Skip to main content

Dark Septate Endophytes (DSE) in Boreal and Subarctic Forests

  • Chapter
  • First Online:
Endophytes of Forest Trees

Part of the book series: Forestry Sciences ((FOSC,volume 86))

Abstract

Dark septate endophytes (DSE) are root-associated fungi that inhabit plant roots and soil in a wide variety of ecosystems and host plants worldwide. They are recognized by their distinctive growth habit inside healthy roots, although the taxonomic and functional variety of the fungi forming the associations is high. DSE fungi have the potential to act as beneficial symbionts of the trees and other plants, but the evidence is unequivocal. They grow in the roots together with mycorrhizal- and other root-associated fungi, but the relationships between these fungal groups are unknown. Boreal and subarctic forests constitute a continuous belt in the cool and cold areas of the Northern Hemisphere. Roughly, boreal forests are characterized by coniferous trees. The subarctic is most distinctive in the Northernmost Europe where mountain birch (Betula pubescens ssp. czerepanovii) forests form a continuous forest cover near the Arctic treeline. In this chapter, information from studies on DSE fungi in the boreal and subarctic forests is compiled and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ITS:

Internal transcribed spacer

AFLP:

Amplified fragment length polymorphism

RFLP:

Restriction fragment length polymorphism

PAC:

Phialocephala fortinii s.l. – Acephala applanata group

References

  • Addy HD, Hambleton S, Currah RS (2000) Distribution and molecular characterization of the root endophyte Phialocephala fortinii along an environmental gradient in the boreal forest of Alberta. Mycol Res 104:1213–1221

    Article  CAS  Google Scholar 

  • Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13

    Article  Google Scholar 

  • Ahlich K, Sieber TN (1996) The profusion of dark septate endophytic fungi in non-ectomycorrhizal fine roots of forest trees and shrubs. New Phytol 132:259–270

    Article  Google Scholar 

  • Barrow JR, Aaltonen RE (2001) Evaluation of the internal colonization of Atriplex canescens (Pursh.) Nutt. roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza 11:199–205

    Article  Google Scholar 

  • Bent E, Kiekel P, Brenton R, Taylor DL (2011) Root-associated ectomycorrhizal fungi shared by various boreal forest seedlings naturally regenerating after a fire in interior Alaska and correlation of different fungi with host growth responses. Appl Env Microbiol 77:3351–3359

    Article  CAS  Google Scholar 

  • Björbäkmo MFM, Carlsen T, Brysting A, VrÃ¥lstad T, Hoiland K, Ugland KI, Geml J, Schumacher T, Kauserud H (2010) High diversity of root associated fungi in both alpine and arctic Dryas octopetala. BMC Plant Biol 10:244

    Article  Google Scholar 

  • Blaalid R, Davey ML, Kauserud H, Carlsen T, Halvorsen R, Høiland K, Eidesen PB (2014) Arctic root-associated fungal community composition reflects environmental filtering. Mol Ecol 23:649–659

    Article  PubMed  Google Scholar 

  • Bodeker ITM, Lindahl BD, Olson Ã…, Clemmensen KE (2016) Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently. Funct Ecol 30:1967–1978

    Article  Google Scholar 

  • Caldwell BA, Jumpponen A, Trappe JM (2000) Utilization of major detrital substrates by dark-septate, root endophytes. Mycologia 92:230–232

    Article  Google Scholar 

  • Currah RS, Van Dyk M (1986) A survey of some perennial vascular plant species native to Alberta for occurrence of mycorrhizal fungi. Can Field Nat 100:330–342

    Google Scholar 

  • DeBellis T, Kernaghan G, Bradley R, Widden P (2006) Relationship between stand composition and ectomycorrhizal community structure in boreal mixed-wood forest. Microb Ecol 52:114–126

    Article  CAS  PubMed  Google Scholar 

  • Grünig CR, Sieber TN (2005) Molecular and phenotypic description of the widespread root symbiont Acephala applanata gen. et sp. nov. formerly know as dark-septate endophyte Type 1. Mycologia 97:628–640

    Article  PubMed  Google Scholar 

  • Grünig CR, Duò A, Sieber TN, Holdenrieder O (2008) Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortinii s.l.—Acephala applanata species complex. Mycologia 100:47–67

    Article  PubMed  Google Scholar 

  • Hambleton S, Currah RS (1997) Fungal endophytes from the roots of alpine and boreal Ericaceae. Can J Bot 75:1570–1581

    Article  Google Scholar 

  • Harney SK, Rogers SO, Wang CJK (1997) Molecular characterization of dematiaceous root endophytes. Mycol Res 101:1397–1404

    Article  CAS  Google Scholar 

  • Haselwandter K (1979) Mycorrhizal status of ericaceous plants in alpine and subalpine areas. New Phytol 83:427–431

    Article  Google Scholar 

  • Haselwandter K (1987) Mycorrhizal infection and possible ecological significance in climatically and nutritionally stressed alpine plant communities. Angew Botanik 61:107–114

    Google Scholar 

  • Haselwandter K, Read DJ (1980) Fungal associations of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia 45:57–62

    Article  CAS  PubMed  Google Scholar 

  • Haselwandter K, Read DJ (1982) The significance of root-fungus association in two Carex species in high-alpine plant communities. Oecologia 53:352–354

    Article  CAS  PubMed  Google Scholar 

  • Hashiba T, Narisawa K (2005) The development and endophytic nature of the fungus Heteroconium chaetospira. FEMS Microbiol Ecol 252:191–196

    Article  CAS  Google Scholar 

  • Hengodage NBW, Ruotsalainen AL, Markkola A, Häggman H (2017) Root fungal colonisations of the understory grass Deschampsia flexuosa after top-canopy harvesting. Plant Soil 414:171–180

    Article  CAS  Google Scholar 

  • Huusko K, Tarvainen O, Saravesi K, Pennanen T, Fritze H, Kubin E, Markkola A (2015) Short.term impacts of energy wood harvesting on ectomycorrhizal fungal communities of Norway spruce saplings. ISME J 9:581–591

    Article  CAS  PubMed  Google Scholar 

  • Huusko K, Ruotsalainen AL, Markkola AM (2017) A shift from arbuscular mycorrhizal to dark septate endophytic colonization in Deschampsia flexuosa roots occurs along primary successional gradient. Mycorrhiza 27:129–138

    Article  CAS  PubMed  Google Scholar 

  • Jepsen JU, Hagen SB, Ims RA, Yoccoz NG (2008) Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol 77:257–264

    Article  PubMed  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal? Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark-septate root endophytes: a review with special reference to facultative biotrophic symbiosis. New Phytol 140:295–310

    Article  Google Scholar 

  • Jumpponen A, Mattson KG, Trappe JM (1998) Mycorrhizal functioning of Phialocephala fortinii: interactions with soil nitrogen and organic matter. Mycorrhiza 7:261–265

    Article  CAS  PubMed  Google Scholar 

  • Jumpponen A, Herrera J, Porras-Alfaro A, Rudgers J (2017) Biogeography of root-associated fungal endophytes. In: Tedersoo L (ed) Biogeography of mycorrhizal symbiosis. Springer International Publishing, pp 195–222

    Chapter  Google Scholar 

  • Karst J, Erbilgin N, Pec GJ, Cigan PW, Najar A, Simard SW, Cahill JF Jr (2015) Ectomycorrhizal fungi mediate indirect effects of a bark beetle outbreak on secondary chemistry and establishment of pine seedlings. New Phytol. https://doi.org/10.1111/nph.13492

    Article  PubMed  Google Scholar 

  • Kauppinen M, Raveala K, Wäli PR, Ruotsalainen AL (2014) Contrasting preferences of arbuscular mycorrhizal and dark septate fungi colonizing boreal and subarctic Avenella flexuosa. Mycorrhiza 24:171–177

    Article  CAS  PubMed  Google Scholar 

  • Kernaghan G, Patriquin G (2011) Host associations between fungal root endophytes and boreal trees. Microb Ecol 62:460–473

    Article  PubMed  Google Scholar 

  • Kernaghan G, Patriquin (2015) Diversity and host preference of fungi co-inhabiting Cenococcum mycorrhizae. Fungal Ecol 17: 84–95

    Article  Google Scholar 

  • Knapp DG, Kovács GM, Zajta E, Groenewald JZ, Crous PW (2015) Dark septate endophyte pleosporalean genera from semiarid areas. Persoonia 35:87–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahlali R, McGregor L, Song T, Gossen BD, Narisawa K, Peng G (2014) Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin Biosynthesis. PLoS ONE 9:e94144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazaruk LW, Macdonald SE, Kernaghan G (2008) The effect of mechanical site preparation on ectomycorrhizae of planted white spruce seedlings in conifer-dominated boreal mixedwood forest. Can J For Res 38:2072–2079

    Article  CAS  Google Scholar 

  • Lehtonen J, Heikkinen K (1995) On the recovery of mountain birch after Epirrita damage in Finnish Lapland, with a particular emphasis on reindeer grazing. Ecoscience 2:349–356

    Article  Google Scholar 

  • MacDonald GM, Gajewski K (1992) The northern treeline of Canada. In: Janelle D G (ed) Geographical snapshots of North America. Guilford Press, pp 34–37

    Google Scholar 

  • Mahmoud RS, Narisawa K (2013) A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen conditions. PLoS ONE 8:e78746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonizing dark septate endophytes. Stud Mycol 53:173–189

    Article  Google Scholar 

  • Mayerhofer MS, Kernaghan G, Harper KA (2013) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128

    Article  PubMed  Google Scholar 

  • Menkis A, Allmer J, Vasiliauskas R, Lygis V, Stenlid J, Finlay R (2004) Ecology and molecular characterization of dark septate fungi from roots, living stems, coarse and fine woody debris. Mycol Res 108:965–973

    Article  CAS  PubMed  Google Scholar 

  • Narisawa K, Hambleton S, Currah RS (2007) Heteroconium chaetospira, a dark septate root endophyte allied to the Herpotrichiellaceae (Chaetothyriales) obtained from come forest soil samples in Canada using bait plants. Mycoscience 48:274–281

    Article  Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    Article  CAS  PubMed  Google Scholar 

  • Newsham KK, Upson R, Read DJ (2009) Mycorrhiza and dark septate endophytes in Polar Regions. Fungal Ecol 2:10–20

    Article  Google Scholar 

  • Olsrud M, Carlsson BÃ…, Svensson BM, Michelsen A, Melillo JM (2010) Responses of root fungal colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory. Global Change Biol 16:1820–1829

    Article  Google Scholar 

  • Piercey MM, Graham SW, Currah RS (2004) Patterns of genetic variation in Phialocephala fortinii across a broad latitudinal transect in Canada. Mycol Res 108:955–964

    Article  CAS  PubMed  Google Scholar 

  • Poosakkannu A, Nissinen R, Kytöviita M-M (2015) Culturable endophytic microbial communities in the circumpolar grass, Deschampsia flexuosa in a sub-Arctic inland primary succession are habitat and growth stage specific. Environ Microbiol Rep 7:111–122

    Article  CAS  PubMed  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  CAS  PubMed  Google Scholar 

  • Postma JWM, Olsson PA, Falkengren-Grerup U (2007) Root colonisation by arbuscular mycorrhizal, fine endophytic and dark septate fungi across a pH gradient in acid beech forests. Soil Biol Biochem 39:400–408

    Article  CAS  Google Scholar 

  • Queloz V, Sieber TN, Holdenrieder O, McDonald BA, Grünig CR (2011) No biogeographical pattern for a root-associated species complex. Glob Ecol Biogeogr 20:160–169

    Article  Google Scholar 

  • Read DJ, Haselwandter K (1981) Observations of the mycorrhizal status of some alpine plant communities. New Phytol 88:341–352

    Article  Google Scholar 

  • Reininger V, Grünig CR, Sieber TN (2012) Host species and strain combination determine growth reduction of spruce and birch seedlings colonized by root-associated dark septate endophytes. Env Microbiol 14:1064–1076

    Article  Google Scholar 

  • Rodriquez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes, diversity and functional roles. New Phytol 182:314–330

    Article  Google Scholar 

  • Ruotsalainen AL, Markkola AM, Kozlov MV (2007) Root fungal colonisation in Deschampsia flexuosa: effects of pollution and neighbouring trees. Environ Poll 147:723–728

    Article  CAS  Google Scholar 

  • Ruotsalainen AL, Markkola AM, Kozlov MV (2010) Birch effects on root fungal colonisation of crowberry are uniform along different environmental gradients. Basic Appl Ecol 11:459–467

    Article  Google Scholar 

  • Saravesi K, Aikio S, Wäli PR, Ruotsalainen AL, Kaukonen M, Huusko K, Suokas M, Brown SP, Jumpponen A, Tuomi J, Markkola A (2015) Moth outbreaks alter root-associated fungal communities in subarctic mountain birch forests. Microb Ecol 69:788–797

    Article  CAS  PubMed  Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Sieber TN, Grünig CR (2013) Fungal root endophytes. In: Eshel A, Beeckman T (eds) Plant roots—the hidden half. Boca Raton, FL, USA. CRC Press, Taylo & Francis Group, 38.1–38.49

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Chapter  Google Scholar 

  • Stoyke G, Currah RS (1991) Endophytic fungi from the mycorrhiza of alpine ericoid plants. Can J Bot 69:347–352

    Article  Google Scholar 

  • Stoyke G, Egger K, Currah RS (1992) Characterization of sterile endophytic fungi from the mycorrhizae of subalpine plants. Can J Bot 70:2009–2016

    Article  Google Scholar 

  • Summerbell R (2005) Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions. Stud Mycol 53:121–145

    Article  Google Scholar 

  • Taylor DL, Herriott IC, Stone KE, McFarland JW, Booth MG, Leigh MB (2010) Structure and resilience of fungal communities in Alaskan boreal forest soils. Can J For Res 40:1288–1301

    Article  CAS  Google Scholar 

  • Tejesvi MV, Ruotsalainen AL, Markkola AM, Pirttilä AM (2010) Root endophytes along a primary successional gradient in northern Finland. Fungal Divers 41:125–134

    Article  Google Scholar 

  • Tejesvi MV, Sauvola T, Pirttilä AM, Ruotsalainen AL (2013) Neighboring Deschampsia flexuosa and Trientalis europaea harbor contrasting root fungal endophytic communities. Mycorrhiza 23:1–10

    Article  PubMed  Google Scholar 

  • Terhonen E, Keriö S, Sun H, Asiegbu FO (2014) Endophytic fungi of Norway spruce roots in boreal pristine mire, drained peatland and mineral soil and their inhibitory effect on Heterobasidion parviporum in vitro. Fungal Ecol 9:17–26

    Article  Google Scholar 

  • Upson R, Read DJ, Newsham KK (2009) Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza 20:1–11

    Article  PubMed  Google Scholar 

  • Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184

    Article  CAS  PubMed  Google Scholar 

  • Väre H, Vestberg M, Eurola S (1992) Mycorrhiza and root-associated fungi in Spitsbergen. Mycorrhiza 1:93–104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Liisa Ruotsalainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruotsalainen, A.L. (2018). Dark Septate Endophytes (DSE) in Boreal and Subarctic Forests. In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-89833-9_5

Download citation

Publish with us

Policies and ethics