Skip to main content

Bioimaging Metallomics

  • Chapter
  • First Online:
Metallomics

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1055))

Abstract

This chapter focuses on bioimaging in metallomics, which involves metal and metalloids distribution in animal tissues. It starts with laser ablation-inductively coupled plasma-mass spectrometry followed by secondary ion mass spectrometry, synchrotron-based X-ray fluorescence, and electron microscopy, including transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The basic principles of these techniques and their application for qualitative and quantitative imaging of elements are presented. Sample preparation for bioimaging is briefly discussed. The usefulness of element bioimaging is demonstrated for cells and several animal tissues, including the brain, liver, hair, eye, teeth, and bone. As such, this chapter addresses the state of the art in bioimaging metallomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two dimensional

2D-PAGE:

Two-dimensional polyacrylamide gel electrophoresis

3D:

Three dimensional

AD:

Alzheimer disease

AmD:

Amyloid deposits

ATP:

Adenosine triphosphate

BNCT:

Boron neutron capture therapy

BSA:

Bovine serum albumin

CCD:

Charge-coupled device

CRM:

Certified reference material

CT:

Computed tomography

Da:

Dalton

DNA:

Deoxyribonucleic acid

DOTA:

Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DTPABMA:

2-[bis[2-[carboxymethyl-[2-(methylamino)-2-oxoethyl]amino]ethyl]amino]acetic acid

EDX:

Energy-dispersive X-ray spectroscopy

EEL:

Energy loss

EELS:

Electron energy loss spectroscopy

EF:

Energy-filtered

EFTEM:

Energy-filtered transmission electron microscopy

EM:

Electron microscopy

ESI-MS:

Electrospray-mass spectrometry

FEG:

Field emission gun

FWHM:

Full width at half maximum

GE:

Gel electrophoresis

HPF:

High-pressure freezing

ICP:

Inductively coupled plasma

ICP-MS:

Inductively coupled plasma mass spectrometry

ID:

Isotope dilution

IEF-GE:

Isoelectric focusing gel electrophoresis

IPG:

Immobilized pH gradient strips

IR:

Infrared

IS:

Internal standard

LA:

Laser ablation

LA-ICP-MS:

Laser ablation-inductively coupled plasma mass spectrometry

LA-MS:

Laser ablation mass spectrometry

LMIG:

Liquid-metal ion gun

LOD:

Limit of detection

MC-ICP-MS:

Multicollector-inductively coupled plasma mass spectrometry

MeCAT:

Metal-coded affinity tag

METTEM:

Metal-tagging transmission electron microscopy

MLEM:

Maximum likelihood expectation maximization

MRI:

Magnetic resonance image

MSI:

Mass spectrometry imaging

ND-IEF-GE:

Non-denaturing isoelectric focusing gel electrophoresis

NINA:

Nanoimaging and nanoanalysis

NPs:

Nanoparticles

ODU:

Optical density unit

PAGE:

Polyacrylamide gel electrophoresis

QDs:

Quantum dots

QMS:

Quadrupole mass spectrometer

RAPTA:

Ru-arene bound to 1,3,5-triaza-7-phosphotricyclo-[3.3.1.1] decane

REEs:

Rare earth elements

ROI:

Regions of interest

RSF:

Relative sensitivity factor

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

SEC-ICP-MS:

Size exclusion chromatography-inductively coupled plasma mass spectrometry

SEM:

Scanning electron microscopy

SF-ICP-MS:

Sector field-inductively coupled plasma mass spectrometry

SIMS:

Secondary ionization mass spectrometry

SN-ICP-MS:

Solution nebulization inductively coupled plasma mass spectrometry

SNR:

Signal-to-noise ratio

SOD:

Superoxide dismutase

SRXRF:

Synchrotron X-ray fluorescence

STEM:

Scanning transmission electron microscopy

STEM-EELS:

Scanning transmission electron microscopy-electron energy loss spectroscopy

TEM:

Transmission electron microscopy

ToF:

Time of flight

ToF-ICP-MS:

Time of flight-inductively coupled plasma mass spectrometry

ToF-SIMS:

Time of flight-secondary ionization mass spectrometry

UV:

Ultraviolet

UHV:

Ultra high vacuum

VSOP:

Very small iron oxide particles

WD:

Wilson’s disease

WDS:

Wavelength-dispersive spectrometry

XAFS:

X-ray absorption fine structure

XANES:

X-ray absorption near edge structure spectroscopy

XAS:

X-ray absorption spectroscopy

XRF:

X-ray fluorescence

References

  • Amstalden van Hove ER, Smith DF, Heeren RMA (2010) A concise review of mass spectrometry imaging. J Chromatogr A 1217:3946–3954

    Article  PubMed  CAS  Google Scholar 

  • Aronova MA, Leapman RD (2012) Development of electron energy loss spectroscopy in the biological sciences. MRS Bull 37(1):53–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arora M, Hare D, Austin C et al (2011) Spatial distribution of manganese in enamel and coronal dentine of human primary teeth. Sci Total Environ 409(7):1315–1319

    Article  PubMed  CAS  Google Scholar 

  • Austin C, Hare D, Rozelle AL et al (2009) Elemental bio-imaging of calcium phosphate crystal deposits in knee samples from arthritic patients. Metallomics 1:142–147

    Article  PubMed  CAS  Google Scholar 

  • Austin C, Fryer F, Lear J et al (2011) Factors affecting internal standard selection for quantitative elemental bio-imaging of soft tissues by LA–ICP–MS. J Anal At Spectrom 26:1494–1501

    Article  CAS  Google Scholar 

  • Bandura DR, Baranov VI, Ornatsky OI et al (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822

    Article  PubMed  CAS  Google Scholar 

  • Becker JS, Zoriy MV, Pickhardt C et al (2005a) Imaging of copper, zinc, and other elements in thin section of human brain samples (Hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 77(10):3208–3216

    Article  PubMed  CAS  Google Scholar 

  • Becker JS, Zoriy MV, Dehnhardt M (2005b) Copper, zinc, phosphorus and sulfur distribution in thin section of rat brain tissues measured by laser ablation inductively coupled plasma mass spectrometry: possibility for small-size tumor analysis. J Anal At Spectrom 20:912–917

    Article  CAS  Google Scholar 

  • Becker JS, Zoriy M, Becker JS et al (2007) Elemental imaging mass spectrometry of thin sections of tissues and analysis of brain proteins in gels by laser ablation inductively coupled plasma mass spectrometry. Phys Status Solidi C 4(6):1775–1784

    Article  CAS  Google Scholar 

  • Becker JS, Breuer U, Hsieh H-F et al (2010) Bioimaging of metals and biomolecules in mouse heart by laser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectrometry. Anal Chem 82(22):9528–9533

    Article  PubMed  CAS  Google Scholar 

  • Becker JS, Matusch A, Wu B (2014) Bioimaging mass spectrometry of trace elements– recent advance and applications of LA–ICP–MS: a review. Anal Chim Acta 835:1–18

    Article  PubMed  CAS  Google Scholar 

  • Bellis DJ, Hetter KM, Jones J et al (2006) Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone. J Anal At Spectrom 21:948–954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bianga J, Touat-Hamici Z, Bierla K et al (2014) Speciation analysis for trace levels of selenoproteins in cultured human cells. J Proteome 108:316–324

    Article  CAS  Google Scholar 

  • Blaske F, Reifschneider O, Gosheger G et al (2014) Elemental bioimaging of nanosilver-coated prostheses using X-ray fluorescence spectroscopy and laser ablation–inductively coupled plasma–mass spectrometry. Anal Chem 86(1):615–620

    Article  PubMed  CAS  Google Scholar 

  • Bloom AN, Tian H, Winograd N (2016) C60-SIMS imaging of nanoparticles within mammalian cells. Biointerphases 11(2):02A306-1–02A306-7

    Article  CAS  Google Scholar 

  • Böhme S, Stärk H-J, Kühnel D et al (2015) Exploring LA–ICP–MS as a quantitative imaging technique to study nanoparticle uptake in Daphnia magna and zebrafish (Danio rerio) embryos. Anal Bioanal Chem 407(18):5477–5485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonta M, Lohninger H, Laszlo V et al (2014) Quantitative LA–ICP–MS imaging of platinum in chemotherapy treated human malignant pleural mesothelioma samples using printed patterns as standard. J Anal At Spectrom 29:2159–2167

    Article  CAS  Google Scholar 

  • Bonta M, Limbeck A, Quarles CD Jr et al (2015) A metric for evaluation of the image quality of chemical maps derived from LA–ICP–MS experiments. J Anal At Spectrom 30:1809–1815

    Article  CAS  Google Scholar 

  • Bonta M, Hegedus B, Limbeck A (2016) Application of dried-droplets deposited on pre-cut filter paper disks for quantitative LA–ICP–MS imaging of biologically relevant minor and trace elements in tissue samples. Anal Chim Acta 908:54–62

    Article  PubMed  CAS  Google Scholar 

  • Bourassa MW, Miller LM (2012) Metal imaging in neurodegenerative diseases. Metallomics 4(8):721–738

    Article  PubMed  CAS  Google Scholar 

  • Bourassa D, Gleber S-C, Vogt S et al (2014) 3D imaging of transition metals in the zebrafish embryo by X-ray fluorescence microtomography. Metallomics 6(9):1648–1655

    Article  PubMed  CAS  Google Scholar 

  • Bourassa D, Gleber S-C, Vogt S et al (2016) MicroXRF tomographic visualization of zinc and iron in the zebrafish embryo at the onset of the hatching period. Metallomics 8(10):1122–1130

    Article  PubMed  CAS  Google Scholar 

  • Boxer SG, Kraft ML, Weber PK (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys 38:53–74

    Article  PubMed  CAS  Google Scholar 

  • Braidy N, Poljak A, Marjo C et al (2014) Metal and complementary molecular bioimaging in Alzheimer’s disease. Front Integr Neurosci 6:1–14

    Google Scholar 

  • Castaing R, Slodzian G (1962) Microanalyse par emission ionique secondaire. J Microsc 1:395–410

    CAS  Google Scholar 

  • Castro W, Hoogewerff J, Latkoczy C (2010) Application of laser ablation (LA–ICP–SF–MS) for the elemental analysis of bone and teeth samples for discrimination purposes. Forensic Sci Int 195(1–3):17–27

    Article  PubMed  CAS  Google Scholar 

  • Chandra S (2008) Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution. Appl Surf Sci 255:1273–1284

    Article  CAS  Google Scholar 

  • Chandra S, Tjarks W, Lorey DR et al (2008) Quantitative subcellular imaging of boron compounds in individual mitotic and interphase human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS). J Microsc 229:92–103

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Monteiro-Riviere NA, Zhang LW (2017) Intracellular imaging of quantum dots, gold, and iron oxide nanoparticles with associated endocytic pathways. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(2):1–19

    Article  CAS  Google Scholar 

  • Claverie F, Pecheyran C, Mounicou S et al (2009) Characterization of the aerosol produced by infrared femtosecond laser ablation of polyacrylamide gels for the sensitive inductively coupled plasma mass spectrometry detection of selenoproteins. Spectrochim Acta B 64(7):649–658

    Article  CAS  Google Scholar 

  • Collins SM, Midgley PA (2017) Progress and opportunities in EELS and EDS tomography. Ultramicroscopy 180:133–141

    Article  PubMed  CAS  Google Scholar 

  • Corezzi S, Urbanelli L, Cloetens P et al (2009) Synchrotron based X-ray fluorescence imaging of human cells labeled with CdSe quantum dots. Anal Biochem 388:33–39

    Article  PubMed  CAS  Google Scholar 

  • Cunha MML, Trepout S, Messaoudi C et al (2016) Overview of chemical imaging methods to address biological questions. Micron 84:23–26

    Article  PubMed  CAS  Google Scholar 

  • De Jonge MD, Vogt S (2010) Hard X-ray fluorescence tomographyan emerging tool for structural visualization. Curr Opin Struct Biol 20:606–614

    Article  PubMed  CAS  Google Scholar 

  • Dérue C, Gibouin D, Lefebvre F et al (2006) Relative sensitivity factors of inorganic cations in frozen-hydrated standards in secondary ion MS analysis. Anal Chem 78(8):2471–2477

    Article  PubMed  CAS  Google Scholar 

  • Dias AA, Carvalho M, Carvalho ML et al (2015) Quantitative evaluation of ante-mortem lead in human remains of the 18th century by triaxial geometry and bench top micro X-ray fluorescence spectrometry. J Anal At Spectrom 30:2488–2495

    Article  CAS  Google Scholar 

  • Douglas DN, O’Reilly J, O’Connor C et al (2016) Quantitation of the Fe spatial distribution in biological tissue by online double isotope dilution analysis with LA–ICP–MS: a strategy for estimating measurement uncertainty. J Anal At Spectrom 31:270–279

    Article  CAS  Google Scholar 

  • Drescher D, Giesen C, Traub H et al (2012) Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP–MS. Anal Chem 84(22):9684–9688

    Article  CAS  PubMed  Google Scholar 

  • Egger AE, Theiner S, Kornauth C et al (2014) Quantitative bioimaging by LA–ICP–MS: a methodological study on the distribution of Pt and Ru in viscera originating from cisplatin- and KP1339-treated mice. Metallomics 6(9):1616–1625

    Article  PubMed  CAS  Google Scholar 

  • Farell J, Amarasiriwardena D, Goodman AH et al (2013) Bioimaging of trace metals in ancient Chilean mummies and contemporary Egyptian teeth by laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS). Microchem J 106:340–346

    Article  CAS  Google Scholar 

  • Feldmann J, Kindness A, Ek P (2002) Laser ablation of soft tissue using a cryogenically cooled ablation cell. J Anal At Spectrom 17:813–818

    Article  CAS  Google Scholar 

  • Fernandez B, Claverie F, Pecheyran C et al (2007) Direct analysis of solid samples by fs-LA–ICP–MS. TrAC-Trends Anal Chem 26(10):951–966

    Article  CAS  Google Scholar 

  • Fiori CE, Leapman RD, Swyt CR (1988) Quantitative X-ray mapping of biological cryosections. Ultramicroscopy 24(2–3):237–250

    Article  PubMed  CAS  Google Scholar 

  • Fiori CE (1988) The new electron microscopy: imaging the chemistry of nature. Anal Chem 60(12):86R–90R

    Article  PubMed  CAS  Google Scholar 

  • Frick DA, Günther D (2012) Fundamental studies on the ablation behaviour of carbon in LA–ICP–MS with respect to the suitability as internal standard. J Anal At Spectrom 27:1294–1303

    Article  CAS  Google Scholar 

  • Frick DA, Giesen C, Hemmerle T et al (2015) An internal standardisation strategy for quantitative immunoassay tissue imaging using laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 30:254–259

    Article  CAS  Google Scholar 

  • Friel JJ, Lyman CE (2006) X-ray mapping in electron-beam instruments. Microsc Microanal 12(1):2–25

    Article  PubMed  CAS  Google Scholar 

  • Giesen C, Wang HAO, Schapiro D (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11:417–422

    Article  PubMed  CAS  Google Scholar 

  • Gray AL (1985) Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst 110:551–556

    Article  CAS  Google Scholar 

  • Grovenor CRM, Smart KE, Kilburn M et al (2006) Specimen preparation and calibration for NanoSIMS analysis of biological materials. Appl Surf Sci 252:6917–6924

    Article  CAS  Google Scholar 

  • Gulin AA, Pavlyukov MS, Gularyan SK et al (2015) Visualization of the spatial distribution of Pt+ ions in cisplatin-treated glioblastoma cells by time-of-flight secondary ion mass spectrometry. Biochem (Mosc) Suppl Ser A Membr Cell Biol 9(3):202–209

    Article  Google Scholar 

  • Gunther D, Hattendorf B (2005) Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry. TrAC-Trends Anal Chem 24(3):255–265

    Article  CAS  Google Scholar 

  • Hachmöller O, GuilhermeBuzanich A, Aichler M et al (2016) Elemental bioimaging and speciation analysis for the investigation of Wilson’s disease using μXRF and XANES. Metallomics 8(7):648–653

    Article  PubMed  CAS  Google Scholar 

  • Hagège A, Huynh TNS, Hébrant M (2015) Separative techniques for metalloproteomics require balance between separation and perturbation. TrAC-Trends Anal Chem 64:64–74

    Article  CAS  Google Scholar 

  • Hamilton JS, Gorishek EL, Mach PM et al (2016) Evaluation of a custom single Peltier-cooled ablation cell for elemental imaging of biological samples in laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS). J Anal At Spectrom 31:1030–1033

    Article  CAS  Google Scholar 

  • Hare D, Reedy B, Grimm R et al (2009) Quantitative elemental bio-imaging of Mn, Fe, Cu and Zn in 6–hydroxydopamine induced Parkinsonism mouse models. Metallomics 1:53–58

    Article  CAS  Google Scholar 

  • Hare D, Austin C, Doble P et al (2011) Elemental bio-imaging of trace elements in teeth using laser ablation–inductively coupled plasma–mass spectrometry. J Dent 39(5):397–403

    Article  PubMed  CAS  Google Scholar 

  • Hare DJ, Lee JK, Beavis AD et al (2012) Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem. Anal Chem 84(9):3990–3997

    Article  PubMed  CAS  Google Scholar 

  • Hare DJ, George JL, Bray L et al (2014) The effect of paraformaldehyde fixation and sucrose cryoprotection on metal concentration in murine neurological tissue. J Anal At Spectrom 29:565–570

    Article  CAS  Google Scholar 

  • He Y, Esteban-Fernández D, Neumann B et al (2016) Application of MeCAT-Click labeling for protein abundance characterization of E. coli after heat shock experiments. J Proteome 136:68–76

    Article  CAS  Google Scholar 

  • Hofer F, Grogger W, Warbichler P et al (2000) Quantitative energy-filtering transmission electron microscopy (EFTEM). Mikrochim Acta 132(2–4):273–288

    CAS  Google Scholar 

  • Hoffmann E, Stephanowitz H, Ullrich E et al (2000) Investigation of mercury migration in human teeth using spatially resolved analysis by laser ablation–ICP–MS. J Anal At Spectrom 15:663–667

    Article  CAS  Google Scholar 

  • Horowitz P, Howell JA (1972) A scanning X-ray microscope using synchrotron radiation. Science 178:607–608

    Article  Google Scholar 

  • Hugo L-F, Pessôa GS, Arruda MAZ et al (2016) LA-iMageS: a software for elemental distribution bioimaging using LA–ICP–MS data. J Cheminformatics 8:65–74

    Article  Google Scholar 

  • Jackson B, Harper S, Smith L et al (2006) Elemental mapping and quantitative analysis of Cu, Zn, and Fe in rat brain sections by laser ablation ICP–MS. Anal Bioanal Chem 384(4):951–957

    Article  PubMed  CAS  Google Scholar 

  • Jiménez MS, Rodriguez L, Bertolin JR et al (2013) Evaluation of gel electrophoresis techniques and laser ablation–inductively coupled plasma–mass spectrometry for screening analysis of Zn and Cu-binding proteins in plankton. Anal Bioanal Chem 405(1):359–368

    Article  PubMed  CAS  Google Scholar 

  • Jimenez MS, Luque-Alled JM, Gomez T et al (2016) Evaluation of agarose gel electrophoresis for characterization of silver nanoparticles in industrial products. Electrophoresis 37(10):1376–1383

    Article  PubMed  CAS  Google Scholar 

  • Jurowski K, Buszewski B, Piekoszewski W (2015) Bioanalytics in quantitative (bio)imaging/mapping of metallic elements in biological samples. Crit Rev Anal Chem 45(4):334–347

    Article  PubMed  CAS  Google Scholar 

  • Kang D, Amarasiriwardena D, Goodman AH (2004) Application of laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layers and pulp. Anal Bioanal Chem 378(6):1608–1615

    Article  PubMed  CAS  Google Scholar 

  • Katz W, Newman JG (1987) Fundamentals of secondary ion mass spectrometry. MRS Bull 7:40–46

    Article  Google Scholar 

  • Kindness A, Sekaran CN, Feldmann J (2003) Two-dimensional mapping of copper and zinc in liver sections by laser ablation-inductively coupled plasma mass spectrometry. Clin Chem 49(11):1916–1923

    Article  PubMed  CAS  Google Scholar 

  • Komine Y, Eggink LL, Park H et al (2000) Vacuolar granules in Chlamydomonas reinhardtii: polyphosphate and a 70-kDa polypeptide as major components. Planta 210(6):897–905

    Article  PubMed  CAS  Google Scholar 

  • Konz I, Fernandez B, Fernandez ML et al (2013) Gold internal standard correction for elemental imaging of soft tissue sections by LA–ICP–MS: element distribution in eye microstructures. Anal Bioanal Chem 405(10):3091–3096

    Article  PubMed  CAS  Google Scholar 

  • Konz I, Fernandez B, Fernandez ML et al (2014a) Design and evaluation of a new Peltier-cooled laser ablation cell with on-sample temperature control. Anal Chim Acta 809:88–96

    Article  PubMed  CAS  Google Scholar 

  • Konz I, Fernández B, Fernández ML et al (2014b) Quantitative bioimaging of trace elements in the human lens by LA–ICP–MS. Anal Bioanal Chem 406(9):2343–2348

    Article  PubMed  CAS  Google Scholar 

  • Kowarski D (1984) Intelligent interface for a microprocessor controlled scanning transmission electron microscope with X-ray imaging. J Electron Micro Tech 1(2):175–184

    Article  Google Scholar 

  • Leapman RD, Hunt JA, Buchanan RA et al (1993) Measurement of low calcium concentrations in cryosectioned cells by parallel-EELS mapping. Ultramicroscopy 49(1–4):225–234

    Article  PubMed  CAS  Google Scholar 

  • Leapman RD (2017) Application of EELS and EFTEM to the life sciences enabled by the contributions of Ondrej Krivanek. Ultramicroscopy 180:180–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lear J, Hare DJ, Fryer F et al (2012) High-resolution elemental bioimaging of Ca, Mn, Fe, Co, Cu, and Zn employing LA–ICP–MS and hydrogen reaction gas. Anal Chem 84(15):6707–6714

    Article  PubMed  CAS  Google Scholar 

  • Lee RFS, Escrig S, Croisier M et al (2015) NanoSIMS analysis of an isotopically labeled organometallic ruthenium(II) drug to probe its distribution and state in vitro. Chem Commun 51:16486–16489

    Article  CAS  Google Scholar 

  • Legin AA, Schintlmeister A, Jakupec MA et al (2014) NanoSIMS combined with fluorescence microscopy as a tool for subcellular imaging of isotopically labeled platinum-based anticancer drugs. Chem Sci 5:3135–3143

    Article  CAS  Google Scholar 

  • Limbeck A, Galler P, Bonta M et al (2015) Recent advances in quantitative LA–ICP–MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal Bioanal Chem 407(22):6593–6617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lobinski R, Moulin C, Ortega R (2006) Imaging and speciation of trace elements in biological environment. Biochimie 88:1591–1604

    Article  PubMed  CAS  Google Scholar 

  • Lombi E, De Jonge MD, Donner E et al (2011) Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors. Anal Bioanal Chem 400:1637–1644

    Article  PubMed  CAS  Google Scholar 

  • Lum TS, Ho CL, Tsoi YK et al (2016) Elemental bioimaging of platinum in mouse tissues by laser ablation–inductively coupled plasma–mass spectrometry for the study of localization behavior of structurally similar complexes. Int J Mass Spectrom 404:40–47

    Article  CAS  Google Scholar 

  • Maia F-D, Chen B-J, Wu L-C et al (2006) Imaging of single liver tumor cells intoxicated by heavy metals using ToF-SIMS. Appl Surf Sci 252:6809–6812

    Article  CAS  Google Scholar 

  • Managh AJ, Edwards S, Bushell A et al (2013) Single cell tracking of gadolinium labeled CD4+ T cells by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 85(22):10627–10634

    Article  PubMed  CAS  Google Scholar 

  • Managh AJ, Hutchinson RW, Riquelme P et al (2014) Laser ablation–inductively coupled plasma mass spectrometry: an emerging technology for detecting rare cells in tissue sections. J Immunol 193(5):2600–2608

    Article  PubMed  CAS  Google Scholar 

  • Marshall J, Franks J et al (1991) Determination of trace elements in solid plastic materials by laser ablation–inductively coupled plasma mass spectrometry. J Anal At Spectrom 6:145–150

    Article  CAS  Google Scholar 

  • Martínez-Criado G, Tucoulou R, Cloetens P et al (2012) Status of the hard X-ray microprobe beamline ID22 of the European synchrotron radiation facility. J Synchrotron Rad 19:10–18

    Article  Google Scholar 

  • Matsuyama S, Shimura M, Mimura H et al (2009) Trace element mapping of a single cell using a hard X-ray nanobeam focused by a Kirkpatrick–Baez mirror system. X-Ray Spectrom 38:89–94

    Article  CAS  Google Scholar 

  • Matsuyama S, Shimura M, Fujii M et al (2010) Elemental mapping of frozen-hydrated cells with cryo-scanning X-ray fluorescence microscopy. X-Ray Spectrom 39:260–266

    Article  CAS  Google Scholar 

  • McRae R, Lai B, Vogt S et al (2006) Correlative microXRF and optical immunofluorescence microscopy of adherent cells labeled with ultra small gold particles. J Struct Biol 155(1):22–29

    Article  PubMed  CAS  Google Scholar 

  • Mitsuoka K (2011) Obtaining high-resolution images of biological macromolecules by using a cryo-electron microscope with a liquid-helium cooled stage. Micron 42(2):100–106

    Article  PubMed  CAS  Google Scholar 

  • Moraleja I, Esteban-Fernández D, Lázaro A et al (2016) Printing metal-spiked inks for LA–ICP–MS bioimaging internal standardization: comparison of the different nephrotoxic behavior of cisplatin, carboplatin, and oxaliplatin. Anal Bional Chem 408(9):2309–2318

    Article  CAS  Google Scholar 

  • Morello M, Canini A, Caiola MG et al (2002) Manganese detected by electron spectroscopy imaging and electron energy loss spectroscopy in mitochondria of normal rat brain cells. J Trace Microprobe T 20(4):481–491

    Article  CAS  Google Scholar 

  • Nagata T (2004) X-ray microanalysis of biological specimens by high voltage electron microscopy. Prog Histochem Cytochem 39(4):185–319

    Article  PubMed  CAS  Google Scholar 

  • Nisman R, Dellaire G, Ren Y et al (2004) Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J Histochem Cytochem 52(1):13–18

    Article  PubMed  CAS  Google Scholar 

  • Nygren H, Dahlén G, Malmberg P (2014) Analysis of As- and Hg-species in metal-resistant oral bacteria, by imaging ToF-SIMS. Basic Clin Pharmacol Toxicol 115:129–133

    Article  PubMed  CAS  Google Scholar 

  • Noël M, Spence J, Harris KA et al (2014) Grizzly bear hair reveals toxic exposure to mercury through salmon consumption. Environ Sci Technol 48(13):7560–7567

    Article  PubMed  CAS  Google Scholar 

  • Ortega R (2005) Chemical elements distribution in cells. Nucl Instrum Meth B 231(1–4):218–223

    Article  CAS  Google Scholar 

  • Osterholt T, Salber D, Matusch A et al (2011) IMAGENA: image generation and analysis – an interactive software tool handling LA–ICP–MS data. Int J Mass Spectrom 307(1–3):232–239

    Article  CAS  Google Scholar 

  • O’Reilly J, Douglas D, Braybrook J et al (2014) A novel calibration strategy for the quantitative imaging of iron in biological tissues by LA–ICP–MS using matrix-matched standards and internal standardization. J Anal At Spectrom 29:1378–1384

    Article  Google Scholar 

  • Pozebon D, Dressler VL, Matusch A (2008) Monitoring of platinum in a single hair by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) after cisplatin treatment for cancer. Int J Mass Spectrom 272(1):57–62

    Article  CAS  Google Scholar 

  • Pozebon D, Scheffler GL, Dressler VL et al (2014) Review of the applications of laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) to the analysis of biological samples. J Anal At Spectrom 29:2204–2228

    Article  CAS  Google Scholar 

  • Pacholski ML, Winograd N (1999) Imaging with mass spectrometry. Chem Rev 99:2977–3005

    Article  PubMed  CAS  Google Scholar 

  • Paul B, Paton C, Norris A et al (2012) CellSpace: a module for creating spatially registered laser ablation images within the Iolite freeware environment. J Anal At Spectrom 27(4):700–706

    Article  CAS  Google Scholar 

  • Paul B, Hare DJ, Bishop DP et al (2015) Visualising mouse neuroanatomy and function by metal distribution using laser ablation-inductively coupled plasma-mass spectrometry imaging. Chem Sci 6:5383–5383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Penen F, Malherbe J, Isaure MP et al (2016) Chemical bioimaging for the subcellular localization of trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS. J Trace Elem Med Bio 37:62–68

    Article  CAS  Google Scholar 

  • Pennycook SJ (2012) Scanning transmission electron: Z-contrast imaging. In: Kaufmann EN (ed) Characterization of materials. John Wiley & Sons, Inc., Hoboken, pp 1736–1763

    Google Scholar 

  • Pessôa GS, Capelo-Martínez JL, Fdez-Riverola F et al (2016) Laser ablation and inductively coupled plasma mass spectrometry focusing on bioimaging from elemental distribution using MatLab software: a practical guide. J Anal At Spectrom 31:832–840

    Article  CAS  Google Scholar 

  • Pornwilard MM, Merle U, Weiskirchen R et al (2013) Bioimaging of copper deposition in Wilson's diseases mouse liver by laser ablation inductively coupled plasma mass spectrometry imaging (LA–ICP–MSI). Int J Mass Spectrom 354:281–287

    Google Scholar 

  • Pozebon D, Dressler VL, Mesko MF (2010) Bioimaging of metals in thin mouse brain section by laser ablation inductively coupled plasma mass spectrometry: novel online quantification strategy using aqueous standards. J Anal At Spectrom 25:1739–1744

    Article  CAS  Google Scholar 

  • Pozebon D, Scheffler GL, Dressler VL (2017) Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) for biological sample analysis: a follow-up review. J Anal At Spectrom 32:890–919

    Article  CAS  Google Scholar 

  • Pugh JAT, Cox AG, McLeod CW et al (2011) A novel calibration strategy for analysis and imaging of biological thin sections by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 26:1667–1673

    Article  CAS  Google Scholar 

  • Qin ZY, Caruso JA, Lai B et al (2011) Trace metal imaging with high spatial resolution: applications in biomedicine. Metallomics 3(1):28–37

    Article  PubMed  CAS  Google Scholar 

  • Quintana C, Bellefqih S, Laval JY et al (2006) Study of the localization of iron, ferritin, and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. J Struct Biol 153:42–54

    Article  PubMed  CAS  Google Scholar 

  • Quintana C, Wu T, Delatour B, Dhenain M et al (2007) Morphological and chemical studies of pathological human and mice brain at the subcellular level: correlation between light, electron, and NanoSIMS microscopies. Microsc Res Tech 70:281–289

    Article  PubMed  CAS  Google Scholar 

  • Ranaldi MM, Gagnon MM (2009) Accumulation of cadmium in the otoliths and tissues of juvenile pink snapper (Pagrus auratus Forster) following dietary and waterborne exposure. Comp Biochem Phys C Toxicol Pharmacol 150(4):421–427

    Article  CAS  Google Scholar 

  • Ryan CG, Siddons DP, Moorhead G et al (2009) High-throughput X-ray fluorescence imaging using a massively parallel detector array, integrated scanning and real-time spectral deconvolution. 9th international conference on X-ray microscopy. J Phys Conf Ser 186(1):012013–012015

    Article  CAS  Google Scholar 

  • Reifschneider O, Wehe CA, Diebold K et al (2013a) Elemental bioimaging of haematoxylin and eosin-stained tissues by laser ablation ICP–MS. J Anal At Spectrom 28:989–993

    Article  CAS  Google Scholar 

  • Reifschneider O, Wehe CA, Raj I et al (2013b) Quantitative bioimaging of platinum in polymer embedded mouse organs using laser ablation ICP–MS. Metallomics 5:1440–1447

    Article  PubMed  CAS  Google Scholar 

  • Reifschneider O, Wentker KS, Strobel K et al (2015) Elemental bioimaging of thulium in mouse tissues by laser ablation–ICPMS as a complementary method to heteronuclear proton magnetic resonance imaging for cell tracking experiments. Anal Chem 87(8):4225–4230

    Article  PubMed  CAS  Google Scholar 

  • Risco C, Sanmartın-Conesa E, Tzeng WP et al (2012) Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy. Structure 20(5):759–766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruiz FA, Marchesini N, Seufferheld M et al (2001) The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem 276(49):46196–46203

    Article  PubMed  CAS  Google Scholar 

  • Santos MC, Wagner M, Wu B (2009) Biomonitoring of metal contamination in a marine prosobranch snail (Nassarius reticulatus) by imaging laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Talanta 80(2):428–433

    Article  PubMed  CAS  Google Scholar 

  • Sarret G, Smits EAHP, Michel HC et al (2013) Use of synchrotron-based techniques to elucidate metal uptake and metabolism in plants. Adv Agron 119:1–82

    Article  CAS  Google Scholar 

  • Scharlach C, Müller L, Wagner S et al (2016) LA–ICP–MS allows quantitative microscopy of europium-doped iron oxide nanoparticles and is a possible alternative to ambiguous prussian blue iron staining. J Biomed Nanotechnol 12:1001–1010

    Article  PubMed  CAS  Google Scholar 

  • Scotuzzi M, Kuipers J, Wensveen DI et al (2017) Multi-color electron microscopy by element-guided identification of cells, organelles and molecules. Sci Rep 7:45970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sela H, Karpas Z, Zoriy M et al (2007) Biomonitoring of hair samples by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Int J Mass Spectrom 261(2–3):199–207

    Article  CAS  Google Scholar 

  • Sela H, Karpas Z, Cohen H et al (2011) Preparation of stable standards of biological tissues for laser ablation analysis. Int J Mass Spectrom 307(1–3):142–148

    Article  CAS  Google Scholar 

  • Shariatgorji M, Nilsson A, Bonta M et al (2016) Direct imaging of elemental distributions in tissue sections by laser ablation mass spectrometry. Methods 104:86–92

    Article  PubMed  CAS  Google Scholar 

  • Smulders S, Larue C, Sarret G et al (2015) Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung exposure in mice. Toxicol Lett 238(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Somlyo AP (1984) Compositional mapping in biology: X rays and electrons. J Ultra Mol Struct Res 88(2):135142

    Google Scholar 

  • Sousa AA, Aronova MA, Kim YC et al (2007) On the feasibility of visualizing ultra small gold labels in biological specimens by STEM tomography. J Struct Biol 159(3):507–522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sousa AA, Leapman RD (2012) Development and application of STEM for the biological sciences. Ultramicroscopy 123:38–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sparks CJ Jr, Raman S, Yakel HL et al (1977) Search with SR for super heavy elements in giant-halo inclusions. Phys Rev Lett 38:205–208

    Article  CAS  Google Scholar 

  • Sparks CJ Jr (1980) X-ray fluorescence microprobe for chemical analysis. In: Winick H, Doniach S (eds) Synchrotron radiation research. Springer, USA., New York. Chapter 14, pp 459–512

    Google Scholar 

  • Thompson RF, Walker M, Siebert A et al (2016) An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100:3–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Todoli JL, Mermet JM (1998) Study of polymer ablation products obtained by ultraviolet laser ablation — inductively coupled plasma atomic emission spectrometry. Spectrochim Acta B 53(12):1645–1656

    Article  Google Scholar 

  • Uerlings R, Matusch A, Weiskirchen R (2016) Reconstruction of laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) spatial distribution images in Microsoft Excel 2007. Int J Mass Spectrom 395:27–35

    Article  CAS  Google Scholar 

  • Van Malderen SJM, Managh AJ, Sharp BL et al (2016a) Recent developments in the design of rapid response cells for laser ablation–inductively coupled plasma–mass spectrometry and their impact on bioimaging applications. J Anal At Spectrom 31:423–439

    Article  CAS  Google Scholar 

  • Van Malderen SJM, Vergucht E, Rijcke M et al (2016b) Quantitative determination and subcellular imaging of cu in single cells via laser ablation–ICP–mass spectrometry using high-density microarray gelatin standards. Anal Chem 88(11):5783–5789

    Article  PubMed  CAS  Google Scholar 

  • Van Schooneveld MM, Gloter A, Stephan O et al (2010) Imaging and quantifying the morphology of an organic-inorganic nanoparticle at the sub-nanometre level. Nature Nanotechnol 5(7):538–544

    Article  CAS  Google Scholar 

  • Wang HAO, Grolimund D, Giesen C et al (2013) Fast chemical imaging at high spatial resolution by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 85(21):10107–10116

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Brown R, Gray DJ (1994) Application of laser ablation–ICPMS to the spatially resolved micro-analysis of biological tissue. Appl Spectrosc 48(11):1321–1325

    Article  CAS  Google Scholar 

  • Watanabe M, Williams DB, Tomokiyo Y (2003) Comparison of detectability limits for elemental mapping by EF-TEM and STEM-XEDS. Micron 34(2–5):173–183

    Article  PubMed  CAS  Google Scholar 

  • Waugh AR, Bayly AR, Anderson K (1984) The application of liquid metal ion sources to SIMS. Vacuum 34:103–106

    Article  CAS  Google Scholar 

  • Wedlock LE, Berners-Price SJ (2011) Recent advances in mapping the sub-cellular distribution of metal-based anticancer drugs. Aust J Chem 64:692–704

    Article  CAS  Google Scholar 

  • Wedlock LE, Kilburn MR, Cliff JB et al (2011) Visualising gold inside tumour cells following treatment with an antitumour gold(I) complex. Metallomics 3(9):917–925

    Article  PubMed  CAS  Google Scholar 

  • Wedlock LE, Kilburn MR, Liu R et al (2013) NanoSIMS multi-element imaging reveals internalisation and nucleolar targeting for a highly-charged polynuclear platinum compound. Chem Commun 49:6944–6946

    Article  CAS  Google Scholar 

  • Williams P (1985) Secondary ion mass spectrometry. Ann Rev Mater Sci 15:517–548

    Article  CAS  Google Scholar 

  • Williams DB, Carter CB (2009) The transmission electron microscope. In: Transmission electron microscopy. A textbook for materials science. Springer, USA., New York. Chapter 1, pp 3–22

    Chapter  Google Scholar 

  • Winograd N, Bloom A (2015) Sample preparation for 3D SIMS chemical imaging cells. In: He L (ed) Mass spectrometry imaging of small molecules. Springer, USA., New York. Chapter 2, pp 9–19

    Google Scholar 

  • Wong JG, Wilkinson LE, Chen SW et al (1989) Quantitative elemental imaging in the analytical electron microscope with biological applications. Scanning 11:12–19

    Article  CAS  Google Scholar 

  • Wu B, Chen Y, Becker JS (2013a) Study of essential element accumulation in the leaves of a Cu-tolerant plant Elsholtzia splendens after Cu treatment by imaging laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Anal Chim Acta 633(2):165–172

    Article  CAS  Google Scholar 

  • Wu S, Kim AM, Bleher R et al (2013b) Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope. Ultramicroscopy 128:24–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu M, Bijoux H, Gonzalez P et al (2014a) Investigating the response of cuproproteins from oysters (Crassostrea gigas) after waterborne copper exposure by metallomic and proteomic approaches. Metallomics 6(2):338–346

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Frelon S, Simon O et al (2014b) Non-denaturating isoelectric focusing gel electrophoresis for uranium-protein complexes quantitative analysis with LA–ICP MS. Anal Bioanal Chem 406(4):1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Yumoto S, Kakimi S, Ohsaki A et al (2009) Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer’s disease. J Inorg Biochem 103(11):1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Zarco-Fernandez S, Coto-García AM, Munoz-Olivas R et al (2016) Bioconcentration of ionic cadmium and cadmium selenide quantum dots in zebrafish larvae. Chemosphere 148:328–335

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Land W, Lee S et al (2005) Electron tomography of degenerating neurons in mice with abnormal regulation of iron metabolism. J Struct Biol 150(2):144–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zoriy MV, Kayser A, Izmer A et al (2005) Determination of uranium isotopic ratios in biological samples using laser ablation inductively coupled plasma double focusing sector field mass spectrometry with cooled ablation chamber. Int J Mass Spectrom 242(2–3):297–302

    Article  CAS  Google Scholar 

  • Zoriy MV, Dehnhardt M, Reifenberger G et al (2006) Imaging of Cu, Zn, Pb and U in human brain tumor resections by laser ablation inductively coupled plasma mass spectrometry. Int J Mass Spectrom 257(1–3):27–33

    Article  CAS  Google Scholar 

  • Zoriy MV, Dehnhardt M, Matusch A et al (2008) Comparative imaging of P, S, Fe, Cu, Zn and C in thin sections of rat brain tumor as well as control tissues by laser ablation inductively coupled plasma mass spectrometry. Spectrochim Acta B 63(3):375–382

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dressler, V.L., Müller, E.I., Pozebon, D. (2018). Bioimaging Metallomics. In: Arruda, M. (eds) Metallomics. Advances in Experimental Medicine and Biology(), vol 1055. Springer, Cham. https://doi.org/10.1007/978-3-319-90143-5_7

Download citation

Publish with us

Policies and ethics