Skip to main content

Ecological Aspects of Endophyte-Based Biocontrol of Forest Diseases

  • Chapter
  • First Online:
Advances in Endophytic Research

Abstract

Recent studies have shown that the asymptomatic fungal endophytes may influence the outcome of forest trees’ interactions with pathogens and herbivores, raising a promise that endophytes might be utilized as biocontrol agents in integrated pest and disease management. However, practical applications for forest protection based on endophytes are still rare, in particular in the case of the economically and ecologically important large trees and their diseases. A better understanding of the ecological and biological background of the protection provided by endophytes may help to design new forest protection strategies that utilize endophytes in control of tree diseases. More information is also needed regarding the effects of silvicultural methods on endophyte communities at the level of single trees and forest stands. In this chapter, we discuss the motivation for continued research on endophyte-based biocontrol of forest tree diseases and some ecological aspects related to the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrectsen BR, Witzell J (2012) Disentangling functions of fungal endophytes in forest trees. In: Paz Silva A, Sol M (eds) Fungi: types, environmental impact and role in disease. Nova, Hauppauge, pp 235–246

    Google Scholar 

  • Albrectsen BR, Bjorken L, Varad A et al (2010) Endophytic fungi in European aspen (Populus tremula) leaves – diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers 41:17–28

    Google Scholar 

  • Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565

    PubMed  CAS  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG et al (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. TREE 19:535–543

    PubMed  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS et al (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. PNAS 100:15649–15654

    PubMed  CAS  Google Scholar 

  • Bale JS, van Lenteren JC, Bigler F (2008) Biological control and sustainable food production. Philos Trans R Soc B 36:761–776

    Google Scholar 

  • Baum S, Sieber TN, Schwarze FWMR, Fink C (2003) Latent infections of Fomes fomentarius in the xylem of European beech (Fagus sylvatica). Mycol Prog 2:141–148

    Google Scholar 

  • Bazoche P, Bunte F, Combris P et al (2012) Willingness to pay for pesticides’ reduction in E.U.: nothing but organic? ALISS working paper 2012–01. http://www7.paris.inra.fr/aliss/publications_working_papers/working_papers/aliss_working_papers. Accessed 5 Mar 2013

  • Becher PG, Flick G, Rozpędowska E et al (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26:822–828

    Google Scholar 

  • Bernhold A, Witzell J, Hanson P (2008) Effect of slash removal on Gremmeniella abietina incidence on Pinus sylvestris after clear-cutting in northern Sweden. Scand J For Res 21:489–495

    Google Scholar 

  • Bettucci L, Alonso R (1997) A comparative study of fungal populations in healthy and symptomatic twigs of Eucalyptus grandis in Uruguay. Mycol Res 101:1060–1064

    Google Scholar 

  • Blodgett JT, Eyles A, Bonello P (2007) Organ-dependent induction of systemic resistance and systemic susceptibility in Pinus nigra inoculated with Sphaeropsis sapinea and Diplodia scrobiculata. Tree Physiol 27:511–517

    PubMed  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    PubMed  CAS  Google Scholar 

  • Borglin S, Joyner D, DeAngelis KM et al (2012) Application of phenotypic microarrays to environmental microbiology. Curr Opin Biotechnol 23:41–48

    PubMed  CAS  Google Scholar 

  • Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridization. Bioscience 51:123–133

    Google Scholar 

  • Brasier CM, Scott JK (1994) European oak declines and global warming: a theoretical assessment with special reference to the activity of Phytophthora cinnamomi. EPPO Bull 24:221–232

    Google Scholar 

  • Brasier CM, Cooke DE, Duncan JM (1999) Origin of a new Phytophthora pathogen through interspecific hybridization. Proc Natl Acad Sci U S A 96:5878–5883

    PubMed  CAS  Google Scholar 

  • Bruls T, Weissenbach J (2011) The human metagenome: our other genome? Hum Mol Genet 20:R142–R148

    PubMed  CAS  Google Scholar 

  • Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114:1–7

    PubMed  CAS  Google Scholar 

  • Carroll GC (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Google Scholar 

  • Carroll G (1995) Forest endophytes: pattern and process. Can J Bot 73:1316–1324

    Google Scholar 

  • Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270

    PubMed  CAS  Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16

    Google Scholar 

  • Clay K (1996) Interactions among fungal endophytes, grasses and herbivores. Res Popul Ecol 38:191–201

    Google Scholar 

  • Clay K (2004) Fungi and the food of the gods. Nature 427:401–402

    PubMed  CAS  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1745

    PubMed  CAS  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160(Suppl 4):S99–S127

    PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J et al (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    PubMed  CAS  Google Scholar 

  • Dale VH, Joyce LA, McNulty S et al (2001) Climate change and forest disturbances. Bioscience 51:725–734

    Google Scholar 

  • Danti R, Sieber TN, Sanguineti G (2002) Endophytic mycobiota in bark of European beech (Fagus sylvatica) in the Apennines. Mycol Res 106:1343–1348

    Google Scholar 

  • Dvorák M, Palovcíková D, Jankovský L (2006) The occurrence of endophytic fungus Phomopsis oblonga on elms in the area of southern Bohemia. J For Sci 52:531–535

    Google Scholar 

  • Edenius L, Mikusinski G, Witzell J, Bergh J (2012) Effects of repeated fertilization of young Norway spruce on phenolics and arthropods: implications for insectivorous birds food resources. For Ecol Manage 277:38–45

    Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400

    Google Scholar 

  • Eyberger AL, Condapati R, Porter JRJ (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    PubMed  CAS  Google Scholar 

  • Faeth SH, Fagan WF (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr Comp Biol 42:360–368

    PubMed  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ et al (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    PubMed  CAS  Google Scholar 

  • Fodor E (2011) Ecological niche of plant pathogens. Ann For Res 54:3–21

    Google Scholar 

  • Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574

    PubMed  CAS  Google Scholar 

  • Ganley RJ, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110:318–327

    PubMed  Google Scholar 

  • Ganley RJ, Sniezko RA, Newcombe G (2008) Endophyte-mediated resistance against white pine blister rust in Pinus monticola. For Ecol Manage 255:2751–2760

    Google Scholar 

  • Gao F, Dai C, Liu X (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4:1346–1351

    Google Scholar 

  • Garland JL (2006) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol 24:289–300

    Google Scholar 

  • Gennaro M, Gonthier P, Nicolotti G (2003) Fungal endophytic communities in healthy and declining Quercus robur L. and Q. cerris L. trees in northern Italy. J Phytopathol 151:529–534

    Google Scholar 

  • Gerson EA, Kelsey RG (2002) Piperidine alkaloids in sitka spruce with varying levels of resistance to white pine weevil (Coleoptera: Curculionidae). J Econ Entomol 95:608–613

    PubMed  CAS  Google Scholar 

  • Hajek AE (1997) Fungal and viral epizootics in gypsy moth (Lepidoptera: Lymantriidae) populations in central New York. Biol Control 10:58–68

    Google Scholar 

  • Hajek AE, Elkinton JS, Humber RA (1997) Entomo-pathogenic hyphomycetes associated with gypsy moth (Lepidoptera: Lymantriidae) larvae. Mycologia 89:825–829

    Google Scholar 

  • Hamady M, Walker JJ, Harris JK et al (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Method 5:235–237

    CAS  Google Scholar 

  • Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol 29:9–17

    PubMed  CAS  Google Scholar 

  • Helander M, Wäli P, Kuuluvainen T, Saikkonen K (2006) Birch leaf endophytes in managed and natural boreal forests. Can J For Res 36:3239–3245

    Google Scholar 

  • Holdenrieder O, Greig BJW (1998) Biological methods of control. In: Woodward S, Stenlid J, Karjalainen R, Hutterman A (eds) Heterobasidion annosum: biology, ecology, impact and control. CAB International, Wallingford, pp 235–259

    Google Scholar 

  • Hornby JM, Jacobitz-Kizzier SM, McNeel DJ (2004) Inoculum size effect in dimorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. Appl Environ Microbiol 70:1356–1359

    PubMed  CAS  Google Scholar 

  • Hubbes M (2004) Induced resistance for the control of Dutch elm disease. Invest Agrar Sist Recur For 13:185–196

    Google Scholar 

  • Jensen AM, Löf M, Witzell J (2012) Effects of competition and indirect facilitation by shrubs on Quercus robur saplings. Plant Ecol 231:535–543

    Google Scholar 

  • Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513

    PubMed  CAS  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. TREE 17:164–170

    Google Scholar 

  • Kurz WA, Dymond CC, Stinson G et al (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990

    PubMed  CAS  Google Scholar 

  • Kusari S, Lamshöft M, Zuhlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162

    PubMed  CAS  Google Scholar 

  • Lacey LA, Frutos R, Kaya HK, Vail P (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21:230–248

    Google Scholar 

  • Lee S, Kim JJ, Breuil C (2006) Diversity of fungi associated with the mountain pine beetle, Dendroctonus ponderosae and infested lodgepole pines in British Columbia. Fungal Divers 22:91–105

    Google Scholar 

  • Lehtonen P, Helander M, Saikkonen K (2005) Are endophyte-mediated effects on herbivores conditional on soil nutrients? Oecologia 142:38–45

    PubMed  Google Scholar 

  • Louda SM, Pemberton RW, Johnson MT, Follett PA (2003) Nontarget effects – the Achilles’ heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annu Rev Entomol 48:365–396

    PubMed  CAS  Google Scholar 

  • Mardis ER (2011) A decade’s perspective on DNA sequencing technology. Nature 470:198–203

    PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Martín J, Witzell J, Blumenstein K et al (2013) Resistance to Dutch elm disease reduces xylem endophytic fungi presence in elms (Ulmus spp.). PLoS One 8(2):e56987

    PubMed  Google Scholar 

  • Martín-García J, Espiga E, Pando V, Diez JJ (2011) Factors influencing endophytic communities in poplar plantations. Silva Fenn 45:169–180

    Google Scholar 

  • Mejía LC, Rojas EI, Maynard Z et al (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14

    Google Scholar 

  • Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151

    PubMed  Google Scholar 

  • Morrison WE, Hay ME (2011) Herbivore preference for native vs. exotic plants: generalist herbivores from multiple continents prefer exotic plants that are evolutionarily naïve. PLoS One 6(3):e17227

    PubMed  CAS  Google Scholar 

  • Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: implications for biological control. TREE 19:417–422

    PubMed  Google Scholar 

  • Newcombe G (2011) Endophytes in forest management: four challenges. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees: biology and applications, Forestry sciences 80. Springer, Berlin/Heidelberg/New York, pp 251–262

    Google Scholar 

  • Nilsson HR, Tedersoo L, Lindahl BD et al (2011) Towards standardization of the description and publication of next-generation sequencing datasets of fungal communities. New Phytol 191:314–318

    Google Scholar 

  • Pal KK, McSpadden Gardener B (2006) Biological control of plant pathogens. Plant Health Instr. Available via APSnet. http://www.apsnet.org/edcenter/advanced/topics/Documents/PHI-BiologicalControl.pdf. Accessed 27 Feb 2013

  • Pearson DE, Callaway RM (2005) Indirect nontarget effects of host-specific biological control agents: implications for biological control. Biol Control 35:288–298

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of leaves. In: Andrew JH, Hirano SS (eds) Microbial ecology of leaves. Springer, Berlin, pp 179–197

    Google Scholar 

  • Petrini O, Fisher PJ (1990) Occurrence of fungal endophytes in twigs of Salix fragilis and Quercus robur. Mycol Res 94:1077–1080

    Google Scholar 

  • Pratt JE, Johansson M, Hütterman A (1998) Chemical control of Heterobasidion annosum. In: Woodward S, Stenlid J, Karjalainen R, Hutterman A (eds) Heterobasidion annosum: biology, ecology, impact and control. CAB International, Wallingford, pp 259–282

    Google Scholar 

  • Qin J, Li RQ, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    PubMed  CAS  Google Scholar 

  • Ragazzi A, Moricca S, Capretti P et al (2003) Differences in composition of endophytic mycobiota in twigs and leaves of healthy and declining Quercus species in Italy. For Pathol 33:31–38

    Google Scholar 

  • Rodriguez RJ, Redman RS (1997) Fungal lifestyles and ecosystem dynamics: biological aspects of plant pathogens, plant endophytes, and saprophytes. Adv Bot Res 24:169–193

    Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:214–220

    Google Scholar 

  • Rodríguez J, Elissetche JP, Valenzuela S (2011) Tree endophytes and wood biodegradation. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees: biology and applications, Forestry sciences 80. Springer, Berlin/Heidelberg/New York, pp 81–93

    Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev 21:67–74

    Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interaction with host plants. Annu Rev Ecol Syst 29:319–343

    Google Scholar 

  • Saikkonen K, Ion D, Gyllenberg M (2002) The persistence of vertically transmitted fungi in grass metapopulations. Proc R Soc B Biol Sci 269:1397–1403

    Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280

    PubMed  CAS  Google Scholar 

  • Santamaría O, Diez JJ (2005) Fungi in leaves, twigs and stem bark of Populus tremula from northern Spain. For Pathol 35:95–104

    Google Scholar 

  • Santini A, Ghelardini L, De Pace C et al (2013) Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol 197:238–250

    PubMed  CAS  Google Scholar 

  • Schiebe C, Hammerbacher A, Birgersson G et al (2012) Inducibility of chemical defences in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle. Oecologia 170:183–198

    PubMed  Google Scholar 

  • Schröter D, Cramer W, Leemans R et al (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    PubMed  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes, Soil biology 9. Springer, Heidelberg, pp 1–13

    Google Scholar 

  • Schwarze FWMR, Engels J, Matcheck C (2000) Fungal strategies of wood decay in trees. Springer, Berlin, 185pp

    Google Scholar 

  • Seifert K (2009) Progress towards DNA barcoding of fungi. Mol Ecol Res 9(Suppl 1):83–89

    CAS  Google Scholar 

  • Shigo AL (1984) Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves. Annu Rev Phytopathol 22:189–214

    Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Google Scholar 

  • Smith J (2002) Afforestation and reforestation in the clean development mechanism of the Kyoto protocol: implications for forests and forest people. Int J Global Environ Issue 2:322–343

    Google Scholar 

  • Solla A, Gil L (2003) Evaluating Verticillium dahliae for biological control of Ophiostoma novo-ulmi in Ulmus minor. Plant Pathol 52:579–585

    Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    PubMed  CAS  Google Scholar 

  • Strauss SH, Brunner AM, Busov VB et al (2004) Ten lessons from 15 years of transgenic Populus research. Forestry 77:457–465

    Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    PubMed  CAS  Google Scholar 

  • Sturrock RN, Frankel SJ, Brown AV et al (2011) Climate change and forest diseases. Plant Pathol 60:133–149

    Google Scholar 

  • Sun X, Guo LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95

    Google Scholar 

  • Tscharntke T, Bommarco R, Clough Y et al (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309

    Google Scholar 

  • Unterseher M (2011) Diversity of fungal endophytes in temperate forest trees. In: Pirttilä AM, Frank CA (eds) Endophytes of forest trees: biology and applications. Springer, Heidelberg, pp 31–46

    Google Scholar 

  • Verma VC, Lobkovsky E, Gange AC et al (2011) Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J Antibiot 64:427–431

    PubMed  CAS  Google Scholar 

  • Waage JK, Greathead DJ (1988) Biological control: challenges and opportunities. Philos Trans R Soc Lond B 318:111–128

    Google Scholar 

  • Webber JF (1981) A natural biological-control of Dutch elm disease. Nature 292:449–451

    Google Scholar 

  • White JF, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138:440–446

    PubMed  CAS  Google Scholar 

  • Witzell J, Martín JA (2008) Phenolic metabolites in the resistance of northern forest trees to pathogens-past experiences and future prospects. Can J For Res 38:2711–2727

    Google Scholar 

  • Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11:159–168

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Witzell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Witzell, J., Martín, J.A., Blumenstein, K. (2014). Ecological Aspects of Endophyte-Based Biocontrol of Forest Diseases. In: Verma, V., Gange, A. (eds) Advances in Endophytic Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1575-2_17

Download citation

Publish with us

Policies and ethics