Skip to main content

A ROS-Based Framework for Simulation and Benchmarking of Multi-robot Patrolling Algorithms

  • Chapter
  • First Online:
Robot Operating System (ROS)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 778))

Abstract

Experiments with teams of mobile robots in the physical world often represent a challenging task due to the complexity involved. One has to make sure that the robot hardware configuration, the software integration and the interaction with the environment is thoroughly tested so that the deployment of robot teams runs smoothly. This usually requires long preparation time for experiments and takes the focus away from what is essential, i.e. the cooperative task performed by the robots. In this work, we present patrolling_sim, a ROS-based framework for simulation and benchmarking of multi-robot patrolling algorithms. Making use of Stage, a multi-robot simulator, we provide tools for running, comparing, analyzing and integrating new algorithms for multi-robot patrolling. With this framework, roboticists can primarily focus on the specific challenges within robotic collaborative missions, run exhaustive tests in different scenarios and with different team sizes in a fairly realistic environment, and ultimately execute quicker experiments in the real world by mimicking the setting up of simulated experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://wiki.ros.org/patrolling_sim.

  2. 2.

    http://wiki.ros.org/stage_ros.

  3. 3.

    https://github.com/LCAS/spqrel_navigation/wiki.

  4. 4.

    http://wiki.ros.org/wifi_comm.

  5. 5.

    http://wiki.ros.org/foreign_relay.

  6. 6.

    https://github.com/gennari/tcp_interface.

  7. 7.

    http://wiki.ros.org/multimaster_fkie.

  8. 8.

    http://stop.ingeniarius.pt/.

References

  1. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, A. Ng, ROS: an open-source robot operating system. ICRA Workshop Open Source Softw. 3(2), 00 (2009)

    Google Scholar 

  2. T. Arai, E. Pagello, L.E. Parker, Advances in multi-robot systems. IEEE Trans. Robot. Autom. 18(5), 655–661 (2002)

    Article  Google Scholar 

  3. R. Rocha, Building Volumetric Maps with Cooperative Mobile Robots and Useful Information Sharing: a Distributed Control Approach based on Entropy. Ph.D. thesis, Faculty of Engineering of University of Porto, Portugal, 2006

    Google Scholar 

  4. A. Farinelli, L. Iocchi, D. Nardi, Multirobot systems: a classification focused on coordination. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34(5) (2004)

    Article  Google Scholar 

  5. B. Gerkey, R. Vaughan, A. Howard, The player/stage project: tools for multi-robot and distributed sensor systems, in Proceedings of the IEEE International Conference on Advanced Robotics (ICAR 2003) (Coimbra, Portugal, June 30–July 3 2003), pp. 317–323

    Google Scholar 

  6. E. Freund, On the design of multi-robot systems, in Proceedings of the 1984 IEEE International Conference on Robotics and Automation (ICRA 1984), vol. 1 (IEEE, 1984), pp. 477–490

    Google Scholar 

  7. K.G. Shin, M.E. Epstein, Communication primitives for a distributed multi-robot system, IN Proceedings of the 1985 IEEE International Conference on Robotics and Automation (ICRA 1985), vol. 2 (IEEE, 1985), pp. 910–917

    Google Scholar 

  8. E. Freund, H. Hoyer, Pathfinding in multi-robot systems: soution and applications, in Proceedings of the 1986 IEEE International Conference on Robotics and Automation (ICRA 1986), vol. 3 (IEEE, 1986), pp. 103–111

    Google Scholar 

  9. K. Takehara, Nuclear power plant facility inspection robot. Adv. Robot. 3(4), 321–331 (1989)

    Article  Google Scholar 

  10. S. Xie, T.W. Calvert, B.K. Bhattacharya, Planning viewpoints and the navigation route of a patrol robot in a known 2-D encironment, in Cambridge Symposium on Intelligent Robotics Systems. International Society for Optics and Photonics, SPIE, vol. 727 (1987), pp. 206–212

    Google Scholar 

  11. T. Kajiwara, J. Yamaguchi, J. Kanemoto, S. Yuta, A security guard robot which patrols using map information, in Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems (IROS 1989) (Tsukuba, Japan, 4–6 Sept 1989)

    Google Scholar 

  12. S. Premvuti, S. Yuta, Y. Ebihara, Radio communication network on autonomous mobile robots for cooperative motions, in Proceedings of 14th IEEE Annual Conference of the Industrial Electronics Society (IECON’88) (Singapore, 25–27 Oct 1988), pp. 32-37

    Google Scholar 

  13. F.R. Noreils, Integrating multirobot coordination in a mobile-robot control system, in Proceedings of the IEEE International Workshop on Intelligent Robots and Systems (IROS 1990), Towards a New Frontier of Applications (IEEE, 1993), pp. 43–49

    Google Scholar 

  14. A. Matsumoto, H. Asama, Y. Ishida, K. Ozaki, I. Endo, Communication in the autonomous and decentralized robot system ACTRESS, in Proceedings IEEE International Workshop on Intelligent Robots and Systems (IROS 1990), Towards a New Frontier of Applications (IEEE, 1990), pp. 835–840

    Google Scholar 

  15. M. Matarić, Minimizing complexity in controlling a mobile robot population, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 1992) (Nice, France, 1992), pp. 830–835

    Google Scholar 

  16. L. Iocchi, D. Nardi, M. Salerno, Reactivity and deliberation: a survey on multi-robot systems, in Workshop on Balancing Reactivity and Social Deliberation in Multi-Agent Systems, Lecture Notes in Computer Science, vol. 2103 (Springer, Berlin Heidelberg, 2001), pp. 9–32

    Chapter  Google Scholar 

  17. Webster’s Online Dictionary (2017), http://www.webster-dictionary.org

  18. C. King, M. Valera, R. Grech, J. R. Mullen, P. Remagnino, L. Iocchi, L. Marchetti, D. Nardi, D. Monekosso, M. Nicolescu, Multi-robot and multi-camera patrolling, in Handbook on Soft Computing for Video Surveillance (CRC Press, 2012), pp. 255–286

    Google Scholar 

  19. D. Portugal, Effective Cooperation and Scalability in Mobile Robot Teams for Automatic Patrolling of Infrastructures. Ph.D. thesis, Faculty of Science and Technology, University of Coimbra, Portugal, 2013

    Google Scholar 

  20. F.R. Noreils, Multi-robot coordination for battlefield strategies, in Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 1992), vol. 3 (Raleigh, North Carolina, USA, 7–10 July 1992), pp. 1777–1784

    Google Scholar 

  21. D. Kurabayashi, J. Ota, T. Arai, E. Yoshida, Cooperative sweeping by multiple mobile robots, in Proceedings of the 1996 IEEE International Conference on Robotics and Automation (ICRA 1996), vol. 2 (Minneapolis, Minesota, USA, 22–28 April 1996), pp. 1744–1749

    Google Scholar 

  22. L.E. Parker, B.A. Emmons, Cooperative multi-robot observation of multiple moving targets, in Proceedings of the 1997 IEEE International Conference on Robotics and Automation (ICRA 1997), vol. 3 (Albuquerque, New Mexico, USA, 25–26 April 1997)

    Google Scholar 

  23. J. Feddema, C. Lewis, P. Klarer, Control of multiple robotic sentry vehicles, in AeroSense’99, Proceedings of the SPIE, Unmanned Ground Vehicle Technology, vol. 3693 (Orlando, Florida, USA, 7–8 April 1999), pp. 212–223,

    Google Scholar 

  24. I.A. Wagner, M. Lindenbaum, A.M. Bruckstein, Distributed covering by ant-robots using evaporating traces. IEEE Trans. Robot. Autom.n 15(5), 918–933 (1999)

    Article  Google Scholar 

  25. A. Machado, G. Ramalho, J. Zucker, A. Drogoul, Multi-agent patrolling: an empirical analysis of alternative architectures, in Multi-Agent-Based Simulation II, Lecture Notes in Computer Science, vol. 2581 (Springer, Berlin, 2003), pp. 155–170

    Chapter  Google Scholar 

  26. D. Moreira, G. Ramalho, P. Tedesco, SimPatrol - towards the establishment of multi-agent patrolling as a benchmark for multi-agent systems, in Proceedings of the 1st International Conference on Agents and Artificial Intelligence (ICAART 2009) (Porto, Portugal), pp. 570–575

    Google Scholar 

  27. A. Almeida, G. Ramalho, H. Santana, P. Tedesco, T. Menezes, V. Corruble, Y. Chaveleyre, Recent advances on multi-agent patrolling, in Advances in Artificial Intelligence (SBIA 2004), Lecture Notes in Computer Science, vol. 3171 (Springer, Berlin, 2004), pp. 474–483

    Chapter  Google Scholar 

  28. N. Basilico, N. Gatti, T. Rossi, S. Ceppi, F. Amigoni, Extending algorithms for mobile robot patrolling in the presence of adversaries to more realistic settings, in Proceedings of the International Conference on Intelligent Agent Technology (IAT09) (Milan, Italy, 2009), pp. 557–564

    Google Scholar 

  29. J. Pita M. Tambe, C. Kiekintveld, S. Cullen, E. Steigerwald, GUARDS-innovative application of game theory for national airport security, in Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI11), vol 3 (Spain, Barcelona, 2011), pp 2710–2715

    Google Scholar 

  30. E. Hernández, A. Barrientos, J. del Cerro, Selective smooth fictitious play: an approach based on game theory for patrolling infrastructures with a multi-robot system. Expert Syst. Appl. 41(6), 2897–2913 (2014). Elsevier

    Article  Google Scholar 

  31. P. de Souza, C. Chanel, S. Givigi, A game theoretical formulation of a decentralized cooperative multi-agent surveillance mission, in 4th Workshop on Distributed and Multi-Agent Planning (DMAP) (London, UK, 2016)

    Google Scholar 

  32. F. Sempé, A. Drogoul, Adaptive patrol for a group of robots, in Proceedings of the International Conference on Robots and Systems (IROS 2003) (Las Vegas, USA, 2003)

    Google Scholar 

  33. A. Farinelli, L. Iocchi, D. Nardi, Distributed on-line dynamic task assignment for multi-robot patrolling. Auton. Robot. J. 41(6), 1321–1345 (2017). Springer

    Article  Google Scholar 

  34. C. Pippin, H. Christensen, L. Weiss, Performance based task assignment in multi-robot patrolling, in Proceedings of the ACM Symposium on Applied Computing (SAC 2013) (Coimbra, Portugal, 18–22 Mar 2013)

    Google Scholar 

  35. K. Hwang, J. Lin, H. Huang, Cooperative patrol planning of multi-robot systems by a competitive auction system, in Proceedings of the ICROS-SICE International Joint Conference (Fukuoka, Japan, 18–21 Aug 2009)

    Google Scholar 

  36. C. Poulet, V. Corruble, A. Seghrouchini, Working as a team: using social criteria in the timed patrolling problem, in Proceedings of the 24th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2012) (Athens, Greece, 7–9 Nov 2012)

    Google Scholar 

  37. A. Sugiyama, T. Sugawara, Improvement of robustness to environmental changes by autonomous divisional cooperation in multi-agent cooperative patrol problem, in Advances in Practical Applications of Cyber-Physical Multi-Agent Systems, 15th International Conference PAAMS 2017, Lecture Notes in Artificial Intelligence, vol. 10349 (Springer, Berlin, 2017), pp. 259–271

    Google Scholar 

  38. D. Portugal, R. Rocha, MSP algorithm: multi-robot patrolling based on territory allocation using balanced graph partitioning, in Proceedings of 25th ACM Symposium on Applied Computing (SAC 2010), Special Track on Intelligent Robotic Systems (Sierre, Switzerland, 22–26 Mar 2010), pp. 1271–1276

    Google Scholar 

  39. T. Sak, J. Wainer, S. Goldenstein, Probabilistic multiagent patrolling, in Brazilian Symposium on Artificial Intelligence (SBIA 2008) (Salvador, Brazil, 26–30 Oct 2008)

    Google Scholar 

  40. R. Stranders, E.M. de Coteb, A. Rogers, N.R. Jennings, Near-optimal continuous patrolling with teams of mobile information gathering agents, in Artificial Intelligence (Elsevier, 2012)

    Google Scholar 

  41. P. Fazli, A. Davoodi, A.K. Mackworth, Multi-robot repeated area coverage. Auton. Robot. 34(4), 251–276 (2013)

    Article  Google Scholar 

  42. A. Koubâa, O. Cheikhrouhou, H. Bennaceur, M. Sritim, Y. Javed, A. Ammar, Move and improve: a market-based mechanism for the multiple depot multiple travelling salesmen problem. J. Intell. Robot. Syst. 85(2), 307330 (2017)

    Article  Google Scholar 

  43. A. Marino, L. Parker, G. Antonelli, F. Caccavale, Behavioral control for multi-robot perimeter patrol: a finite state automata approach, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2009) (Kobe, Japan, 2009), pp. 831–836

    Google Scholar 

  44. A. Marino, G. Antonelli, A.P. Aguiar, A. Pascoal, A new approach to multi-robot harbour patrolling: theory and experiments, in Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012) (Vilamoura, Portugal, 7–12 Oct 2012)

    Google Scholar 

  45. J. Marier, C. Besse, B. Chaib-draa, Solving the continuous time multiagent patrol problem, in Proceedings of the International Conference on Robotics and Automation (ICRA 2010) (Anchorage, Alaska, USA, 2010)

    Google Scholar 

  46. X. Chen, T.S. Yum, Patrol districting and routing with security level functions, in Proceedings of the International Conference on Systems, Man and Cybernetics (SMC2010) (Istanbul, Turkey, Oct 2010), pp. 3555–3562,

    Google Scholar 

  47. O. Aguirre, H. Taboada, An evolutionary game theory approach for intelligent patrolling. Procedia Comput. Sci. Part II 12, 140–145 (2012)

    Article  Google Scholar 

  48. P. Sampaio, G. Ramalho, P. Tedesco, The gravitational strategy for the timed patrolling, in Proceedings of the International Conference on Tools with Artificial Intelligence (ICTAI10) (Arras, France, 27–29 Oct 2010)

    Google Scholar 

  49. Y. Ishiwaka, T. Sato, Y. Kakazu, An approach to the pursuit problem on a heterogeneous multiagent system using reinforcement learning. Robot. Auton. Syst. (RAS) 43(4) (2003)

    Article  Google Scholar 

  50. H. Santana, G. Ramalho, V. Corruble, B. Ratitch, Multi-agent patrolling with reinforcement learning, in Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, vol. 3 (New York, 2004)

    Google Scholar 

  51. V. Yanovski, I.A. Wagner, A.M. Bruckstein, A distributed ant algorithm for efficiently patrolling a network. Algorithmica 37, 3765–186 (2003)

    Article  MathSciNet  Google Scholar 

  52. H. Chu, A. Glad, O. Simonin, F. Sempé, A. Drogoul, F. Charpillet, Swarm approaches for the patrolling problem, information propagation vs. pheromone evaporation, in Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007), vol. 1 (IEEE, 2007), pp. 442–449

    Google Scholar 

  53. H. Calvo, S. Godoy-Calderon, M.A. Moreno-Armendáriz, V.M. Marínez-Hernández, Patrolling routes optimization using ant colonies, in Pattern Recognition, 7th Mexican Conference (MCPR 2015), Lecture Notes in Computer Science, vol. 9116 (Springer, Berlin, 2015), pp. 302312

    Google Scholar 

  54. B.B. Keskin, S. Li, D. Steil, S. Spiller, Analysis of an integrated maximum covering and patrol routing problem. Transp. Res. Part E: Logist. Transp. 48, 215–232 (2012). Elsevier

    Article  Google Scholar 

  55. D. Portugal, R.P. Rocha, Scalable, fault-tolerant and distributed multi-robot patrol in real world environments, in Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (Tokyo, Japan, 3–7 Nov IROS 2013)

    Google Scholar 

  56. H. Chen, T. Cheng, S. Wise, Developing an online cooperative police patrol routing strategy. Comput. Environ. Urban Syst. 62, 19–29 (2017). Elsevier

    Article  Google Scholar 

  57. A. Almeida, Patrulhamento Multiagente em Grafos com Pesos. M.Sc. thesis, Centro de Informtica, Univ. Federal de Pernambuco, Recife, Brazil, Oct 2003 (In Portuguese)

    Google Scholar 

  58. D. Moreira, SimPatrol: Um simulador de sistemas multiagentes para o patrulhamento. M.Sc. thesis, Centro de Informática, Univ. Federal de Pernambuco, Recife, Brazil, Sept 2008 (In Portuguese)

    Google Scholar 

  59. D. Portugal, RoboCops: A Study of Coordination Algorithms for Autonomous Mobile Robots in Patrolling Missions, Master of Science Dissertation, Faculty of Science and Technology, University of Coimbra, Portugal, Sept 2009

    Google Scholar 

  60. A. Franchi, Decentralized Methods for Cooperative Task Execution in Multi-robot Systems. Ph.D. thesis, Department of Computer and System Science, Sapienza University of Rome, Italy, Dec 2009

    Google Scholar 

  61. Y. Elmaliach, Multi-Robot Frequency-Based Patrolling. Ph.D. thesis, Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel, Jan 2009

    Google Scholar 

  62. N. Agmon, Multi-Robot Patrolling and Other Multi-Robot Cooperative Tasks: An Algorithmic Approach. Ph.D. thesis, Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel, Feb 2009

    Google Scholar 

  63. F. Pasqualetti, Secure Control Systems: A Control-Theoretic Approach to Cyber-Physical Security, Ph.D. thesis, Department of Mechanical Engineering, University of California, Santa Barbara, USA, Sept 2012

    Google Scholar 

  64. P. Fazli, On Multi-Robot Area and Boundary Coverage, Ph.D. thesis, Department of Computer Science, University of British Columbia, Vancouver, Canada, Aug 2013

    Google Scholar 

  65. C.E. Pippin, Trust and Reputation for Formation and Evolution of Multi-Robot Teams. Ph.D. thesis, Georgia Institute of Technology College of Computing, Atlanta, Georgia, USA, Dec 2013

    Google Scholar 

  66. E.H. Serrato, Cooperative Multi-Robot Patrolling: A study of distributed approaches based on mathematical models of game theory to protect infrastructures. Ph.D. thesis, Universidade Politécnica de Madrid, Escuela Técnica Superior de Ingenieros Industriales, Madrid, Spain, Dec 2014

    Google Scholar 

  67. L. Iocchi, L. Marchetti, D. Nardi, Multi-Robot Patrolling with Coordinated Behaviours in Realistic Environments, in Proceedings of the International Conference on Intelligent Robots and Systems (IROS 2011) (San Francisco, CA, USA, 25-30 Sept 2011), pp. 2796–2801

    Google Scholar 

  68. C. Pippin, H. Christensen, Trust modeling in multi-robot patrolling, in Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA 2014) (Hong Kong, China, 2014), pp. 59–66

    Google Scholar 

  69. D. Portugal, R.P. Rocha, Cooperative multi-robot patrol with bayesian learning. Auton. Robot. J. 40(5), 929–953 (2016). Springer

    Article  Google Scholar 

  70. C. Yan, T. Zhang, Multi-robot patrol: a distributed algorithm based on expected idleness. Int. J. Adv. Robot. Syst. 1–12 (2016). SAGE

    Google Scholar 

  71. M. Baglietto, G. Cannata, F. Capezio, A. Sgorbissa, Multi-robot uniform frequency coverage of significant locations in the environment, in Distributed Autonomous Robotic Systems, vol. 8 (Springer, Berlin, 2009)

    Chapter  Google Scholar 

  72. Y. Elmaliach, N. Agmon, G. Kaminka, Multi-robot area patrol under frequency constraints, in Proceedings of the 2007 IEEE International Conference on Robotics and Automation (ICRA 2007) (Rome, Italy, 10–14 April 2007 ), pp. 385–390

    Google Scholar 

  73. F. Pasqualetti, J. Durham, F. Bullo, Cooperative patrolling via weighted tours: performance analysis and distributed algorithms. IEEE Trans. Robot. 28(5), 1181–1188 (2012)

    Article  Google Scholar 

  74. D. Portugal, R.P. Rocha, Cooperative multi-robot patrol in an indoor infrastructure, in Human Behavior Understanding in Networked Sensing, Theory and Applications of Networks of Sensors (Springer International Publishing, 2014), pp. 339–358

    Google Scholar 

  75. Y. Chevaleyre, Theoretical analysis of the multi-agent patrolling problem, in Proceedings of the 2004 International Conference on Agent Intelligent Technologies (IAT 2004) (Beijing, China, 20–24 Sept 2004), pp. 302–308

    Google Scholar 

  76. F. Pasqualetti, A. Franchi, F. Bullo, On cooperative patrolling: optimal trajectories, complexity analysis and approximation algorithms. IEEE Trans. Robot. 28(3), 592–606 (2012)

    Article  Google Scholar 

  77. S. Smith, D. Rus, Multi-robot monitoring in dynamic environments with guaranteed currency of observations, in Proceedings of the 49th IEEE Conference on Decision and Control (Atlanta, Georgia, USA, 2010), pp. 514–521

    Google Scholar 

  78. S. Ruan, C. Meirina, F. Yu, K.R. Pattipati, R.L. Popp, Patrolling in a stochastic environment, in Proceedings of the 10th International Command and Control Research and Technology Symposium (ICCRTS) (McLean, Virginia, USA, 13–16 June 2005)

    Google Scholar 

  79. D. Portugal, C. Pippin, R.P. Rocha, H. Christensen, Finding optimal routes for multi-robot patrolling in generic graphs, in Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) (Chicago, USA, 14–18 Sept 2014)

    Google Scholar 

  80. Y. Elmaliach, A. Shiloni, G.A. Kaminka, A realistic model of frequency-based multi-robot polyline patrolling, in Proceedings of the 7th international joint conference on autonomous agents and multiagent systems (AAMAS 2008), vol. 1 (2008), pp. 63–70

    Google Scholar 

  81. A. Marino, L.E. Parker, G. Antonelli, F. Caccavale, A decentralized architecture for multi-robot systems based on the null-space-behavioral control with application to multi-robot border patrolling. J. Intell. Robot. Syst. 71, 423–444 (2013)

    Article  Google Scholar 

  82. N. Agmon, D. Urieli, P. Stone, Multiagent patrol generalized to complex environmental conditions, in Proceedings of the 25th Conference on Artificial Intelligence (AAAI 2011) (San Francisco, CA, 711 Aug 2011)

    Google Scholar 

  83. F. M. Noori, D. Portugal, R.P. Rocha, M.S. Couceiro, On 3D simulators for multi-robot systems in ROS: MORSE or Gazebo?, in Proceedings of the 15th IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR 2017) (Shanghai, China, 11–13 Oct 2017)

    Google Scholar 

  84. Z. Yan, L. Fabresse, J. Laval, N. Bouragadi, Building a ROS-based testbed for realistic multi-robot simulation: taking the exploration as an example. Robotics 6(3), 1–21 (2017)

    Google Scholar 

  85. D. Portugal, R.P. Rocha, Multi-robot patrolling algorithms: examining performance and scalability. Adv. Robot. J. Spec. Issue Saf. Secur. Rescue Robot. 27(5), 325–336 (2013). Taylor and Francis

    Article  Google Scholar 

  86. D. Portugal, R.P. Rocha, On the performance and scalability of multi-robot patrolling algorithms, in Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR 2011) (Kyoto, Japan, 1–5 Nov 2011), pp. 50–55

    Google Scholar 

  87. A. Araújo, D. Portugal, M.S. Couceiro, R.P. Rocha, Integrating Arduino-based Educational Mobile Robots in ROS. J. Intell. Robot. Syst. (JINT) Spec. Issue Auton. Robot. Syst. 77(2), 281–298 (2015). Springer

    Article  Google Scholar 

  88. G. Metta, P. Fitzpatrick, L. Natale, Yarp: yet another robot platform. Int. J. Adv. Robot. Syst. (IJARS) 3(1), 43–48 (2006)

    Google Scholar 

  89. H. Bruyninckx, Open robot control software: the OROCOS project, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2001), vol. 3 (Seoul, Korea Rep., 21–26 May 2001), pp. 2523–2528

    Google Scholar 

  90. M. Montemerlo, N. Roy, S. Thrun, Perspectives on standardization in mobile robot programming: the carneggie mellon navigation (CARMEN) toolkit, in Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2003) (Las Vegas, Nevada, Oct 2003)

    Google Scholar 

  91. J. Jackson, Microsoft robotics studio: a technical introduction. IEEE Robot. Autom. Mag. 14(4), 82–87 (2007)

    Article  MathSciNet  Google Scholar 

  92. G. Grisetti, C. Stachniss, W. Burgard, Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2006)

    Article  Google Scholar 

  93. R. Rusu, S. Cousins, 3D is here: point cloud library (PCL), in Proceeding of the IEEE International Conference on Robotics and Automation (ICRA 2011) (Shanghai, China, 9–13 May 2011)

    Google Scholar 

  94. G. Bradski, A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library (OReilly Media, 2008)

    Google Scholar 

  95. N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-source multi-robot simulator, in Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), vol. 3 (Sendai, Japan, Sept 28–Oct 2 2004), pp. 2149–2154

    Google Scholar 

  96. G. Echeverria, N. Lassabe, A. Degroote, S. Lemaignan, Modular open robots simulation engine: Morse, in Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA) (Shanghai, China, 9–13 May 2011), pp. 46–51

    Google Scholar 

  97. M. Freese, S. Singh, F. Ozaki, N. Matsuhira, N., Virtual robot experimentation platform v-rep: a versatile 3d robot simulator, in The IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2010) (Darmstadt, Germany, Springer, 15,18 Nov 2010), pp. 51–62

    Chapter  Google Scholar 

  98. R. Vaughan, Massively multi-robot simulation in stage. J. Swarm Intell. 2(2–4), 189–208 (2008). Springer

    Article  Google Scholar 

  99. M.J. Conway, Python: a GUI development tool. Interact. Mag. 2(2), 23–28 (1995)

    Article  Google Scholar 

  100. S. Thrun, D. Fox, W. Burgard, F. Dellaert, Robust monte carlo localization for mobile robots. Artif. Intell. (AI) 128(12), 99–141 (2000)

    MATH  Google Scholar 

  101. E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, K. Konolige, The office marathon: Robust navigation in an indoor office environment, in Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA 2010) (Anchorage, AK, USA, May 2010), pp. 300–307

    Google Scholar 

  102. M.T. Lazaro, G. Grisetti, L. Iocchi, J.P. Fentanes, M. Hanheide, A lightweight navigation system for mobile robots, in Proceedings of the Third Iberian Robotics Conference (ROBOT 2017) (Sevilla, Spain, 22–24 Nov 2017)

    Google Scholar 

  103. D. Portugal, R.P. Rocha, Distributed multi-robot patrol: a scalable and fault-tolerant framework. Robot. Auton. Syst. 61(12), 1572–1587 (2013). Elsevier

    Article  Google Scholar 

  104. L. Freda, M. Gianni, F. Pirri, Deliverable 4.3: communication and knowledge flow gluing the multi-robot collaborative framework, in TRADR: Long-Term Human-Robot Teaming for Disaster Response (EU FP7 ICT Project #609763) (2016), http://www.tradr-project.eu/wp-content/uploads/dr.4.3.main_public.pdf

  105. M. Garzón, J. Valente, J. Roldán, D. Garzón-Ramos, J. de León, A. Barrientos & J. del Cerro, Using ROS in multi-robot systems: experiences and lessons learned from real-world field tests, in Robot Operating System (ROS) - The Complete Reference (vol. 2), Studies in Computational Intelligence, vol. 707 (Springer, Berlin, 2017)

    Google Scholar 

  106. A. Huang, E. Olson, D.C. Moore DC, LCM: lightweight communications and marshalling, in Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010) (Taipei, Taiwan, Oct 1822, 2010), pp. 4057–4062

    Google Scholar 

  107. G. Cabrita, P. Sousa, L. Marques, A. de Almeida, Infrastructure monitoring with multi-robot teams, in Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), Workshop on Robotics for Environmental Monitoring (Taipei, Taiwan, 18–22 Oct 2010)

    Google Scholar 

  108. A. Tiderko, F. Hoeller, T. Röhling, The ROS multimaster extension for simplified deployment of multi-robot systems, in Robot Operating System (ROS) - The Complete Reference (Vol. 1), Studies in Computational Intelligence, vol. 625 (Springer, Berlin, 2016), pp. 629–650

    Google Scholar 

  109. D. Portugal, S. Pereira, M. S. Couceiro, The role of security in human-robot shared environments: a case study in ROS-based surveillance robots, in Proceedings of the 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2017) (Lisbon, Portugal, Aug 28–Sept 1 2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Seguranças robóTicos coOPerativos (STOP) research project (ref. CENTRO-01-0247-FEDER-017562), co-funded by the “Agência Nacional de Inovação” within the Portugal2020 programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Portugal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Portugal, D., Iocchi, L., Farinelli, A. (2019). A ROS-Based Framework for Simulation and Benchmarking of Multi-robot Patrolling Algorithms. In: Koubaa, A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence, vol 778. Springer, Cham. https://doi.org/10.1007/978-3-319-91590-6_1

Download citation

Publish with us

Policies and ethics