Skip to main content

Improvement of Fig (Ficus carica L.) by Conventional Breeding and Biotechnology

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Fruits

Abstract

The common fig ( Ficus carica L.), family Moraceae, is the only member in the genus cultivated for its fruits. For the past several decades, severe genetic erosion has threatened fig germplasm . Therefore, several fig collections were established in Asia, Europe, North America and North Africa. Fig cultivars are usually characterized using traditional methods based on phenotypic characters. However, molecular identification of fig cultivars has been carried out using random amplified polymorphic DNA (RAPD) , inter simple sequence repeat (ISSR ) and single sequence repeats (SSR ) molecular markers . Marker -assisted selection is used to identify a character of interest such as yield , fruit quality , biotic and abiotic stress resistance . Induced mutations are desirable in fig improvement for important fruit characters such as small ostiole size, large fruit size and fruit flesh quality . Fig mosaic disease (FMD) is one of the major diseases of fig found throughout the world. Different fig improvement breeding methods are described in this chapter including conventional breeding and biotechnology approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal M, Shrivastava N, Padth H (2008) Advances in molecular markers techniques and their applications in plant sciences. Plant Cell Rep 27(4):617–631

    Article  CAS  PubMed  Google Scholar 

  • Akbulut M, Ercisli M, Karlidag SH (2009) RAPD-based study of genetic variation and relationships among wild fig genotypes in Turkey. Genet Mol Res 8(3):1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Aksoy U (1995) Present status and future prospects of underutilized fruit production in Turkey. Cah Opt Mediterr 13:97–107

    Google Scholar 

  • Aksoy U (1998) Why figs? An old taste and a new perspective. Acta Hort 480:25–26

    Article  Google Scholar 

  • Aksoy U, Balci B, Can HZ et al (2003) Some significant results of the research-work in Turkey on fig. Acta Hort 606:173–181

    Article  Google Scholar 

  • Aksoy U, Seferoglu A, Misirli S (1992) Selection of table fig cultivars suitable for Aegean region conditions. In: Proceeding international Turkish horticulture congress, vol 1, Ismir, Turkey, pp 545–548

    Google Scholar 

  • Al Ibrahim A (2000) Arbre du figuier: culture- variétés- multiplication- conduite. Ministère d’Agriculture, Damas, Syria

    Google Scholar 

  • Al Ibrahim A, Bari A (2006) Fig genetic resources in Syria: varietal diversity, agronomic and economic importance. Paper presented at the 46th annual science week, conference on sustainable agricultural development and food security, Tishreen University, Syria, Lattakia, 20–23 Nov 2006

    Google Scholar 

  • Aljane F (2006) Propagation et conservation des cultivars du figuier (Ficus carica L.) en Tunisie. J Algér Zones Arid 5:29–37

    Google Scholar 

  • Aljane F (2011) Caractérisation et évaluation des accessions locales de figuier (Ficus carica L,) en Tunisie et sélection des plus performantes. Thèse de doctorat, Faculté des Sciences de Tunis, Tunisie, Tunis

    Google Scholar 

  • Aljane F (2016) Analysis of genetic diversity in Tunisian fig (Ficus carica L.) germplasm bank revealed by RAPD markers and morphological characters. Eur J Sci Res 142(2):172–192

    Google Scholar 

  • Aljane F, Ferchichi A (2007) Caractérisation et évaluation de six cultivars du caprifiguier (Ficus carica L.) en Tunisie. Plant Genet Res Newslett 151:22–26

    Google Scholar 

  • Aljane F, Ferchichi A (2009a) Assessment of genetic diversity among some southern Tunisian fig (Ficus carica L.) cultivars based on morphological descriptors. Jordan J Agric Sci 5(1):1–16

    Google Scholar 

  • Aljane F, Ferchichi A (2009b) Post-harvest chemical properties and mineral contents of some fig (Ficus carica L.) cultivars in Tunisia. J Food Agric Environ 7(2):209–212

    Google Scholar 

  • Aljane F, Ferchichi A (2010) Assessment of genetic diversity of Tunisian fig (Ficus carica L.) cultivars using morphological and chemical characters. Acta Bot Gallalica 157(1):171–182

    Google Scholar 

  • Aljane F, Nahdi S (2014) Propagation of some local fig (Ficus carica L.) cultivars by hardwood cuttings under the field conditions in Tunisia. Int Sch Res Not 1–5. https://doi.org/10.1155/2014/809450

  • Aljane F, Nahdi S, Essid A (2012) Genetic diversity of some accessions of Tunisian fig tree (Ficus carica L.) based in morphological and chemical traits. J Natl Prod Plant Res 2(3):350–359

    Google Scholar 

  • Almajali D, Abdel-Ghani AH, Migdadi H (2012) Evaluation of genetic diversity among Jordanian fig germplasm accessions by morphological traits and ISSR markers. Sci Hortic 147:8–19

    Article  CAS  Google Scholar 

  • Antunes MDC, Costa P, Migel MG et al (2008) The effect of postharvest treatments with sodium bicarbonate or acetic acid on storage ability and quality of fig fruit. Acta Hortic 798:279–284

    Article  CAS  Google Scholar 

  • Bachir Bey M, Louaileche H (2015) A comparative study of phytochemical profile and in vitro antioxidant activities of dark and light dried fig (Ficus carica L.) varieties. J Phytopharm 4(1):41–48

    Google Scholar 

  • Bayoudh C, Elair M, Labidi R (2017) Efficacy of tissue culture in virus elimination from caprifig and female fig varieties (Ficus carica L.). Plant Path J 33(3):288–295. https://doi.org/10.5423/ppj.oa.10.2016.0205

  • Beck NG, Lord EM (1988) Breeding system in Ficus carica, the common fig. II. Pollination events. Am J Bot 75:1913–1922

    Article  Google Scholar 

  • Berg CC (2003) Flora malesiana precursor for the treatment of Moraceae 1: the main subdivision of Ficus: the subgenera. Blumea 48:167–178

    Google Scholar 

  • Blodgett EC, Gomec B (1967) Fig mosaic. Plant Dis Rep 51:893–896

    Google Scholar 

  • Bostan SZ, Islam A, Aygün A (1998) A study pomological characteristics of local fig cultivars in Northern Turkey. Acta Hort 480:71–73

    Article  Google Scholar 

  • Cabrita LF, Aksoy U, Hepaksoy S, Leitao JM (2001) Suitability of isozyme, RAPD and AFLP markers to assess genetic differences and relatedness among fig (Ficus carica L.) clones. Sci Hortic 87:261–273

    Article  CAS  Google Scholar 

  • Caliskan O, Polat AA (2008) Fruit characteristics of fig cultivars and genotypes grown in Turkey. Sci Hortic 115:360–367

    Article  Google Scholar 

  • Caliskan O, Polat AA (2011) Phytochemical and antioxidant properties of selected fig (Ficus carica L.) accessions from the eastern Mediterranean region of Turkey. Sci Hortic 128:473–478

    Article  CAS  Google Scholar 

  • Callen DF, Thompson AD, Shen Y et al (1993) Incidence and origin of “null” alleles in the (AC) n microsatellite markers. Am J Hum Genet 52:922–927

    PubMed  PubMed Central  CAS  Google Scholar 

  • Can HZ (1993) The investigation of some horticultural characteristics of some selected fig genotypes in Aegean Region. Master’s thesis, Ege University, Turkey, Izmir

    Google Scholar 

  • Castellano MA, Gattoni G, Minafra A et al (2007) Fig mosaic in Mexico and South Africa. J Plant Pathol 89:441–444

    CAS  Google Scholar 

  • CBNMP (1979) Conservatoire Botanique National Méditerranéen de Porquerolles. France, Ile de Porquerolles. Retrieved from http://www.cbnmed.fr/pres/index.php. Accessed on Aug 2017

  • Chevreau E (2009) La transgénèse pour l’innovation variétale fruitière: état des lieux et perspectives. Innov Agron 7:153–163

    Google Scholar 

  • Condit IJ (1941) Fig characteristics useful in the identification of varieties. Hilgard 14:1–69

    Article  Google Scholar 

  • De Masi L, Cipollaro M, Di Bernardo G et al (2003) Clonal selection and molecular characterization by RAPD analysis of the Fig (Ficus carica L) ‘’Dottato’’ and ‘’Bianco del Cilento’’ cultivars in Italy. Acta Hortic 605:65–68

    Article  Google Scholar 

  • Demiralay A, Yalçin-Mendi Y, Aka-Kaçar Y, Çetiner S (1998) In vitro propagation of Ficus carica L. var. Bursa Siyahi through meristem culture. Acta Hortic 480:165–167

    Article  Google Scholar 

  • Dolgun O, Tekintas FE (2008) Production of fig (Ficus carica L.) nursery plants by stem layering method. Agric Cospectus Sci 73(3):157–160

    Google Scholar 

  • Doyle JF, Ferguson L, Herman K (2005) Fig cultivar development and evaluation. Acta Hortic 605:29–36

    Google Scholar 

  • Doyle JF, Ferguson L (2005) Sierra: a new non-caprifying Calimyrna. In: Abstracts of the third international symposium on Fig, University of Algarve, Vilamoura, Portugal, 16–20 May 2005

    Google Scholar 

  • Duenas M, Perez-Alonso JJ, Santos-Buelga C, Escribano-Bailon T (2008) Anthocyanin composition in fig (Ficus carica L.). J Food Comp Anal 21:107–115

    Article  CAS  Google Scholar 

  • Elair M, Mahfoudhi N, Bayoudh C et al (2014) Sanitary selection of virus-tested fig (Ficus carica) cultivars in Tunisia. Tunis J Plant Prot 100(2):100–109

    Google Scholar 

  • Elbeaino T, Digiaro M, De Stradi A et al (2007) Identification of a second member of the family Closteroviridae in mosaic disease figs. J Plant Pathol 89:119–124

    CAS  Google Scholar 

  • Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. Current research progress and application. IPGRI, Rome, pp 8–20

    Google Scholar 

  • Ercisli S, Tosun M, Karlidag H et al (2012) Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from northeastern Turkey. Plant Food Hum Nutr 67:271–276

    Article  CAS  Google Scholar 

  • Esclapon RG (1976) Le figuier et son avenir dans le midi de la France. Arboriculture Fruitière, France, p 266

    Google Scholar 

  • Essid A, Aljane F, Ferchichi A (2015) Analysis of genetic diversity of Tunisian caprifig (Ficus carica L.) accessions using simple sequence repeat (SSR) markers. Hered 152(1):1–7. https://doi.org/10.1186/s41065-015-0002-9

  • Essid A, Aljane F, Ferchichi A (2017) Morphological characterization and pollen evaluation of some Tunisian ex situ planted caprifig (Ficus carica L.) ecotypes. S Afr J Bot 111:134–143

    Article  Google Scholar 

  • FAO (2015) The FAO statistical database-agriculture. Food Agriculture Organization. Retrieved from http://faostat.fao.org. Accessed on Aug 2017

  • Ferguson L, Michailides JT, Shorey HH (1990) The California fig industry. Hort Rev 12:409–490

    Google Scholar 

  • Flaishman M, Pearl A, Golobowicz S (2012) Transgenic Ficus, method for producing same and use thereof. US Patent 8,148,603, B2, 3 Avr 2012

    Google Scholar 

  • Flaishman M, Rodov V, Stover E (2007) The fig: botany, horticulture and breeding. In: Janick J (ed) Horticultural reviews, vol 34. Wiley, Hoboken, NJ, USA, pp 113–197

    Google Scholar 

  • Flaishman MA, Yablovich Z, Golobovich S et al (2008) Molecular breeding in fig (Ficus carica) by the use of genetic transformation. Acta Hortic 798:151–158. https://doi.org/10.17660/ActaHortic.2008.798.20

    Article  CAS  Google Scholar 

  • Galderisi U, Cipollaro M, Di Bernardo G et al (1999) Identification of the edible fig “Bianco Del Cilento” by random amplified polymorphic DNA analysis. Hortic Sci 34(7):1263–1265

    CAS  Google Scholar 

  • Gao L, Mazza G (1995) Characterization quantitation and distribution of anthocyanins and colour less phenolics in sweet cherries. J Agriic Food Chem 43:343–346

    Article  CAS  Google Scholar 

  • Gattoni G, Minafra A, Castellano MA et al (2009) Some properties of fig latent virus 1, a new member of the family Flexiviridae. J Plant Pathol 91:555–564

    Google Scholar 

  • Giraldo E (2005) Characterization morfologica y molecular de variedades de higuera (Ficus carica L.). Ph.D. thesis, University of Extremadura, Spain

    Google Scholar 

  • Giraldo E, Lopez Corrales M, Hormaza JI (2008) Selection of morphological quantitative variables in fig characterization. Acta Hortic 798:103–108

    Article  Google Scholar 

  • Golombek SD, Ludders P (1990) Effects of short-term salinity on leaf gas exchange of the fig (Ficus carica L.). Plant Soil 148:21–27

    Article  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis in bread wheat. Euphy 113:163–185

    Article  CAS  Google Scholar 

  • Grassi G, Santonastaso M (1998) The fig growing in Italy: the present state and problems. Acta Hortic 480:31–35

    Article  Google Scholar 

  • GRIN (1990) Germplasm resources information network. United States Department of Agriculture, USA, Washington. Retrieved from http://www.ars-grin.gov/. Accessed on Aug 2017

  • Herre EA, Jander KC, Machado CA (2008) Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles. Ann Rev Ecol Evol Syst 39:439–458

    Article  Google Scholar 

  • IBPGR (1986) Ficus carica L. In: Genetic resources of tropical and sub-tropical fruits and nuts. Rome

    Google Scholar 

  • IPGRI and CIHEAM (2003) Descriptors for fig (Ficus carica L.). International Plant Genetic Resources Institute (IPGRI), Rome, Italy; International Center for Advanced Mediterranean Agronomic Studies (CIHEAM), Paris

    Google Scholar 

  • Janick J (2012) Fruit breeding: past, present and future. Paper presented at the XXII Congresso Brasileiro de Fruticultura, Purdue University, West Lafayette, IN, 22–26 Oct 2012

    Google Scholar 

  • Jianye C, Yuxia N, Zilan Z et al (1997) Observation on biological characteristics of fig (Ficus carica L.). J Fruit Sci 14(1):16–20

    Google Scholar 

  • Jona B, Grihaudo I (1991) Ficus spp. In: Baja YPS (ed) Biotechnology in agriculture and forestry, vol 16. Springer, Berlin, pp 76–93

    Google Scholar 

  • Karadeniz T (2008) Clonal selection in “Patlican” at Black Sea region of Turkey. Acta Hortic 798:135–138

    Article  Google Scholar 

  • Khadari B, Lashermes P, Kjellberg F (1995) RAPD fingerprints for identification and genetic characterization of fig (Ficus carica L.) genotypes. J Genet Breed 49:77–86

    CAS  Google Scholar 

  • Khadari B, Oukabli A, Ater M et al (2004) Molecular characterization of Moroccan fig germplasm using inter simple sequence repeat and simple sequence repeat markers to establish a reference collection. Hortic Sci 40:29–32

    Google Scholar 

  • Kjellberg F, Gouyon PH, Ibrahim M et al (1987) The stability of the symbiosis between dioecious figs and their pollinators: a study of Ficus carica L. and Blastophaga psenes L. Evol 41:653–660

    Article  Google Scholar 

  • Kjellberg F, Valdeyron G (1984) The pollination of fig tree (Ficus carica L.) and its control in horticulture. Acta Oecol 5(4):407–412

    Google Scholar 

  • Koka T (2008) Fig germplasm conservation in Albania. Acta Hortic 798:77–80

    Article  Google Scholar 

  • Kulina M, Djurdjic Z, Vico G (2002) Pomological traits of some once-bearing figs in the area of Trebinjie. Acta Agric Serbica 7(13):9–15

    Google Scholar 

  • Lahbib T (1984) Etude pomologique des variétés de figuier (Ficus carica L.) répertoriées dans le Sahel tunisien. Mémoire de fin de troisième cycle, Institut National d’Agronomie de Tunis, Tunisie, Tunis

    Google Scholar 

  • Levina EK (1984) A study of olive, fig and persimmon at the Turkmen experimental station of the VIR Sbornik Nauchnykh Trudov po. Prikladniui Botanike Genetike I Selektsii 83:41–45

    Google Scholar 

  • Liamoca Zarate RM, Landsann J, Campos FAP (2006) Isolation and culture of protoplasts from cell suspensions of cactus pear (Opuntia ficus-indica mill.). Acta Hortic 728:93–96. https://doi.org/10.17660/ActaHortic.2006.728.11

    Article  Google Scholar 

  • Lionakis SM (1996) Genetic resources of plant grown in Greece and included in the MESFIN network. In: Galan SV (ed) In: Proceedings of International MESFIN plant genetic resources meeting, Tenerife, Spain, p 25

    Google Scholar 

  • Lopez Corrales M, Gella R, Martin JA, Toribio F (1998) Elimination of fig mosaic from fig shoot-tip cultures by thermotherapy. Acta Hortic 480:173–177

    Google Scholar 

  • Mars M (2003) Fig (Ficus carica.L.) genetic resources and breeding. Acta Hortic 605:19–26

    Article  Google Scholar 

  • Mars M, Chatti K, Saddoud O et al (2008) Fig cultivation and genetic resources in Tunisia. An overview. Acta Hortic 798:27–32

    Article  Google Scholar 

  • Mars M, Marrakchi M, Chebli T (1998) Multivariate analysis of Fig (Ficus carica. L.) germplasm in southern Tunisia. Acta Hortic 480:75–81

    Article  Google Scholar 

  • Mazri-Kartout C, Aid-Houchi A (2001) Contribution à la caractérisation de trois variétés de figuier dans la commune de Fréha Wilaya de Tizi-Ouzou. Recherche Agronomique. INRA d’Algérie. Rev Semes 14:53–63

    Google Scholar 

  • McCouch SR, Chen X, Panaud O et al (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35:89–99

    Article  CAS  PubMed  Google Scholar 

  • Melgarejo P, Hernandez F, Martinez JJ et al (2003) Organic acids and sugars from first and second crop fig juices. Acta Hortic 605:237–239

    Article  CAS  Google Scholar 

  • Messaoudi Z (2003) Propagation of five fig (Ficus carica.L.) varieties under field conditions Acta Hortic 605:103–106

    Google Scholar 

  • Muriithi LM, Rangan TS, Waite BH (1982) In vitro propagation of fig through shoot tip culture. Hortic Sci 17:86–87

    CAS  Google Scholar 

  • Nabli MA (1989) Essai de synthèse sur la végétation et la phyto-écologie tunisienne. Elément de Botanique et de phyto-écologie. Faculté des Sciences de Tunis et UNESCO, Tunisie, Tunis

    Google Scholar 

  • Nahdi S, Aljane F (2014) Identification des virus associés à la maladie de mosaïque (FMD) du figuier (Ficus carica L.) en Tunisie. Rev Rég Arid 34(2):35–45

    Google Scholar 

  • Nobre J, Romano A (1998) In vitro cloning of Ficus carica L. adult trees. Acta Hort 480:161–164

    Article  Google Scholar 

  • Oukabli A, Khadari B, Roger JP et al (2003) Genetic variability in Moroccan fig cultivars (Ficus carica L.) based on morphological and pomological data. Acta Hortic 605:311–318

    Article  Google Scholar 

  • Ozeker E, Isfandiyaroglu M (1998) Evaluation of table fig cultivars in Cesme Peninsula. Acta Hortic 480:55–60

    Article  Google Scholar 

  • Özen M, Kocataş H, Çobanoğlu F et al (2017) Mutation breeding studies on fig. Acta Hortic 1173:93–98. https://doi.org/10.17660/Actahortic.2017.1173.16

    Article  Google Scholar 

  • Panis B, Swennen R, Engelmann F (2001) Cryopreservation of plant germplasm. Acta Hortic 560:79–86

    Article  CAS  Google Scholar 

  • Papadopoulou K, Ehaliotis C, Tourna M et al (2002) Genetic relatedness among dioecious Ficus carica L. Cultivars by random amplified polymorphic DNA analysis, and evaluation of agronomic and morphological characters. Genetica 114:183–194

    Article  CAS  PubMed  Google Scholar 

  • Petrova EF, Voronova OG (1984) Biological characteristics of figs in Abkhazia. Naucho Tekhnicheskii Byulletion 141:163–166

    Google Scholar 

  • Piga A, Del Caro A, Milella G et al (2008) HPLC analysis of polyphenols in peel and pulp of fresh figs. Acta Hortic 798:301–306

    Article  CAS  Google Scholar 

  • Polat AA, Ozkaya M (2005) Selection studies on fig in the Mediterranean region of Turkey. Pak J Bot 37(3):567–574

    Google Scholar 

  • Rodrigues MGF, Martins ABG, Desidério JA et al (2012) Genetic characterization of fig tree mutants with molecular markers. Genet Mol Res 11(3):1990–1996

    Google Scholar 

  • Roger JP (2003) L’origine des arbres fruitiers. Conservatoire botanique national méditerranéen de Porquerolles. Antenne Provence-Alpes, Côte d’Azur, France

    Google Scholar 

  • Saddoud O, Baraket G, Chatti et al (2008) Morphological variability of fig (Ficus carica L.) cultivars. Int J Fruit Sci 8(1–2):35–51

    Google Scholar 

  • Sahin N (1998) Fig adaptation studies in Western Turkey. Acta Hortic 480:61–70

    Article  Google Scholar 

  • Salhi-Hannachi A, Mars M, Chatti K et al (2003) Specific genetic markers for Tunisian fig germplasm: evidence of morphological traits, random amplified polymorphism DNA and inter simple sequence repeats markers. J Genet Breed 57:125–136

    Google Scholar 

  • Santoni S, Faivre- Rampant P, Prado E et al (2000) Marqueurs moléculaires pour l’analyse des ressources genetics et amelioration des plantes. Cah Agric 9(4):311–327

    Google Scholar 

  • Simon CJ (2002) Fabulous figs featured in California collection. Agric Res

    Google Scholar 

  • Singh A, Prakash J, Meghawal PR, Ranpise SA (2015) The fig (Ficus carica). In: Ghosh SN (ed) Breeding of underutilized fruit crops Part I. Jaya Publishing House, New Delhi, pp 149–179

    Google Scholar 

  • Singh G (2014) Molecular characterization in fruit crops—a review. Int J Agr Sci Vet Med 2(3):81–101

    Google Scholar 

  • Soliman HIA, Abd Alhady MRA (2017) Evaluation of salt tolerance ability in some fig (Ficus carica L.) cultivars using tissue culture technique. J App Biol Biotechnol 5(6):29–39. https://doi.org/10.7324/JABB.2017.50605

    Article  Google Scholar 

  • Soloman A, Golubowicz S, Yablowicz Z et al (2006) Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J Agric Food Chem 54(20):7717–7723

    Article  CAS  Google Scholar 

  • Storey WB (1975) Figs. In: Janick J, Moore JN (eds) Advances and fruit breeding Indiana. Purdue University Press, West Lafayette, Indiana, pp 568–589

    Google Scholar 

  • Storey WB (1976) Fig Ficus carica (Moraceae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 205–208

    Google Scholar 

  • Storey WB (1977) The fig (Ficus carica Linnaeus): its biology, history, culture, and utilization. Jurupa Mountains Cultural Center, Riverside, California

    Google Scholar 

  • Stover E, Aradhya M (2008) Fig genetic resources and research at the US national Clonal Germplasm repository in Davis, California. Acta Hortic 798:57–68

    Article  Google Scholar 

  • Taha RA, Mustafa NS, Hassan SA (2013) Protocol for micropropagation of two Ficus carica cultivars. World J Agric Sci 9(5):383–388. https://doi.org/10.5829/idosi.wjas.2013.9.5.1802

    Article  Google Scholar 

  • Towill LE, Bajaj YPS (eds) (2002) Biotechnology in agriculture and forestry 50. Cryopreservation of plant germplasm II. Springer, USA

    Google Scholar 

  • Tsantili E (1990) Changes during development of “Tsapela” fig fruits. Sci Hortic 44:227–234

    Article  CAS  Google Scholar 

  • Vallejo F, Marin JG, Tomas-Barberan FA (2012) Phenolic compound content of fresh and dried figs (Ficus carica L.). Food Chem 130:485–492

    Article  CAS  Google Scholar 

  • Veberic R, Colaric M, Stampar F (2008) Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chem 106(1):153–157

    Article  CAS  Google Scholar 

  • Vidaud J, Baccaunaud M, Caraglio Y et al (1997) Le figuier. Centre Technique et Interprofessionnel des Fruits et de Légumes, Paris

    Google Scholar 

  • Vinson JA (1999) The function food proprieties of figs. Am Assoc Cereal Chem 44(2):82–87

    Google Scholar 

  • Wang Z, Cui Y, Vainstein A et al (2017) Regulation of fig (Ficus carica L.) fruit color: metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway. Front Plant Sci 8:1–15

    Google Scholar 

  • Yakushiji H, Morita T, Jikumaru S et al (2012) Interspecific hybridization of fig (Ficus carica L.) and Ficus erecta Thunb., a source of Ceratocystis canker resistance. Euphy 183:39–47

    Google Scholar 

  • Yancheva D, Golubowicz S, Yablowicz Z et al. (2005) Efficient Agrobacterium-mediated transformation and recovery of transgenic fig (Ficus carica L.) plants. Plant Sci 168:1433–1441. https://doi.org/10.1016/j.plantsci.2004.12.007

  • Zigo A, Stampar F (2002) Characterization of isozymes variation in common fig (Ficus carica L.). Research Report. University of Ljubljana, Biotechnical Faculty, Institute of Fruit Growing, Viticulture and Vegetable Growing, Slovenia, Ljubljana

    Google Scholar 

Download references

Acknowledgements

I acknowledge my colleagues, especially A. Essid, S. Nahdi, T. Triki, B. Lachiheb, L. Ben Yahia, M. Lahzein, K. M’saddak, A. M’saddak and A. Warda, in the Arid Land and Oasis Cropping Laboratory. As well, I gratefully acknowledge my colleagues B. Ben Salem and M. Ettir, who work in the germplasm collection (El Gordhab) of the Institute of Arid Regions of Medenine, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fateh Aljane .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Research Institutes

Institute/University/Faculty

Specialization and research activity

Contact information

Fig Research Institute—Erbeyli Incirliova, Aydin

Turkey

Fig research

http://www.gfar.net/organizations/fig-research-institute-erbeyli

Ege University Faculty of Agriculture, Bornova Izmir

Turkey

Breeding crop

Prof. Aksoy Uygun

E-mail: uygun.aksoy@ege.edu.tr

National Clonal Germplasm Repository, University of California Davis California

USA

Collection , preservation, evaluation , and distribution the genetic resources of the crops

https://www.ars-grin.gov/

https://www.ars.usda.gov/pacific-west-area/davis-ca/natl-clonal-germplasm-rep-tree-fruit-nut-crops-grapes/

Research leader

E-mail: john.preece@ars.usda.gov

Estacion Experimental la Mayora, CSIC, 29750 Algarrobo-Costa, Malaga

Spain

Genetic resources conservation and evaluation

Dr. Esther Giraldo

E-mail: esthergiraldo@yahoo.es

Conservatoire Botanique National Méditerranéen de Porquerolles, Parc National de Port-Cros, Castel Ste Claire

France

Collection , preservation, evaluation , genetic resources of the crops

http://www.cbnmed.fr/pres/index.php

Ecole Nationale d’Agriculture de Meknès

Meknès

Morocco

Agriculture development research

http://www.enameknes.ac.ma/

Arid Regions of Medenine (IRA) Médenine

Tunisia

Agriculture research , conservation biodiversity and combating desertification

http://www.Ira.agrinet.tn

Dr. Fateh Aljane

E-mail: fateh_aljane@yahoo.fr

Pépinière Baud

910 Chemin du Parrot

Le Palis

Vaison La Romaine

France

Conservation and propagation of pomegranate and fig trees

http://www.fig-baud.com/catalogue.html

E-mail: pepinières@fig-baud.com

Appendix 2

Genetic Resources of Fig

Characteristics of some local fig ( Ficus carica L.) cultivars maintained ex situ in the germplasm collection of the Institute of Arid Regions (IRA), Medenine, Tunisia Cultivars

Important traits

Cultivation location/department in Tunisia

Fig type

Fruit shape

External color

Fruit weight

Bayoudhi2

Common

Spheroid without neck

Green yellowish

Medium 20–39 g

Toujen (Médenine)

Bither1

San Pedro

Oblate without neck

Yellow/green yellowish

Medium 20–39 g

Ghadhabna (Mahdia)

Bither2

San Pedro

Globosely without neck

Light red

Medium 20–39 g

Kerkennah (Sfax)

Bither3

San Pedro

Oblate without neck

Yellow

Large 40–60 g

Kerkennah (Sfax)

Bither4

San Pedro

Oblate without neck

Green yellowish

Medium 20–39 g

Toujen (Médenine)

Bither Akhal

San Pedro

Oblate with neck/oblate without neck

Red yellowish/dark red

Large 40–60 g

Zarzis (Médenine)

Bouholi

San Pedro

Oblate with neck/spheroid without neck

Purple/light red/dark purple

Medium 20–39 g

Djébba (Béjà)

Châari

Smyrna

Spheroid with neck

Yellow

Medium 20–39 g

Zarzis (Médenine)

Croussi

Smyrna

Oblate without neck/oblate with neck

Dark red

Medium 20–39 g

Beni Kheddâche (Médenine)

Jemâaoui

Smyrna

Globosely without neck/pyriform with long and curved neck

Red yellowish

Medium 20–39 g

Zammour (Médenine)

Khadhouri3

Smyrna

Spheroid without neck

Green yellowish

Medium 20–39 g

Djerba (Médenine)

Makhbech

Common

Globosely with neck

Green

Medium 20–39 g

Bir Amir (Tataouine)

Magouli1

Smyrna

Oblate without neck

Green

Medium 20–39 g

Bir Amir (Tataouine)

Magouli2

Smyrna

Spheroid without neck

Yellow

Medium 20–39 g

Djerba (Médenine)

Minouri

Smyrna

Spheroid with neck

Red yellowish

Small < 20 g

Bir Amir (Tataouine)

Nasri

Smyrna

Globosely with neck/pyriform with massif neck

Red yellowish

Medium 20–39 g

Toujen (Médenine)

Ragoubi

Smyrna

pyriform with long and curved neck

Red yellowish

Medium 20–39 g

Zammour (Médenine)

Romani

Common

Oblate without neck

Red yellowish

Medium 20–39 g

Bir Amir (Tataouine)

Tayouri Ahmar

Smyrna

Spheroid with neck/globosely with neck

Yellow

Medium 20–39 g

Bir Amir (Tataouine)

Tayouri Asfar

Smyrna

Pyriform with long and curved neck

Red/dark red/purple blackish

Large 40–60 g

Bir Amir (Tataouine)

Tayouri Akhdhar

Smyrna

Oblate without neck/oblate with neck

Red yellowish

Large 40–60 g

Bir Amir (Tataouine)

Safouri

Smyrna

Spheroid without neck/pyriform with massive neck

Yellow

Medium 20–39 g

Zammour (Médenine)

Sawoudi8

Smyrna

Pyriform with massif neck

Green

Large 40–60 g

Toujen (Médenine)

Wedlani

Common

Spheroid without neck/oblate with neck

Purple greenish/dark red

Medium 20–39 g

Zammour (Médenine)

Zaghoubi

Smyrna

Pyriform with massive neck/pyriform with long and curved neck

Red yellowish

Medium 20–39 g

Beni Kheddâche (Médenine)

Zidi1

Smyrna

Pyriform with massive neck

Red purple blackish

Large 40–60 g

Bir Amir (Tataouine)

Zidi2

Smyrna

Pyriform without differentiated neck

Red

Medium 20–39 g

Djébba (Béjà)

Zidi3

Smyrna

Pyriform with massive neck

Light Red

Medium 20–39 g

Dégâche (Tozeur)

Zidi4

Smyrna

pyriform with long and curved neck

Red

Medium 20–39 g

Ghannouch (Gabès)

Zidi5

Smyrna

pyriform with long and curved neck

Purple

Medium 20–39 g

Massjed Aissa (Sousse)

Cultivars

Important traits

Cultivation location/department in Tunisia

Fruit length

Fruit diameter

Skin thickness

Ostiole opening

Bayoudhi2

Short 29–45 mm

Medium 39–49 mm

Semi-open 1–3 mm

Fine < 1 mm

Toujen (Médenine)

Bither1

Short 29–45 mm

Medium 39–49 mm

Semi-open 1–3 mm

Medium 1–105 mm

Ghadhabna (Mahdia)

Bither2

Short 29–45 mm

Small 28–38 mm

Semi-open 1–3 mm

Medium 1–105 mm

Kerkennah (Sfax)

Bither3

Short 29–45 mm

Large 50–60 mm

Semi-open 1–3 mm

Fine < 1 mm

Kerkennah (Sfax)

Bither4

Short 29–45 mm

Small 28–38 mm

Semi-open 1–3 mm

Fine < 1 mm

Toujen (Médenine)

Bither Akhal

Short 29–45 mm

Medium 39–49 mm

Open > 3 mm

Fine < 1 mm

Zarzis (Médenine)

Bouholi

Short 29–45 mm

Medium 39–49 mm

Open > 3 mm

Medium 1–105 mm

Djébba (Béjà)

Châari

Short 29–45 mm

Small 28–38 mm

Semi-open 1–3 mm

Medium 1–105 mm

Zarzis (Médenine)

Croussi

Short 29–45 mm

Medium 39–49 mm

Semi-open 1–3 mm

Medium 1–05 mm

Beni Kheddâche (Médenine)

Jemâaoui

Medium 46–54 mm

Small 28–38 mm

Semi-open 1–3 mm

Medium 1–105 mm

Zammour (Médenine)

Khadhouri3

Short 29–45 mm

Small 28–38 mm

Semi-open 1–3 mm

Fine < 1 mm

Djerba (Médenine)

Makhbech

Short 29–45 mm

Medium 39–49 mm

Semi-open 1–3 mm

Medium 1–105 mm

Bir Amir (Tataouine)

Magouli1

Short 29–45 mm

Medium 39–49 mm

Semi-open 1–3 mm

Fine < 1 mm

Bir Amir (Tataouine)

Magouli2

Short 29–45 mm

Medium 39–49 mm

Semi-open 1–3 mm

Fine < 1 mm

Djerba (Médenine)

Minouri

Short 29–45 mm

Small 28–38 mm

Closed < 1 mm

Fine < 1 mm

Bir Amir (Tataouine)

Nasri

Short 29–45 mm

Small 28–38 mm

Semi-open 1–3 mm

Medium 1–105 mm

Toujen (Médenine)

Ragoubi

Long 55–75 mm

Small 28–38 mm

Semi-open 1–3 mm

Medium 1–105 mm

Zammour (Médenine)

Romani

Short 29–45 mm

Medium 39–49 mm

Open > 3 mm

Medium 1–105 mm

Bir Amir (Tataouine)

Tayouri Ahmar

Short 29–45 mm

Small 28–38 mm

Semi-open 1–3 mm

Medium 1–105 mm

Bir Amir (Tataouine)

Tayouri Asfar

Long 55–75 mm

Medium 39–49 mm

Open > 3 mm

Medium 1–105 mm

Bir Amir (Tataouine)

Tayouri Akhdhar

Short 29–45 mm

Medium 39–49 mm

Open > 3 mm

Medium 1–105 mm

Bir Amir (Tataouine)

Safouri

Medium 46–54 mm

Medium 39–49 mm

Semi-open 1–3 mm

Medium 1–105 mm

Zammour (Médenine)

Sawoudi8

Short 29–45 mm

Small 28–38 mm

Semi-open 1–3 mm

Medium 1–105 mm

Toujen (Médenine)

Wedlani

Short 29–45 mm

Medium 39–49 mm

Open > 3 mm

Fine < 1 mm

Zammour (Médenine)

Zaghoubi

Medium 46–54 mm

Small 28–38 mm

Semi-open 1–3 mm

Medium 1–105 mm

Beni Kheddâche (Médenine)

Zidi1

Long 55–75 mm

Medium 39–49 mm

Semi-open 1–3 mm

Medium 1–105 mm

Bir Amir (Tataouine)

Zidi2

Medium 46–54 mm

Small 28–38 mm

Semi-open 1–3 mm

Thick > 1.5 mm

Djébba (Béjà)

Zidi3

Medium 46–54 mm

Small 28–38 mm

Semi-open 1–3 mm

Medium 1–105 mm

Dégâche (Tozeur)

Zidi4

Medium 46–54 mm

Small 28–38 mm

Semi-open 1–3 mm

Thick > 1.5 mm

Ghannouch (Gabès)

Zidi5

Long 55–75 mm

Medium 39–49 mm

Semi-open 1–3 mm

Fine < 1 mm

Massjed Aissa (Sousse)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aljane, F., Essid, A., Nahdi, S. (2018). Improvement of Fig (Ficus carica L.) by Conventional Breeding and Biotechnology. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-91944-7_9

Download citation

Publish with us

Policies and ethics