Skip to main content

Fluorescent Probes and Live Imaging of Plant Cells

  • Chapter
  • First Online:
Advances in Plant Ecophysiology Techniques

Abstract

Fluorescent probes are used in almost all areas of plant research ranging from molecular biology to ecophysiology studies. Development of novel fluorochromes and fluorescent proteins in combination with advanced microscopy techniques allow us to analyze cells, tissues, organs and whole plants in great detail. Live fluorescence microscopy imaging of plants is of particular importance for ecophysiology studies where complex interactions of plants and their environment need to be understood at molecular, cellular and organismal level. Here we present an overview of fluorescent probes and live cell microscopy setup for plants and provide a detailed protocol for fluorescent live-dead viability assay using fluorescein diacetate and propidium iodide fluorescent dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agati G (1998) Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength. Pure Appl Opt: J Eur Opt Soc Part A 7:797

    Article  CAS  Google Scholar 

  • Berg R (2004) Evaluation of spectral imaging for plant cell analysis. J Microsc 214:174–181

    Article  CAS  PubMed  Google Scholar 

  • Buschmann C (2007) Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth Res 92:261–271

    Article  CAS  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  • Chapman S, Oparka KJ, Roberts AG (2005) New tools for in vivo fluorescence tagging. Curr Opin Plant Biol 8:565–573

    Article  CAS  PubMed  Google Scholar 

  • Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Gao C, Zhao Q, Jiang L (2016) Using fluorescent protein fusions to study protein subcellular localization and dynamics in plant cells. In: Schwartzbach SD, Skalli O, Schikorski T (eds) High-resolution imaging of cellular proteins, Methods in molecular biology book series. Humana Press, New York, pp 113–123

    Chapter  Google Scholar 

  • Dawe GS, Schantz J-T, Abramowitz M, Davidson MW, Hutmacher DW (2006) Light microscopy. In: Dokland T, Hutmacher DW, Lee Ng MM, Shantz J-T (eds) Techniques in microscopy for biomedical applications. World Scientific, Singapore, pp 9–54

    Chapter  Google Scholar 

  • Fricker M, Parsons A, Tlalka M, Blancaflor E, Gilroy S, Meyer A, Plieth C (2001) Fluorescent probes for living plant cells. In: Hawes C, Satiat-Jeunemaitre B (eds) Plant cell biology: a practical approach, 2nd edn. Oxford University Press, Oxford, pp 35–84

    Google Scholar 

  • Groover A, Jackson D (2007) Live-cell imaging of GFP in plants. Cold Spring Harb Protocol 2007:pdb.ip31

    Google Scholar 

  • Horstman A, Tonaco IAN, Boutilier K, Immink RG (2014) A cautionary note on the use of split-YFP/BiFC in plant protein-protein interaction studies. Int J Mol Sci 15:9628–9643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson I, Spence M (2010) The molecular probes handbook. A guide to fluorescent probes and labeling technologies, 11th edn. Life Technologies, Carlsbad 1060 pp

    Google Scholar 

  • Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388

    Article  CAS  PubMed  Google Scholar 

  • Kuntam S, Puskás LG, Ayaydin F (2015) Characterization of a new class of blue-fluorescent lipid droplet markers for live-cell imaging in plants. Plant Cell Rep 34:655–665

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR (2007) Principles of fluorescence spectroscopy. Springer, New York

    Google Scholar 

  • Lovy-Wheeler A, Cárdenas L, Kunkel JG, Hepler PK (2007) Differential organelle movement on the actin cytoskeleton in lily pollen tubes. Cytoskeleton 64:217–232

    Article  Google Scholar 

  • Morocz S, Donn G, Nérneth J, Dudits D (1990) An improved system to obtain fertile regenerants via maize protoplasts isolated from a highly embryogenic suspension culture. TAG 80:721–726

    Article  CAS  PubMed  Google Scholar 

  • Müller SM, Galliardt H, Schneider J, Barisas BG, Seidel T (2013) Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. Front Plant Sci 29:413

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mylle E, Codreanu M-C, Boruc J, Russinova E (2013) Emission spectra profiling of fluorescent proteins in living plant cells. Plant Methods 9:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nashmi R, Velumian AA, Chung I, Zhang L, Agrawal SK, Fehlings MG (2002) Patch-clamp recordings from white matter glia in thin longitudinal slices of adult rat spinal cord. J Neurosci Methods 117:159–166

    Article  PubMed  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  PubMed  Google Scholar 

  • Rizzo MA, Davidson MW, Piston DW (2009) Fluorescent protein tracking and detection: fluorescent protein structure and color variants. Cold Spring Harb Protocol 2009:pdb.top63

    Article  Google Scholar 

  • Roshchina VV (2012) Vital autofluorescence: application to the study of plant living cells. Int J Spectr 2012:124672

    Article  CAS  Google Scholar 

  • Schoor S, Lung S-C, Sigurdson D, Chuong SD (2015) Fluorescent staining of living plant cells. In: ECT Y, Stasolla C, Sumner MJ, Huang BQ (eds) Plant microtechniques and protocols. Springer, Cham, pp 153–165

    Chapter  Google Scholar 

  • Shaw SL, Ehrhardt DW (2013) Smaller, faster, brighter: advances in optical imaging of living plant cells. Annu Rev Plant Biol 64:351–375

    Article  CAS  PubMed  Google Scholar 

  • Shu X, Shaner NC, Yarbrough CA, Tsien RY, Remington SJ (2006) Novel chromophores and buried charges control color in fruits. Biochemistry 45:9639–9647

    Article  CAS  PubMed  Google Scholar 

  • Sukhorukov VL, Djuzenova CS, Frank H, Arnold WM, Zimmermann U (1995) Electropermeabilization and fluorescent tracer exchange: the role of whole cell capacitance. Cytometry A 21:230–240

    Article  CAS  Google Scholar 

  • Tiricz H, Nagy B, Ferenc G, Török K, Nagy I, Dudits D, Ayaydin F (2018) Relaxed chromatin induced by histone deacetylase inhibitors improves the oligonucleotide-directed gene editing in plant cells. J Plant Res 131(1):179–189

    Google Scholar 

  • Vercelli A, Repici M, Garbossa D, Grimaldi A (2000) Recent techniques for tracing pathways in the central nervous system of developing and adult mammals. Brain Res Bull 51:11–28

    Article  CAS  PubMed  Google Scholar 

  • Walter M et al (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sándor Mórocz (Cereal Research Non-Profit Ltd., Szeged, Hungary) for providing non-transgenic Zea mays (H1233) cultures, Prof. Dénes Dudits (BRC, Szeged, Hungary) for providing Arabidopsis thaliana (Col) cultures; Béatrice Satiat-Jeunemaitre (CNRS, Gif sur Yvette, France) for providing Nicotiana tabacum (BY-2) cultures; Katalin Török and Ildikó Válkony for maintaining maize plants and suspension cultures. This work was supported by the National Research, Development and Innovation Office, NKFIH (Grant Number K116318) and by GINOP-2.3.2-15-2016-00001 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferhan Ayaydin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fodor, E., Ayaydin, F. (2018). Fluorescent Probes and Live Imaging of Plant Cells. In: Sánchez-Moreiras, A., Reigosa, M. (eds) Advances in Plant Ecophysiology Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-93233-0_14

Download citation

Publish with us

Policies and ethics