 (2009)

    Article  ADS  Google Scholar 

  149. B.S. Williams, Terahertz quantum-cascade lasers. Nat. Photon. 1, 517 (2007)

    Article  ADS  Google Scholar 

  150. M.A. Belkin, J.A. Fan, S. Hormoz, F. Capasso, S.P. Khanna, M. Lachab, A.G. Davies, E.H. Linfield et al., Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K. Opt. Express 16, 3242 (2008)

    Article  ADS  Google Scholar 

  151. S. Kumar, Q. Hu, J.L. Reno, 186 K operation of terahertz quantum-cascade lasers based on a diagonal design. Appl. Phys. Lett. 94

    Google Scholar 

  152. G.L. Carr, M.C. Martin, W.R. McKinney, K. Jordan, G.R. Neil, G.P. Williams, High-power terahertz radiation from relativistic electrons. Nature 420

    Google Scholar 

  153. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photon. 1, 97 (2007)

    Article  ADS  Google Scholar 

  154. D.L. Woolard, T.R. Globus, B.L. Gelmont, M. Bykhovskaia, A.C. Samuels, D. Cookmeyer, J.L. Hesler, T.W. Crowe, J.O. Jensen, J.L. Jensen et al., Submillimeter-wave phonon modes in DNA macromolecules. Phys. Rev. E 65, 051903 (2002)

    Article  ADS  Google Scholar 

  155. T.R. Globus, D.L. Woolard, T. Khromova, T.W. Crowe, M. Bykhovskaia, B.L. Gelmont, J. Hesler, A.C. Samuels, THz-spectroscopy of biological molecules. J. Biol. Phys. 29, 89 (2003)

    Article  Google Scholar 

  156. P.F. Taday, I.V. Bradley, D.D. Arnone, M. Pepper, Using terahertz pulse spectroscopy to study the crystalline structure of a drug: a case study of the polymorphs of ranitidine hydrochloride. J. Pharm. Sci. 92, 831 (2003)

    Article  Google Scholar 

  157. C. Jansen, F. Neubauer, J. Helbig, D.M. Mittleman, M. Koch, Flexible Bragg reflectors for the terahertz regime composed of polymeric compounds. in Infrared and Millimeter Waves, 2007 and the 2007 15th International Conference on Terahertz Electronics. IRMMW-THz. Joint 32nd International Conference. IEEE, p. 984 (2007)

    Google Scholar 

  158. M. Lax, Formal theory of quantum fluctuations from a driven state. Phys. Rev. 129, 2342 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  159. N. Wiener, Generalized harmonic analysis. Acta Mathem. 55, 117 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  160. A. Khintchine, Korrelationstheorie der stationären stochastischen prozesse. Math. Ann. 109, 604 (1934)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Alexeev .

Editor information

Editors and Affiliations

Appendix. Analytical Solutions for Small Matrices.

Appendix. Analytical Solutions for Small Matrices.

In the limit of weak electric field, \(\beta =eER/(\hbar ^2/M_{e}R^2) \ll 1\), the electron ground, first and second excited states are well-described by the following three-by-three system, which is obtained from (13.54) for \(\left| m \right| \le 1\)

$$\begin{aligned} \begin{pmatrix} \left( f+1 \right) ^{2} &{} \beta &{} 0 \\ \beta &{} f^{2} &{} \beta \\ 0 &{} \beta &{} \left( f-1 \right) ^{2} \end{pmatrix} \begin{pmatrix} c_{+1}^{n} \\ c_{0}^{n} \\ c_{-1}^{n} \end{pmatrix} = \lambda _{n} \begin{pmatrix} c_{+1}^{n} \\ c_{0}^{n} \\ c_{-1}^{n} \end{pmatrix} \text{. } \end{aligned}$$
(13.89)

Here \(f=(\varPhi -N\varPhi _0)/\varPhi _0\) with N integer, so that \(0 \le f \le 1/2\). The eigenvalues \(\lambda _{n}\) of the system (13.89) are the roots of the cubic equation

$$\begin{aligned} \lambda _{n}^{3} - \lambda _{n}^{2} \left( 3 f^{2} + 2 \right) + \lambda _{n} \left( 3 f^{4} + 1 - 2 \beta ^{2} \right) -f^{6} +2f^{4} -f^{2} + 2 f^{2} \beta ^{2} + 2 \beta ^{2} =0 \text{. } \end{aligned}$$
(13.90)

Solving (13.90) we find

$$\begin{aligned} \lambda _{1} = - 2/3 \sqrt{1+ 12 f^{2} +6 \beta ^2} \cos \left( \alpha /3 \right) + f^{2}+2/3 \text{, } \end{aligned}$$
(13.91)
$$\begin{aligned} \lambda _{2} = - 2/3 \sqrt{1+ 12 f^{2} +6 \beta ^2} \cos \left( \alpha /3 - 2 \pi /3 \right) + f^{2}+2/3 \text{, } \end{aligned}$$
(13.92)
$$\begin{aligned} \lambda _{3} = - 2/3 \sqrt{1+ 12 f^{2} +6 \beta ^2} \cos \left( \alpha /3 + 2 \pi /3 \right) + f^{2}+2/3 \text{, } \end{aligned}$$
(13.93)

with

$$\cos {\alpha }=\frac{ 1 - 36 f^2 + 9 \beta ^{2}}{ \left( 1 + 12 f^{2} +6 \beta ^2 \right) ^{3/2}} \text{. }$$

Considering \(\beta \ll 1\) (the limit of weak electric field) we expand (13.9113.93) into Taylor series in f to obtain

$$\begin{aligned} \lambda _{1} = f^2 - 2 \beta ^2 \sum \limits _{n=0}^{\infty } \left( 2f \right) ^{2n} + O(\beta ^4) \text{, } \end{aligned}$$
(13.94)
$$\begin{aligned} \lambda _{2} = 1+f^{2}+\beta ^{2} \left[ 1- \sum \limits _{n=0}^{\infty } \frac{\left( -1 \right) ^{n} \left( 2n \right) !}{\left( 1-2n \right) \left( n! \right) ^{2}} \left( \frac{f}{\beta ^{2}} \right) ^{2n} \right] + O(\beta ^4)\text{, } \end{aligned}$$
(13.95)
$$\begin{aligned} \lambda _{3} = 1+f^{2}+\beta ^{2} \left[ 1+ \sum \limits _{n=0}^{\infty } \frac{\left( -1 \right) ^{n} \left( 2n \right) !}{\left( 1-2n \right) \left( n! \right) ^{2}} \left( \frac{f}{\beta ^{2}} \right) ^{2n} \right] + O(\beta ^4)\text{. } \end{aligned}$$
(13.96)

It can be shown that (13.95, 13.96) coincide with the results of the perturbation theory in eER for quasi-degenerate states [96] if the coupling to the states with \(|m|>1\) is neglected.

The energy spectrum given by (13.9113.93) is plotted in Fig. 13.19. It is nearly indistinguishable from the energy spectrum, which was obtained by numerical diagonalization of the \(23 \times 23\) system in Sect. 13.4 for the same value of \(\beta \). A small discrepancy between the plotted energy spectra is noticeable only for the first and second excited states. The energy spectrum obtained by numerical diagonalization of the \(23 \times 23\) system is slightly shifted towards the smaller energies. This shift occurs because the considered \(3 \times 3\) matrix does not take into account the coupling between the \(m=\pm 1\) and \(m=\pm 2\) states. For the infinite system and \(f=0\), perturbation theory up to the second order in \(\beta \) yields

$$\begin{aligned} \lambda _{1}=-2 \beta ^{2} \text{, } \lambda _{2}=1 - \beta ^{2}/3\text{, } \lambda _{3}=1 + 5\beta ^{2}/3\text{, } \end{aligned}$$
(13.97)

whereas from (13.9413.96) one gets

$$\begin{aligned} \lambda _{1}=-2 \beta ^{2} \text{, } \lambda _{2}=1 \text{, } \lambda _{3}=1 + 2\beta ^{2} \text{. } \end{aligned}$$
(13.98)

The \(\lambda _{2}\) and \(\lambda _{3}\) values in (13.97) differ from the values in (13.98) by \(-\beta ^{2}/3\) which corresponds to the repulsion between the \(m=\pm 1\) and \(m=\pm 2\) states calculated using the second order perturbation theory.

Fig. 13.19
figure 19

The normalized energy spectrum as a function of dimensionless parameter f for \(\beta =0.1\). Dashed line—the result of analytical solution of the \(3 \times 3\) system. Solid line—the result of numerical diagonalization of the \(23 \times 23\) system. A horizontal line is shown to indicate \(\lambda =0\) value

When \(f=1/2\), and in the absence of a lateral electric field, the \(m=0\) and \(m=-1\) states are degenerate with energy \(\varepsilon _{1} \left( 0 \right) /4\), i.e. \(\lambda _1=\lambda _2=1/4\), whereas the \(m=+1\) state energy is nine times larger (\(\lambda _3=9/4\)). The contribution from this remote state can be neglected, and the electron ground and first excited states are well-described by the following two-by-two system, which contains \(c_{-1}\) and \(c_{0}\) coefficients only,

$$\begin{aligned} \begin{pmatrix} f^{2} &{} \beta \\ \beta &{} \left( f-1 \right) ^{2} \end{pmatrix} \begin{pmatrix} c_{0}^{n} \\ c_{-1}^{n} \end{pmatrix} = \lambda _{n} \begin{pmatrix} c_{0}^{n} \\ c_{-1}^{n} \end{pmatrix} \text{. } \end{aligned}$$
(13.99)

The eigenvalues \(\lambda _{n}\) of the system (13.99) are the roots of the quadratic equation

$$\begin{aligned} \lambda _{n}^2 -\lambda _{n} \left( 2 f^2 - 2f +1 \right) +f^{4} -2f^{3} +f^{2} -\beta ^2 =0 \text{. } \end{aligned}$$
(13.100)

Solving (13.100) we find

$$\begin{aligned} \lambda _{1,2}= f^{2}-f+1/2 \mp \sqrt{f^{2}-f + \beta ^{2} + 1/4} \text{, } \end{aligned}$$
(13.101)

yielding for \(f=1/2\) the eigenvalue difference \(\lambda _2-\lambda _1=2\beta \), corresponding to the energy splitting of eER as expected from the perturbation theory for degenerate states. The energy spectrum given by (13.101) is plotted in Fig. 13.20 together with two lowest eigenvalues of the \(23 \times 23\) system demonstrating a spectacular accuracy of the approximate solution for \(\beta =0.1\).

Let us now return to the three-by-three matrix and examine how its eigenvectors are modified with changing f. Near the point \(f=0\) it is convenient to write the eigenvectors of the system (13.89) in the following form

$$\begin{aligned} \begin{pmatrix} c_{+1}^{n} \\ c_{0}^{n} \\ c_{-1}^{n} \end{pmatrix} = A_{n} \begin{pmatrix} \left[ \lambda _{n} - \left( f -1 \right) ^{2} \right] \left( \lambda _{n} -f^2 \right) - \beta ^{2} \\ \left[ \lambda _{n} - \left( f-1 \right) ^{2} \right] \beta \\ \beta ^{2} \end{pmatrix} \text{, } \end{aligned}$$
(13.102)

where \(A_{n}\) denotes the normalization constant corresponding to the eigenvalue \(\lambda _n\) and (13.102) is valid only for \(\beta \ne 0\). For \(f=0\) in the limit of weak electric field (\(\beta \ll 1\)) we obtain

$$\begin{aligned} \begin{pmatrix} c_{+1}^{1} \\ c_{0}^{1} \\ c_{-1}^{1} \end{pmatrix} = \frac{ \left( 1+ 1 \sqrt{1+8 \beta ^{2}} + 8 \beta ^{2} \right) ^{-1/2}}{\sqrt{2}} \begin{pmatrix} - 2 \beta \\ 1 + \sqrt{1+8 \beta ^{2}} \\ - 2 \beta \end{pmatrix} {\mathop {\longrightarrow }\limits ^{\beta \rightarrow 0}} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{, } \end{aligned}$$
(13.103)
$$\begin{aligned} \begin{pmatrix} c_{+1}^{2} \\ c_{0}^{2} \\ c_{-1}^{2} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} - 1 \\ 0 \\ 1 \end{pmatrix} \text{, } \end{aligned}$$
(13.104)
$$\begin{aligned} \begin{pmatrix} c_{+1}^{3} \\ c_{0}^{3} \\ c_{-1}^{3} \end{pmatrix} = \frac{ \left( 1- 1 \sqrt{1+8 \beta ^{2}} + 8 \beta ^{2} \right) ^{-1/2}}{\sqrt{2}} \begin{pmatrix} 2 \beta \\ \sqrt{1+8 \beta ^{2}} - 1 \\ 2 \beta \end{pmatrix} {\mathop {\longrightarrow }\limits ^{\beta \rightarrow 0}} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \text{. } \end{aligned}$$
(13.105)

From (13.10313.105) one can see that for \(f=0\) and \(\beta \ll 1\) the electron ground state is almost a pure \(m=0\) state, whereas the angular dependencies of the wavefunctions of the first and second excited states are well-described by \(\sin \varphi \) and \(\cos \varphi \) respectively.

Fig. 13.20
figure 20

The normalized energy spectrum as a function of dimensionless parameter f for \(\beta =0.1\). Dashed line - the result of analytical solution of the \(2 \times 2\) system. Solid line - the result of numerical diagonalization of the \(23 \times 23\) system. A horizontal line is shown to indicate \(\lambda =0\) value

The structure of eigenfunctions near \(f=1/2\) is best understood from (13.99), which yields

$$\begin{aligned} \begin{pmatrix} c_{0}^{1} \\ c_{-1}^{1} \end{pmatrix} = A \begin{pmatrix} \beta \\ 1/2 - f - \sqrt{f^{2}-f + \beta ^{2} + 1/4} \end{pmatrix} \text{, } \end{aligned}$$
(13.106)
$$\begin{aligned} \begin{pmatrix} c_{0}^{2} \\ c_{-1}^{2} \end{pmatrix} = A \begin{pmatrix} f - 1/2 + \sqrt{f^{2}-f+ \beta ^{2} + 1/4 } \\ \beta \end{pmatrix} \text{. } \end{aligned}$$
(13.107)

Here A is the normalization constant and \(\beta \ne 0\). For \(f=1/2\) we get

$$\begin{aligned} \begin{pmatrix} c_{0}^{1} \\ c_{-1}^{1} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ - 1 \end{pmatrix} \text{, } \begin{pmatrix} c_{0}^{2} \\ c_{-1}^{2} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{. } \end{aligned}$$
(13.108)

From (13.108) one can see that for \(f=1/2\) the angular dependencies of the ground and first excited states wavefunctions are described by \(\sin \left( \varphi /2 \right) \) and \(\cos \left( \varphi /2 \right) \) respectively.

Fig. 13.21
figure 21

Magnetic flux dependence of the wavefunction coefficients \(\left| c_{0} \right| ^{2}\) (solid line), \(\left| c_{-1} \right| ^{2}\) (dotted line), and \(\left| c_{+1} \right| ^{2}\) (dashed line): a for the ground state; b for the first excited state; c for the second excited state

Figure 13.21 shows the magnetic flux dependencies of the coefficients \(\left| c_{0} \right| ^{2}\), \(\left| c_{-1} \right| ^{2}\), and \(\left| c_{+1} \right| ^{2}\) for the electron ground, first and second excited states. From these plots one can see that the electron ground state is almost a pure \(m=0\) state in a wide region \(0 \le f \lesssim 1/4\). An admixture of the \(m=-1\) wavefunction increases smoothly as one approaches the point of degeneracy \(f=1/2\). Finally, when \(f=1/2\), the ground state wavefunction is expressed as a difference of the \(m=-1\) and \(m=0\) wavefunctions. The first and the second excited states behave differently. In a small region near the point \(f=0\) the electron first and second excited states wavefunctions consist of a strong mixture of the \(m=-1\) and \(m=+1\) functions with a tiny admixture of the \(m=0\) function. In particular, when \(f=0\) the first and second excited states eigenfunctions with good accuracy can be expressed as the difference and the sum of the \(m=-1\) and \(m=+1\) functions respectively. Optical transitions between these states and the ground state are only allowed if the polarization of the associated optical excitations is either perpendicular (for the first excited state) or parallel (for the second excited state) to the direction of the applied in-plane electric field. Away from the \(f=0\) region, only the coefficient \(c_{-1}\) (in the case of the first excited state) or \(c_{+1}\) (in the case of the second excited state) remains in the (13.102), which now describes almost pure \(m=+1\) and \(m=-1\) states. When f exceeds 1 / 4 the first excited state starts to contain a noticeable ad-mixture of \(m=0\) function, as discussed above, and for \(f=1/2\) the first excited state eigenfunction is expressed as a sum of the \(m=-1\) and \(m=0\) wavefunctions in equal proportions, whereas the second excited state remains an almost pure \(m=+1\) state.

The same trend in the evolution of wavefunctions of the three lowest energy states with changing the flux through the ring can be seen from perturbation theory. For \(f=0\), the degeneracy between the first and second excited states is removed in the second order in eER only. Nevertheless, as a result of the degeneracy, the introduction of any weak perturbation drastically modifies the wavefunctions corresponding to these states, turning them from the eigenstates of the angular momentum operator to the sine and cosine functions. With a slight increase of f, so that \(f>\beta ^2\), the first and the second excited states, which are not degenerate anymore for \(f \ne 0\), become governed mainly by the diagonal terms of the Hamiltonian, which do not mix the \(m=-1\) and \(m=+1\) functions. When \(f=1/2\), the \(m=-1\) and \(m=0\) states are degenerate in the absence of the electric field. This degeneracy is removed in the first order in eER. The off-diagonal matrix elements connecting \(m=-1\) and \(m=0\) functions remain of the same order of magnitude as the difference between the diagonal terms of the Hamiltonian across a broad range of f values near \(f=1/2\). This results in strong mixing of the \(m=-1\) and \(m=0\) components in the eigenfunctions of the ground and first excited states for \(1/4 \lesssim f \le 1/2\).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alexeev, A.M., Portnoi, M.E. (2018). Quantum Rings in Electromagnetic Fields. In: Fomin, V. (eds) Physics of Quantum Rings. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-95159-1_13

Download citation

Publish with us

Policies and ethics