Skip to main content

Biocontrol Potential of Forest Tree Endophytes

  • Chapter
  • First Online:
Endophytes of Forest Trees

Part of the book series: Forestry Sciences ((FOSC,volume 86))

Abstract

In the natural forest environment, the spread of pathogens may have dramatic effects on ecosystem functioning. To successfully control devastating forest pathogens, application of endophytes as biocontrol agents is an emerging area of research. There are several ways by which endophytic microorganisms can protect their tree hosts against pathogens. Endophytes promote plant growth by producing beneficial secondary metabolites (e.g. phytohormones) or providing nutrients (e.g. phosphorus). Endophytes can compete with pathogens and herbivores by successfully utilizing available substrates (colonization of shared niche can restrict pathogen invasion), or endophytes can produce antagonistic metabolites. Endophytes can enhance plant resistance by triggering and priming host defensive reactions. Endophytes could provide several opportunities for application in integrated pest management (IPM) to gain sustainable forestry practices. To utilize endophytes as biocontrol agents, the mechanisms behind the possible mode of action should be determined. Novel advances in cultivation-independent techniques including next generation sequencing technology (NGS), association analyses and network inference modelling will greatly facilitate identification of endophytes and unravel potential beneficial functions of endophytic communities. A further understanding of these mechanisms could help to minimize the use of environmental harming chemicals in plant and forest tree protection. We propose simple guidelines that could facilitate the use of fungal endophytes as biocontrol agents and simultaneously study their ecological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACC:

1-aminocyclopropane-1-carboxylic acid

AHL:

N-acyl-L-homoserine lactone

BCAs:

Biocontrol agents

BHI:

Brain Heart infusion medium

C-endophytes:

Clavicipitaceous endophytes

DED:

Dutch elm tree disease

DSEs:

Dark septate endophytes

dsRNA:

Double-stranded RNA

EtOAc:

Ethyl acetate

HPLC:

High performance liquid chromatography

IAA:

Indole-3-acetic acid

IPM:

Integrated pest management

ISR:

Induced systemic resistance

ITS:

Internal transcribed spacer

JA:

Jasmonic acid

K:

Potassium

KBA:

King’s B agar

LA:

Luria agar

LC-MS:

Liquid chromatography–mass spectrometry

MEA:

Malt extract agar

MS:

Mass spectrometry

MWAS:

Metagenome-wide association studies

N:

Nitrogen

NC-endophytes:

Non-clavicipitaceous endophytes

NGS:

Next generation sequencing

NMR:

Nuclear magnetic resonance spectroscopy

P:

Phosphorus

PAC:

Phialocephala fortinii s.l.- Acephala applanata Species complex

PDA:

Potato dextrose agar

PGPR:

Plant growth-promoting rhizobacteria

PPP:

Plant protection product

PR proteins:

Pathogenesis-related proteins

RFLP:

Restriction fragment length polymorphism

SA:

Salicylic acid

SAR:

Systemic acquired resistance

TSA:

Tryptic soy agar

VWO:

Verticillium wilt of olive trees

YPDA:

Yeast Peptone Dextrose Agar

References

  • Abarenkov K, Nilsson RH, Larsson KH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AF, Tedersoo L, Ursing BM, Vrålstad T, Liimatainen K, Peintner U, Kõljalg U (2010) The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  • Adomas A, Eklund M, Johansson M, Asiegbu FO (2006) Identification and analysis of differentially expressed cDNA’s during non-self competitive interaction between Phlebiopsis gigantea and Heterobasidion parviporum. FEMS Microbiol Ecol 57:26–39

    Article  PubMed  CAS  Google Scholar 

  • Ahlholm JU, Helander M, Henriksson J, Metzler M, Saikkonen K (2002) Environmental conditions and host genotype direct genetic diversity of Venturia ditricha, a fungal endophyte of birch trees. Evolution 56(8):1566–1573

    Article  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ardanov P, Sessitsch A, Haggman H, Kozyrovska N, Pirttilä AM (2012) Methylobacterium-Induced Endophyte Community Changes Correspond with Protection of Plants against Pathogen Attack. Plos One 7(10)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105:1502–1507

    Article  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. P Natl Acad Sci USA 100:15649–15654

    Article  CAS  Google Scholar 

  • Arnold AE (2002) Neotropical fungal endophytes: diversity and ecology [Doctoral dissertation]. University of Arizona, Tucson, p 337

    Google Scholar 

  • Asiegbu FO, Adomas A, Stenlid J (2005) Conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. s.l. Mol Plant Pat 6:395–409

    Article  Google Scholar 

  • Avis TJ, Belanger RR (2001) Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl Environ Microb 67(2):956–960

    Article  CAS  Google Scholar 

  • Backman PA, Sikora RA (2008) Endophytes: An emerging tool for biological control. Biol Control 46(1):1–3

    Article  Google Scholar 

  • Backman PA, Wilson M, Murphy JF (1997) Bacteria for biological control of plant diseases. In: Rechcigl NA, Rechcigl JE (eds) Environmentally safe approaches to plant disease control. CRC/Lewis Press, Boca Raton, FL, pp 95–109

    Google Scholar 

  • Bacon CW, Porter JK, Robbins JD, Luttrell ES (1977) Epichloë typhina from toxic tall fescue grasses. Appl Environ Microb 34:576–581

    CAS  Google Scholar 

  • Balint M, Tiffin P, Hallstrom B, O’Hara RB, Olson MS, Fankhauser JD, Piepenbring M Schmitt I (2013) Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). Plos One 8(1)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microb 72(11):7246–7252

    Article  CAS  Google Scholar 

  • Benhamou N, Rey P, Cherif M, Hockenhull J, Tirilly Y (1997) Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology 87(1):108–122

    Article  PubMed  CAS  Google Scholar 

  • Bennett C, Aime MC, Newcombe G (2011) Molecular and pathogenic variation within Melampsora on Salix in western North America reveals numerous cryptic species. Mycologia 103:1004–1018

    Article  PubMed  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2006) GenBank. Nucleic Acids Res 34:D16–D20

    Article  PubMed  CAS  Google Scholar 

  • Bills GF, Polyshook JD (1992) Recovery of endophytic fungi from Chmiuecypuris lhyuiiies. Sydowia 44:1–12

    Google Scholar 

  • Blumenstein K, Albrectsen BR, Martin JA, Hultberg M, Sieber TN, Helander M, Witzell J (2015) Nutritional niche overlap potentiates the use of endophytes in biocontrol of a tree disease. Biocontrol 60(5):655–667

    Article  Google Scholar 

  • Brooks DS, Gonzale CF, Appel DN, Filer TH (1994) Evaluation of endophytic bacteria as potential biological-control agents for oak wilt. Biol Control 4(4):373–381

    Article  Google Scholar 

  • Budge SP, Whipps JM (2001) Potential for integrated control of Sclerotinia sclerotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Phytopathology 91(2):221–227

    Article  PubMed  CAS  Google Scholar 

  • Calhoun LA, Findlay JA, Miller JD, Whitney NJ (1992) Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycol Res 96:281–286

    Article  Google Scholar 

  • Campbell R (1989) Biological control of microbial plant pathogens, Cambridge University Press, 218 pp

    Google Scholar 

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457

    Article  PubMed  CAS  Google Scholar 

  • Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244(2):341–345

    Article  PubMed  CAS  Google Scholar 

  • Cazorla FM, Mercado-Blanco J (2016) Biological control of tree and woody plant diseases: an impossible task? Biocontrol 61(3):233–242

    Article  Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60(1):2–14

    Article  Google Scholar 

  • Cheng YL, McNally DJ, Labbe C, Voyer N, Belzile F, Belanger RR (2003) Insertional mutagenesis of a fungal biocontrol agent led to discovery of a rare cellobiose lipid with antifungal activity. Appl Environ Microbiol 69(5):2595–2602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chernin L, Chet I (2002) Microbial enzymes in the biocontrol of plant pathogens and pests. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. Markel Dekker Inc, New York, pp 171–225

    Google Scholar 

  • Chimwamurombe PM, Grönemeyer JL, Reinhold-Hurek B (2016) Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol Ecol 92(6):p.fiw083

    Article  PubMed  CAS  Google Scholar 

  • Christian N, Herre EA, Mejía LC, Clay K (2017) Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proc Roy Soc B Biol Sci 12:284

    Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22

    Google Scholar 

  • De Beer EJ, Sherwood MB (1945) The Paper-Disc Agar-Plate method for the assay of antibiotic substances. J Bacteriol 50:459–467

    PubMed  PubMed Central  Google Scholar 

  • Desprez-Loustau ML, Aguayo J, Dutech C, Hayden KJ, Husson C, Jakushkin B, Marcais B, Piou D, Robin C, Vacher C (2016) An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow Ann For Sci 73(1):45–67

    Google Scholar 

  • Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66(7):2804–2810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dowkiw A, Bastien C (2004) Characterization of two major genetic factors controlling quantitative resistance to Melampsora larici-populina leaf rust in hybrid poplars: strain specificity, field expression, combined effects, and relationship with a defeated qualitative resistance gene. Phytopathology 94:1358–1367

    Article  PubMed  CAS  Google Scholar 

  • Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA gene phylogenies reveal uncharacterized fungal phylotypes. Fungal Divers 23:121–138

    Google Scholar 

  • Duplessis S, Major I, Martin F, Séguin A (2009) Poplar and pathogen interactions: insights from populus genome-wide analyses of resistance and defense gene families and gene expression profiling. Crit Rev Plant Sci 28:309–334

    Article  CAS  Google Scholar 

  • Eaton CJ, Cox MP, Ambrose B, Becker M, Hesse U, Schardl CL, Scott B (2010) Disruption of signaling in a fungal-grass symbiosis leads to pathogenesis. Plant Physiol 153:1780–1794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. Biocontrol 46(4):387–400

    Article  Google Scholar 

  • Elad Y, Kapat A (1999) The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol 105(2):177–189

    Article  CAS  Google Scholar 

  • Eljounaidi K, Lee SK, Bae H (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases—Review and future prospects. Biol Control 103:62–68

    Article  Google Scholar 

  • Evans H, Holmes K, Thomas S (2003) Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycol Prog 2:149–160

    Article  Google Scholar 

  • Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JB, Condron MA, Teplow DB, Sears J, Maranta M, Hunter M (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 150(4):785–793

    Article  PubMed  CAS  Google Scholar 

  • Feau N, Vialle A, Allaire M, Tanguay P, Joly DL, Frey P, Callan BE, Hamelin RC (2009) Fungal pathogen (mis-) identifications: a case study with DNA barcodes on Melampsora rusts of aspen and white poplar. Mycol Res 113:713–724

    Article  PubMed  CAS  Google Scholar 

  • Filonow AB (1998) Role of competition for sugars by yeasts in the biocontrol of gray mold of apple. Biocontrol Sci Techn 8(2):243–256

    Article  Google Scholar 

  • Findlay JA, Li G, Miller JD, Womiloju TO (2003) Insect toxins from spruce endophytes. Can J Chem 81:284–292

    Article  CAS  Google Scholar 

  • Food Agric. Organ. U. N. (FAO) (2009) State of the world’s forests 2009—main report. Rome: FAO

    Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176(6):421–426

    Article  PubMed  CAS  Google Scholar 

  • Frasz SL, Walker AK, Nsiama TK, Adams GW, Miller JD (2014) Distribution of the foliar fungal endophyte Phialocephala scopiformis and its toxin in the crown of a mature white spruce tree as revealed by chemical and qPCR analyses. Can J For Res 44:1138–1143

    Article  CAS  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  PubMed  CAS  Google Scholar 

  • Fröhlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212

    Article  Google Scholar 

  • Ganley RJ, Sniezko RA, Newcombe G (2008) Endophyte-mediated resistance against white pine blister rust in Pinus monticola. Forest Ecol Manag 255:2751–2760

    Article  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254

    Article  Google Scholar 

  • Gazis R, Chaverri P (2015) Wild trees in the Amazon basin harbor a great diversity of beneficial endosymbiotic fungi: is this evidence of protective mutualism? Fungal Ecol 17:18–29

    Article  Google Scholar 

  • Giczey G, Kerenyi Z, Fulop L, Hornok L (2001) Expression of cmg1, an exo-beta-1,3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism. Appl Environ Microbiol 67(2):865–871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glick BR (2015) Beneficial plant-bacterial interactions. Springer. 243 pp

    Book  Google Scholar 

  • González-Teuber M (2016) The defensive role of foliar endophytic fungi for a South American tree. AoB Plants 8:plw050

    Article  PubMed  PubMed Central  Google Scholar 

  • Gromovykh TI, Tyulpanova VA, Sadykova VS, Malinovsky AL (2007) Control of root diseases with Trichoderma spp. in forest nurseries of Central Siberia. In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective: case studies from around the world. CAB International, Trowbridge, pp 197–202

    Chapter  Google Scholar 

  • Grünig CR, Duò A, Sieber TN (2006) Population genetic analysis of Phialocephala fortinii s.l. and Acephala applanata in two undisturbed forests in Switzerland and evidence for new cryptic species. Fungal Genet Biol 43:410–421

    Article  PubMed  Google Scholar 

  • Grünig CR, Duò A, Sieber TN, Holdenrieder O (2008) Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortinii s.l.-Acephala applanata species complex. Mycologia 100:47–67

    Article  PubMed  Google Scholar 

  • Grünwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S (2012) Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol 20(3):131–138

    Article  PubMed  CAS  Google Scholar 

  • Guo LD, Hyde KD, Liew EC (2001) Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol Phylogenet Evol 20:1–13

    Article  PubMed  CAS  Google Scholar 

  • Guttman DS, McHardy AC, Schulze-Lefert P (2014) Microbial genome-enabled insights into plant–microorganism interactions. Nat Rev Genet 15(12):797–813

    Article  PubMed  CAS  Google Scholar 

  • Hamilton C, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    Article  Google Scholar 

  • Hanada RE, Pomella AW, Costa HS, Bezerra JL, Loguercio LL, Pereira JO (2010) Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biolo 114:901–910

    Article  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardwood TD, Tomlinson I, Potter CA, Knight JD (2011) Dutch elm disease revisited: past, present and future management in Great Britain. Plant Pathol 60(3):545–555

    Article  Google Scholar 

  • Hartley MJ (2002) Rationale and methods for conserving biodiversity in plantation forests. Forest Ecol Manag 155(1–3):81–95

    Article  Google Scholar 

  • Hibbett DS, Taylor JW (2013) Fungal systematics: is a new age of enlightenment at hand? Nat Rev Microbiol 11:129–133

    Article  PubMed  CAS  Google Scholar 

  • Holmes KA, Schroers H-J, Thomas SE, Evans HC, Samuels GJ (2004) Taxonomy and biocontrol potential of a new species of Trichoderma from the Amazon basin of South America. Mycol Prog 3(199):e210

    Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87(1):4–10

    Article  PubMed  Google Scholar 

  • Hyde K, Soytong K (2007) Understanding microfungal diversity—a critique. Cryptogamie Mycol 28:281–289

    Google Scholar 

  • Hyde K, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Izumi H (2011) Diversity of endophytic bacteria in forest trees. In: Pirttilä A, Frank A (eds) Endophytes of forest trees. Forestry sciences, vol 80, Springer, Dordrecht, pp 95–105

    Chapter  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal? Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Jungqvist G, Oni SK, Teutschbein C, Futter MN (2014) Effect of climate change on soil temperature in Swedish boreal forests. PLoS ONE 9(4):e93957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kapat A, Zimand G, Elad Y (1998) Effect of two isolates of Trichoderma harzianum on the activity of hydrolytic enzymes produced by Botrytis cinerea. Physiol Mol Plant Pathol 52(2):127–137

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas Siderophores—a mechanism explaining disease-suppressive soils. Curr Microbiol 4(5):317–320

    Article  CAS  Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker Inc, New York, pp 199–233

    Google Scholar 

  • Kovalchuk A, Keriö S, Oghenekaro AO, Jaber E, Raffaello T, Asiegbu FO (2013) Antimicrobial defenses and resistance in forest trees: challenges and perspectives in a genomic era. Annu Rev Phytopathol 51:221–244

    Article  PubMed  CAS  Google Scholar 

  • La Porta N, Capretti P, Thomsen IM, Kasanen R, Hietala AM, Von Weissenberg K (2008) Forest pathogens with higher damage potential due to climate change in Europe. Can J Plant Pathol 30:177–195

    Article  Google Scholar 

  • Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186(16):5384–5391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lilja A, Poteri M, Petäistö R-L, Rikala R, Kurkela T, Kasanen R (2010) Fungal diseases in forest nurseries in Finland. Silva Fenn 44:525–545

    Article  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ER, Taghavi S, Mezgeay M, van der Lelie DV (2002) Endophytic bacteria and their potential applications. CRC Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • López-Escudero FJ, Mercado-Blanco J (2011) Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil 344(1–2):1–50

    Article  CAS  Google Scholar 

  • Long HH, Sonntag DG, Schmidt DD, Baldwin IT (2010) The structure of the culturable root bacterial endophyte community of Nicotiana attenuata is organized by soil composition and host plant ethylene production and perception. New Phytol 185:554–567

    Article  PubMed  CAS  Google Scholar 

  • Lorito M, Woo SL, DAmbrosio M, Harman GE, Hayes CK, Kubicek CP, Scala F (1996) Synergistic interaction between cell wall degrading enzymes and membrane affecting compounds. Mol Plant Microbe Interact 9(3):206–213

    Article  CAS  Google Scholar 

  • Luginbuhl M, Muller E (1980) Endophytische Pilze in den oberirdischen Organen von 4 gemeinsam an gleichen Standorten wachsenden Pflanzen (Buxus, Hedera, Ilex, Ruscus). Sydowia 33:185–209

    Google Scholar 

  • Madsen AM, de Neergaard E (1999) Interactions between the mycoparasite Pythium oligandrum and sclerotia of the plant pathogen Sclerotinia sclerotiorum. Eur J For Pathol 105(8):761–768

    Article  Google Scholar 

  • Mandyam K, Jumpponen A (2005) Abundance and possible functions of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–190

    Article  Google Scholar 

  • Martín JA, Macaya-Sanz D, Witzell J, Blumenstein K, Gil L (2015) Strong in vitro antagonism by elm xylem endophytes is not accompanied by temporally stable in planta protection against a vascular pathogen under field conditions. Eur J For Pathol 142(1):185–196

    Article  CAS  Google Scholar 

  • Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insights. Curr Opin Plant Biol 12(4):508–515

    Article  PubMed  CAS  Google Scholar 

  • Martín JA, Witzell J, Blumenstein K, Rozpedowska E, Helander M, Sieber TN, Gil L (2013) Resistance to Dutch Elm Disease Reduces Presence of Xylem Endophytic Fungi in Elms (Ulmus spp.). PLoS ONE 8(2):e56987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McMullin DR, Green BD, Miller JD (2015) Antifungal sesquiterpenoids and macrolides from an endophytic Lophodermium species of Pinus strobus. Phytochem Lett 14:148–152

    Article  CAS  Google Scholar 

  • Mejía LC, Herre EA, Sparks JP, Winter K, Garcia MN, Van Bael SA, Stitt J, Shi Z, Zhang Y, Guiltinan MJ, Maximova SN (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol 5:479

    PubMed  PubMed Central  Google Scholar 

  • Mejía LC, Rojas EI, Maynard Z, Van Bael S, Arnold AE, Hebbar P, Samuels GJ, Robbins N, Herre EA (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14

    Article  Google Scholar 

  • Melnick RL, Zidack NK, Bailey BA, Maximova SN, Guiltinan M, Backman PA (2008) Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol Control 46(1):46–56

    Article  Google Scholar 

  • Melnick RL, Suárez C, Bailey BA, Backman PA (2011) Isolation of endophytic endospore-forming bacteria from Theobroma cacao as potential biological control agents of cacao diseases. Biol Control 57(3):236–245

    Article  Google Scholar 

  • Menkis A, Allmer J, Vasiliauskas R, Lygis V, Stenlid J, Finlay R (2004) Ecology and molecular characterization of dark septate fungi from roots, living stems, coarse and fine woody debris. Mycol Res 108:965–973

    Article  PubMed  CAS  Google Scholar 

  • Mercado-Blanco J, Lugtenberg BJJ (2014) Biotechnological applications of bacterial endophytes. Curr Biotechnol 3(1):60–75

    Article  CAS  Google Scholar 

  • Milgroom MG, Cortesi P (2004) Biological control of chestnut blight with hypovirulence: a critical analysis. Annu Rev Phytopathol 42:311–338

    Article  PubMed  CAS  Google Scholar 

  • Miller JD, Mackenzie S, Foto M, Adams GW, Findlay JA (2002) Needles of white spruce inoculated with rugulosin-producing endophytes contain rugulosin reducing spruce budworm growth rate. Mycol Res 106:471–479

    Article  Google Scholar 

  • Miller JD, Sumarah MW, Adams GW (2008) Effect of a rugulosin-producing endophyte in Picea glauca on Choristoneura fumiferana. J Chem Ecol 34:362–368

    Article  PubMed  CAS  Google Scholar 

  • Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80(9):808–811

    Article  Google Scholar 

  • Moore FP, Barac T, Borremans B, Oeyen L, Vanqronsveld J, van der Lelie D, Campbell CD, Moore ER (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  PubMed  CAS  Google Scholar 

  • Narayanasamy P (2013) Biological management of diseases of crops. Springer, Dordrecht, p 673

    Book  Google Scholar 

  • Navarro-Meléndez AL, Heil M (2014) Symptomless endophytic fungi suppress endogenous levels of salicylic acid and interact with the jasmonate-dependent indirect defense traits of their host, lima bean (Phaseolus lunatus). J Chem Ecol 40:816–825

    Article  PubMed  CAS  Google Scholar 

  • Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23(1):6–8

    Article  PubMed  CAS  Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    Article  PubMed  CAS  Google Scholar 

  • Newton AC, Gravouil C, Fountaine JM (2010) Managing the ecology of foliar pathogens: ecological tolerance in crops. Ann Appl Biol 157(3):343–359

    Article  Google Scholar 

  • Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E (2009) The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol Lett 296(1):97–101

    Article  PubMed  CAS  Google Scholar 

  • Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson K-H, Kõljalg U (2006) Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS ONE 1(1):e59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ovaskainen O, Nokso-Koivista J, Hottola J, Rajala T, Pennanen T, Ali-Kovero H, Miettinen O, Oinonen P, Auvinen P, Paulin L, Larsson K-H, Mäkipää R (2010) Identifying wood-inhabiting fungi with 454 sequencing—what is the probability that BLAST gives the correct species? Fungal Ecol 3:274–283

    Article  Google Scholar 

  • Panaccione DG, Beaulieu WT, Cook D (2013) Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol 28(2):299–314

    Article  Google Scholar 

  • Parent JL, James TY, Vasaitis R, Taylor AF (2009) Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. BMC Evol Biol 9:148

    Article  CAS  Google Scholar 

  • Patosaari P (2007) Forests and climate change: mitigation and adaptation through sustainable forest management. DPI/NGO conference: climate change 5–7 September 2007, United Nations, New York, USA

    Google Scholar 

  • Paulitz TC, Belanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133

    Article  PubMed  CAS  Google Scholar 

  • Pautasso M, Schlegel M, Holdenrieder O (2015) Forest health in a changing world. Microb Ecol 69(4):826–842

    Article  PubMed  Google Scholar 

  • Petrini O, Dreyfuss M (1981) Endophytische Pilze in epiphytischen Araceae, Bromeliaceae und Orchidaceae. Sydowia 34:135–145

    Google Scholar 

  • Petrini O, Sieber TN, Toti L, Viret O (1992) Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat Toxins 1:185–196

    Article  PubMed  CAS  Google Scholar 

  • Pillay VK, Nowak J (1997) Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol 43(4):354–361

    Article  CAS  Google Scholar 

  • Ponkä A, Andersson Y, Siitonen A, de Jong B, Jahkola M, Haikala O, Kuhmonen A, Pakkala P (1995) Salmonella in alfalfa sprouts. The Lancet 345(8947):462–463

    Article  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  PubMed  CAS  Google Scholar 

  • Postma J, Goossen-van de Geijn H (2016) Twenty-four years of Dutch Trig (R) application to control Dutch elm disease. Biocontrol 61(3):305–312

    Article  Google Scholar 

  • Poudel R, Jumpponen A, Schlatter DC, Paulitz TC, Gardener BB, Kinkel LL, Garrett KA (2016) Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology 106(10):1083–1096

    Article  PubMed  CAS  Google Scholar 

  • Pratt JE, Niemi M, Sierota ZH (2000) Comparison of three products based on Phlebiopsis gigantea for the control of Heterobasidion annosum in Europe. Biocontrol Sci Technol 10(4):467–477

    Article  Google Scholar 

  • Preszler RW, Gaylord ES, Boecklen WJ (1996) Reduced parasitism of a leaf-mining moth on trees with high infection frequencies of an endophytic fungus. Oecologia 108:159–166

    Article  PubMed  Google Scholar 

  • Prieto P, Schilirò E, Maldonado-González MM, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62:435–445

    Article  PubMed  PubMed Central  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66(3):402–408

    Article  CAS  Google Scholar 

  • Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21(9):400–407

    Article  PubMed  CAS  Google Scholar 

  • Queloz V, Duo A, Grûnig CR (2008) Isolation and characterization of microsatellite markers for the tree-root endophytes Phialocephala subalpina and Phialocephala fortinii s.s. Mol Ecol Resour 8:1322–1325

    Article  PubMed  CAS  Google Scholar 

  • Queloz V, Duo A, Sieber TN, Grûnig CR (2010) Microsatellite size homoplasies and null alleles do not affect species diagnosis and population genetic analysis in a fungal species complex. Mol Ecol Resour 10:348–367

    Article  PubMed  CAS  Google Scholar 

  • Raghavendra AKH, Newcombe G (2013) The contribution of foliar endophytes to quantitative resistance to Melampsora rust. New Phytol 197:909–918

    Article  PubMed  Google Scholar 

  • Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224

    Article  Google Scholar 

  • Ravensberg WJ (2015) Commercialisation of microbes: present situation and future prospects. In: Lugtenberg B (ed) Principles of Plant-Microbe Interactions. Springer, Cham, pp 309–317

    Google Scholar 

  • Ren JH, Li H, Wang YF, Ye JR, Yan AQ, Wu XQ (2013) Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biol Control 67(3):421–430

    Article  Google Scholar 

  • Richardson SN, Walker AK, Nsiama TK, McFarlane J, Sumarah MW, Ibrahim A, Miller JD (2014) Griseofulvin-producing Xylaria endophytes of Pinus strobus and Vaccinium angustifolium: evidence for a conifer-understory species endophyte ecology. Fungal Ecol 11:107–113

    Article  Google Scholar 

  • Richardson SN, Nsiama TK, Walker AK, McMullin DR, Miller JD (2015) Antimicrobial dihydrobenzofurans and xanthenes from a foliar endophyte of Pinus strobus. Phytochemistry 117:436–443

    Article  PubMed  CAS  Google Scholar 

  • Ridout M, Newcombe G (2015) The frequency of modification of Dothistroma pine needle blight severity by fungi withion the native range. Fort Ecol Manage 337:153–160

    Article  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  PubMed  CAS  Google Scholar 

  • Roderick GK, Navajas M (2003) Genes in new environments: Genetics and evolution in biological control. Nat Rev Genet 4(11):889–899

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19(8):827–837

    Article  PubMed  CAS  Google Scholar 

  • Rotem Y, Yarden O, Sztejnberg A (1999) The mycoparasite Ampelomyces quisqualis expresses exgA encoding an exo-beta-1,3-glucanase in culture and during mycoparasitism. Phytopathology 89(8):631–638

    Article  PubMed  CAS  Google Scholar 

  • Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Arau’ jo WL, Santos DR, Azevedo JL (2005) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of witches’ broom disease. Int J Biol Sci 1:24e33

    Google Scholar 

  • Ruocco M, Woo S, Vinale F, Lanzuise S, Lorito M (2011) Identified difficulties and conditions for field success of biocontrol. 2. Technical aspects: factors of efficacy. In: Nicot PC (eds) International classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success. Organization for biological and integrated control of noxious animals and plants, West palaearctic regional section (IOBC/WPRS), pp 45–57

    Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Ryberg M, Kristansson E, Sjökvist E, Nilsson RH (2009) An outlook on the fungal internal transcribed spacer sequences in GenBank and the introduction of a web-based tool for the exploration of fungal diversity. New Phytol 181:471–477

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Saikkonen K, Gundel PE, Helander M (2013) Chemical ecology mediated by fungal endophytes in grasses. J Chem Ecol 39:962–968

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280

    Article  PubMed  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  PubMed  CAS  Google Scholar 

  • Schirmbock M, Lorito M, Wang YL, Hayes CK, Arisanatac I, Scala F, Harman GE, Kubicek CP (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma-Harzianum against phytopathogenic fungi. App Environ Microbiol 60(12):4364–4370

    CAS  Google Scholar 

  • Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Interact 28(3):212–217

    Article  PubMed  CAS  Google Scholar 

  • Schmid J, Day R, Zhang N, Dupont P-Y, Cox MP, Schardl CL, Minards N, Truglio M, Moore N, Harris DR, Zhou Y (2017) Host tissue environment directs activities of an Epichloë endophyte, while it induces systemic hormone and defense responses in its native perennial ryegrass host. Mol Plant-Microbe Interact 30(2):138–149

    Article  PubMed  CAS  Google Scholar 

  • Schulz BJE, Boyle CJC (2005) The endophytic continuum. Mycol Res 109:661–686

    Article  PubMed  Google Scholar 

  • Schulz BJE, Boyle CJC, Draeger S, Römmrt AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Schulz BJE, Guske S, Dammann U, Boyle C (1998) Endophyte-host interactions II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25:213–227

    Google Scholar 

  • Schulz BJE, Haas S, Junker C, Andree N, Schobert M (2015) Fungal endophytes are involved in multiple balanced antagonisms. Curr Sci 109:39–45

    Google Scholar 

  • Schulz BJE, Römmert A-K, Dammann U, Aust H-J, Strack D (1999) The endophyte-host interaction: a balanced antagonism. Mycol Res 103:1275–1283

    Article  Google Scholar 

  • Schulz BJE, Sucker J, Aust HJ, Krohn K, Ludewig K, Jones PG, Döring D (1995) Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 99:1007–1015

    Article  CAS  Google Scholar 

  • Schulz BJE, Wanke U, Draeger S, Aust H-J (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97(12):1447–1450

    Article  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  PubMed  CAS  Google Scholar 

  • Sieber TN (2007) Endophytic fungi of forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Sieber TN, Grünig CR (2013) Fungal root endophytes. In: Eshel A, Beeckman T (eds) Plant roots—the hidden half, 4th edn. FL, USA, CRC Press, Taylor and Francis Group, Boca Raton, pp 38–49

    Google Scholar 

  • Sieber TN, Rys J, Holdenrieder O (1999) Mycobiota in symptomless needles of Pinus mugo ssp. Uncinata Mycol Res 103:306–310

    Article  Google Scholar 

  • Siegel MR, Bush LP (1996) Defensive chemicals in grass–fungal endophyte associations. Rec Adv Phytochem 30:81–118

    CAS  Google Scholar 

  • Siegel MR, Latch GCM, Bush LP, Fannin FF, Rowan DD, Tapper BA, Bacon CW, Johnson MC (1990) Fungal endophyte infected grasses: alkaloid accumulation and aphid response. J Chem Ecol 16:3301–3314

    Article  PubMed  CAS  Google Scholar 

  • Solis MJL, dela Cruz TE TE, Schnittler M, Unterseher M (2016) The diverse community of leafinhabiting fungal endophytes from Philippine natural forests reflects phylogenetic patterns of their host plant species Ficus benjamina. F elastica and F religiosa. Mycoscience 57(2):96–106

    Article  Google Scholar 

  • Stadler M (2011) Importance of secondary metabolites in the Xylariaceae as parameters for assessment of their taxonomy, phylogeny, and functional biodiversity. Curr Res Environ Appl Mycol 1:75–133

    Article  Google Scholar 

  • Stadler M, Hellwig V (2005) Chemotaxonomy of the Xylariaceae and remarkable bioactive compounds from Xylariales and their associated asexual stages. Recent Res Dev Phytochem 9:41–93

    CAS  Google Scholar 

  • Steenackers J, Steenackers M, Steenackers V, Stevens M (1996) Poplar diseases, consequences on growth and wood quality. Biomass Bioenergy 10:267–274

    Article  Google Scholar 

  • Stone JK, Polishook JD, White JRJ (2004) Endophytic fungi. In: Mueller G, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Burlington, pp 241–270

    Chapter  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  PubMed  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG (1998) Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44:162–167

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25(1):13–19

    Article  Google Scholar 

  • Sumarah MW, Walker AK, Seifert KA, Todorov A, Miller JD (2015) Screening of fungal endophytes isolated from eastern white pine needles. Recent Adv Phytochem 45:195–206

    CAS  Google Scholar 

  • Sumarah MW, Puniani E, Blackwell BA, Miller JD (2008a) Characterization of polyketide metabolites from foliar endophytes of Picea glauca. J Nat Prod 71:1393–1398

    Article  PubMed  CAS  Google Scholar 

  • Sumarah MW, Adams GW, Bergout J, Slack GJ, Wilson AM, Miller JD (2008b) Spread and persistence of a rugulosin-producing endophyte in white spruce seedlings. Mycol Res 112:731–736

    Article  PubMed  Google Scholar 

  • Sumarah MW, Puniani E, Sørensen D, Blackwell BA, Miller JD (2010) Secondary metabolites from anti-insect extracts of endophytic fungi isolated from Picea rubens. Phytochemistry 71:760–765

    Article  PubMed  CAS  Google Scholar 

  • Sumarah MW, Kesting JR, Sørensen D, Miller JD (2011) Antifungal metabolites from fungal endophytes of Pinus strobus. Phytochemistry 72:14–15

    Article  CAS  Google Scholar 

  • Sun H, Korhonen K, Hantula J, Asiegbu FO, Kasanen R (2009) Use of a breeding approach for improving biocontrol efficacy of Phlebiopsis gigantea strains against Heterobasidion infection of Norway spruce stumps. FEMS Microbiol Ecol 69(2):266–273

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Terhonen E, Koskinen K, Paulin L, Kasanen R, Asiegbu FO (2013) The impacts of treatment with biocontrol fungus (Phlebiopsis gigantea) on bacterial diversity in Norway spruce stumps. Biol Control 64(3):238–246

    Article  Google Scholar 

  • Surette MA, Sturz AV, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253:381–390

    Article  CAS  Google Scholar 

  • Swinton J, Gilligan CA (1999) Selecting hyperparasites for biocontrol of Dutch elm disease. Proc R Soc Lond B Biol Sci 266(1418):437–445

    Article  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. App Environ Microbiol 71(12):8500–8505

    Article  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  PubMed  CAS  Google Scholar 

  • Tanney JB, McMullin DR, Green BD, Miller JD, Seifert KA (2016) Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp. nov. Fungal Biol. 120:1448–1457

    Article  PubMed  CAS  Google Scholar 

  • Tao G, Liu ZY, Hyde KD, Lui XZ, Yu ZN (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33(1):101–112

    Google Scholar 

  • Tellenbach C, Sieber TN (2012) Do colonization by dark septate endophytes and elevated temperature affect pathogenicity of oomycetes? FEMS Microbiol Ecol 82:157–168

    Article  PubMed  CAS  Google Scholar 

  • Tellenbach C, Sumarah MW, Grünig CR, Miller DJ (2012) Inhibition of Phytophthora species by secondary metabolites produced by the dark septate endophyte Phialocephala europaea. Fungal Ecol 6:12–18

    Article  Google Scholar 

  • Terhonen E (2008) Juurten endofyyttisienten vaikutus hybridihaavan versojen juurtumiseen in vitro. (DS-endophytes in roots of hybrid aspen and their effects on hybrid aspen shoots in vitro.) M.Sc. thesis, University of Helsinki, Department of Applied Biology (In Finnish)

    Google Scholar 

  • Terhonen E, Keriö S, Sun H, Asiegbu FO (2014) Endophytic fungi of Norway spruce roots in boreal pristine mire, drained peatland and mineral soil and their inhibitory effect on Heterobasidion parviporum in vitro. Fungal Ecol 9:17–26

    Article  Google Scholar 

  • Terhonen E, Sipari S, Asiegbu FO (2016) Inhibition of phytopathogens by fungal root endophytes of Norway spruce. Biol Control 99:53–63

    Article  Google Scholar 

  • Terhonen E, Sun S, Buee M, Kasanen R, Paulin L, Asiegbu FO (2013) Effects of the use of biocontrol agent (Phlebiopsis gigantea) on fungal communities on the surface of Picea abies stumps. Forest Ecol Manage 310:428–433

    Article  Google Scholar 

  • Tjamos EC, Tjamos SE, Antoniou PP (2010) Biological management of plant diseases: highlights on research and application. J Plant Pathol 92(4):S17–S21

    Google Scholar 

  • Tondje PR, Roberts DP, Bon MC, Widmer T, Samuels GJ, Ismaiel A, Begoude AD, Tchana T, Nyemb-Tshomb E, Ndoumbe-Nkeng M, Bateman R, Fontem D, Hebbar KP (2007) Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon. Biol Control 43:202–212

    Article  Google Scholar 

  • Ulrich K, Ulrich A, Ewald D (2008) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63(2):169–180

    Article  PubMed  CAS  Google Scholar 

  • Unterseher M, Schnittler M (2009) Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.)—Different cultivation techniques influence fungal biodiversity assessment. Mycol Res 113:645–654

    Article  PubMed  Google Scholar 

  • van der Heijden MG, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol 14(2):e1002378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2017) Biological control using invertebrates and microorganims: plenty of new opportunities. BioControl:1–21

    Google Scholar 

  • Van Driesche RG, Bellows TS (1996) Biological control. Kluwer Academic Publishers, Dordrecht, p 539

    Book  Google Scholar 

  • Verma SC, Singh A, Chowdhury SP, Tripathi AK (2004) Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett 26(5):425–429

    Article  PubMed  CAS  Google Scholar 

  • Vincent JG, Vincent HW (1944) Filter paper disc modification of the oxford cup penicillin determination. Proc Soc Exp Biol Med 55:162–164

    Article  CAS  Google Scholar 

  • Wagner RG, Flynn J, Gregory R, Mertz CK, Slovic P (1998) Acceptable practices in Ontario’s forests: Differences between the public and forestry professionals. New For 16(2):139–154

    Article  Google Scholar 

  • Wang J, Jia H (2016) Metagenome-wide association studies: fine-mining the microbiome. Nat Rev Microbiol 14(8):508–522

    Article  PubMed  CAS  Google Scholar 

  • Zhao JH, Zhang YL, Wang LW, Wang JY, Zhang CL (2012) Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World J Microbiol Biotechnol 28:2107–2112

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred O. Asiegbu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Terhonen, E., Kovalchuk, A., Zarsav, A., Asiegbu, F.O. (2018). Biocontrol Potential of Forest Tree Endophytes. In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-89833-9_13

Download citation

Publish with us

Policies and ethics