Skip to main content

Antibiotics Pollution in the Paddy Soil Environment

  • Chapter
  • First Online:
Environmental Pollution of Paddy Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 53))

Abstract

Antibiotics have been widely used in human and veterinary medicine. However, their excessive use had led to accumulation in soils, water, and biota around the world. Antibiotics present in the environment may exert a selective pressure on bacterial communities leading to an increase in the prevalence of resistance. Wastewater treatment plants and the use of manure for agricultural practices are considered as an important point source of evolution and spreading of antibiotics and antibiotic resistance into the environment. Therefore, antibiotics and antibiotic resistance genes are now considered environmental pollutants. Antibiotic contamination in soils and water may cause adverse effects on plant growth and may result in their uptake and accumulation in crops. Paddy soils represent a large portion of global cropland. Wastewater and manure are used for paddy soils management which may represent a health concern since antibiotics may be present in manure and wastewater which may contaminate the food chain and eventually affect human and animal health. This chapter explores the antibiotic and antibiotic resistance genes as environment pollutants, in particular in paddy soils environment, their effect on plant growth, and the plants’ ability to uptake and accumulate antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen HK, Donato J, Wang HH, Cloud-hansen KA, Davies J, Handelsman J (2010) Genes in natural environments. Nat Rev 8:251–259

    CAS  Google Scholar 

  • Awad YM, Kim KR, Kim S, Kim K, Lee SR, Lee SS, Ok YS (2015) Monitoring antibiotic residues and corresponding antibiotic resistance genes in an agroecosystem. J Chem 2015:1–7

    Article  Google Scholar 

  • Bewick MWM (1979) The use of antibiotic fermentation wastes as fertilizers for tomatoes. J Agric Sci 92:669–674

    Article  Google Scholar 

  • Bound JP, Voulvoulis N (2004) Pharmaceuticals in the aquatic environment––a comparison of risk assessment strategies. Chemosphere 56:1143–1155

    Article  CAS  Google Scholar 

  • Boxall ABA, Kolpin DW, Halling-Sørensen B, Tolls J (2003) Peer reviewed: are veterinary medicines causing environmental risks? Environ Sci Technol 37:286A–294A

    Article  CAS  Google Scholar 

  • Cabello FC (2006) Minireview heavy use of prophylactic antibiotics in aquaculture : a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144

    Article  CAS  Google Scholar 

  • Cosslett TL, Cosslett PD (2018) Introduction. In: Cosslett TL, Cosslett PD (eds) Sustainable development of rice and water resources in mainland Southeast Asia and Mekong River basin. Springer, Singapore, pp 1–4

    Chapter  Google Scholar 

  • Dolliver H, Kumar K, Gupta S (2007) Sulfamethazine uptake by plants from manure-amended soil. J Environ Qual 36:1224–1230

    Article  CAS  Google Scholar 

  • Doretto KM, Rath S (2013) Sorption of sulfadiazine on Brazilian soils. Chemosphere 90:2027–2034

    Article  CAS  Google Scholar 

  • Dzidic S, Bedekovic V (2003) Horizontal gene transfer-emerging multidrug resistance. Acta Pharmacol Sin 24(6):519–526

    CAS  PubMed  Google Scholar 

  • ECDC (2014) Consumption of antibiotics for food-producing animals. http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/Pages/index.aspx. Accessed Dec 2017

  • ECDC (2015) Antimicrobial consumption interactive database (ESAC-Net). http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/esac-net-database/Pages/%20database.aspx. Accessed Dec 2017

  • Eggen T, Asp TN, Grave K, Hormazabal V (2011) Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants. Chemosphere 85:26–33

    Article  CAS  Google Scholar 

  • Enne VI, Cassar C, Sprigings K, Woodward MJ, Bennett PM (2007) A high prevalence of antimicrobial resistant Escherichia coli isolated from pigs and a low prevalence of antimicrobial resistant E . coli from cattle and sheep in great Britain at slaughter. FEMS Microbiol Lett 278:193–199

    Article  Google Scholar 

  • Gonçalves A, Igrejas G, Radhouani H, Santos T, Monteiro R, Pacheco R, Alcaide E, Zorrilla I, Serra R, Torres C, Poeta P (2013) Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus). Sci Total Environ 456–457:115–119

    Article  Google Scholar 

  • Gothwal R, Shashidhar T (2015) Antibiotic pollution in the environment: a review. Soil Air Water 43:463–620

    Google Scholar 

  • Hawker DW, Cropp R, Boonsaner M (2013) Uptake of zwitterionic antibiotics by rice (Oryza sativa L.) in contaminated soil. J Hazard Mater 263:458–466

    Article  CAS  Google Scholar 

  • Heuer H, Schmitt H, Smalla K (2011) Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol 14:236–243

    Article  CAS  Google Scholar 

  • Hu X, Zhou Q, Luo Y (2010) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158:2992–2998

    Article  CAS  Google Scholar 

  • Kasten B, Reski R (1997) β-Lactam antibiotics inhibit chloroplast division in a moss (Physcomitrella patens) but not in tomato (Lycopersicon esculentum). J Plant Physiol 150:137–140

    Article  CAS  Google Scholar 

  • Kim K-R, Owens G, Kwon S-I, So K-H, Lee D-B, Ok YS (2011) Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut 214:163–174

    Article  CAS  Google Scholar 

  • Kim JH, Kuppusamy S, Kim SY, Kim SC, Kim HT, Lee YB (2017) Occurrence of sulfonamide class of antibiotics resistance in Korean paddy soils under long-term fertilization practices. J Soils Sediments 17:1618–1625

    Article  CAS  Google Scholar 

  • Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34:2082–2085

    Article  CAS  Google Scholar 

  • Lin J, Nishino K, Roberts MC, Tolmasky M, Aminov RI, Zhang L (2015) Mechanisms of antibiotic resistance. Front Microbiol 6:34

    PubMed  PubMed Central  Google Scholar 

  • Lin H, Jin D, Freitag TE, Sun W, Yu Q, Fu J, Ma J (2016) A compositional shift in the soil microbiome induced by tetracycline, sulfamonomethoxine and ciprofloxacin entering a plant-soil system. Environ Pollut 212:440–448

    Article  CAS  Google Scholar 

  • Liu F, Ying G-G, Tao R, Zhao J-L, Yang J-F, Zhao L-F (2009) Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ Pollut 157:1636–1642

    Article  CAS  Google Scholar 

  • Liu X, Liu W, Wang Q, Wu L, Luo Y, Christie P (2017) Soil properties and microbial ecology of a paddy field after repeated applications of domestic and industrial sewage sludges. Environ Sci Pollut Res 24:8619–8628

    Article  CAS  Google Scholar 

  • Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148:570–579

    Article  Google Scholar 

  • Ok YS, Kim SC, Kim KR, Lee SS, Moon DH, Lim KJ, Sung JK, Hur SO, Yang JE (2011) Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environ Monit Assess 174(1–4):693–701

    Article  CAS  Google Scholar 

  • Opriş O, Copaciu F, Loredana Soran M, Ristoiu D, Niinemets Ü, Copolovici L (2013) Influence of nine antibiotics on key secondary metabolites and physiological characteristics in Triticum aestivum: leaf volatiles as a promising new tool to assess toxicity. Ecotoxicol Environ Saf 87:70–79

    Article  Google Scholar 

  • Pan M, Wong CKC, Chu LM (2014) Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River Delta, southern China. J Agric Food Chem 62:11062–11069

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, Borrego CM, Barceló D, Balcázar JL (2015) Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res 69:234–242

    Article  CAS  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  • Schwaiger K, Harms K, Hölzel C, Meyer K, Karl M, Bauer J (2009) Tetracycline in liquid manure selects for co-occurrence of the resistance genes tet(M) and tet(L) in Enterococcus faecalis. Vet Microbiol 139:386–392

    Article  CAS  Google Scholar 

  • Shoemaker NB, Vlamakis H, Hayes K, Salyers AA (2001) Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol 67:561–568

    Article  CAS  Google Scholar 

  • Silva V, Carvalho I, Igrejas G, Poeta P (2017) Soil antibiotics and transfer of antibiotic resistance genes affecting wildlife. In: Hashmi MZ, Strezov V, Varma A (eds) Antibiotics and antibiotics resistance genes in soils: monitoring, toxicity, risk assessment and management. Springer, Cham, pp 307–319

    Google Scholar 

  • Silva V, Igrejas G, Carvalho I, Peixoto F, Cardoso L, Pereira E, Campo R, Poeta P (2018) Genetic characterization of vanA-enterococcus faecium isolates from wild red-legged partridges in Portugal. Microb Drug Resist 24(1):89–94

    Article  CAS  Google Scholar 

  • Tang X, Lou C, Wang S, Lu Y, Liu M, Hashmi MZ, Liang X, Li Z, Liao Y, Qin W, Fan F, Xu J, Brookes PC (2015) Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: evidence from four field experiments in south of China. Soil Biol Biochem 90:179–187

    Article  CAS  Google Scholar 

  • Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119:S3–S10

    Article  CAS  Google Scholar 

  • Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R (2015) Global trends in antimicrobial use in food animals. Proc Natl Acad Sci 112:5649–5654

    Article  Google Scholar 

  • Wang Y, Chan KKJ, Chan W (2017) Plant uptake and metabolism of nitrofuran antibiotics in spring onion grown in nitrofuran-contaminated soil. J Agric Food Chem 65:4255–4261

    Article  CAS  Google Scholar 

  • Woolhouse M, Ward M, van Bunnik B, Farrar J (2015) Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc B Biol Sci 370:20140083

    Article  Google Scholar 

  • Wright GD (2010) The antibiotic resistome. Expert Opin Drug Discov 5:779–788

    Article  CAS  Google Scholar 

  • Xiao K, Li B, Ma L, Bao P, Zhou X, Zhang T, Zhu Y (2016) Metagenomic profiles of antibiotic resistance genes in paddy soils from South China. FEMS Microbiol Ecol 92:1–6

    Article  Google Scholar 

  • Xu J, Xu Y, Wang H, Guo C, Qiu H, He Y, Zhang Y, Li X, Meng W (2015) Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 119:1379–1385

    Article  CAS  Google Scholar 

  • Xu Q, Gu G, Zhang M (2016) Effects of soil veterinary antibiotics pollution on Rice growth. J Agric Resour Environ 33:60–65

    Google Scholar 

  • Zhou L-J, Ying G-G, Liu S, Zhao J-L, Yang B, Chen Z-F, Lai H-J (2013) Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci Total Environ 452–453:365–376

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Poeta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, V., Igrejas, G., Poeta, P. (2018). Antibiotics Pollution in the Paddy Soil Environment. In: Hashmi, M., Varma, A. (eds) Environmental Pollution of Paddy Soils. Soil Biology, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-93671-0_5

Download citation

Publish with us

Policies and ethics