Skip to main content

Mollusca: Disseminated Neoplasia in Bivalves and the p53 Protein Family

  • Chapter
  • First Online:
Advances in Comparative Immunology

Abstract

Insights into the common mechanisms that likely exist in invertebrate and in vertebrate cancers will lead to a more coherent understanding of the fundamental processes that are altered during tumorigenesis and of tumor immunity. Invertebrates possess an innate immune system, primarily consisting of cellular and humoral defenses. In mollusks, hemocytes provide the first line of defense against foreign particles or organisms but lose their functionality when transformed into neoplastic cells. Neoplasia, or abnormal growth and proliferation of cells, has been described in many invertebrate species ranging from sponges to mollusks and arthropods. Occurrence of neoplasia in invertebrates appears to be by far not as common or as diverse in nature as it is in vertebrates, but some invertebrates even display cancers with metastatic potential, notably the bivalve mollusks. This chapter will focus on a cancer of the hemocytes in marine bivalves called disseminated neoplasia. Disseminated neoplasia in bivalves can be induced by a retrotransposon, appears to have contributing environmental factors, and is one of only four known cases of a transmissible cancers, not only between members of the same species but also between members of closely related species. This chapter will describe how disseminated neoplasia and the components of the innate immune system are linked by one of the central nodes in a wide signaling network that integrates DNA stability, apoptosis, and cell growth: the p53 tumor suppressor family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AboElkhair M, Siah A, Clark KF, McKenna P, Pariseau J, Greenwood SJ, Berthe F, Cepica A (2009a) Reverse transcriptase activity associated with haemic neoplasia in the soft-shell clam Mya arenaria. Dis Aquat Org 84:57–63

    Article  CAS  Google Scholar 

  • AboElkhair M, Synard S, Siah A, Pariseau J, Davidson J, Johnson G, Greenwood SJ, Casey JW, Berthe F, Cepica A (2009b) Reverse transcriptase activity in tissues of the soft shell clam Mya arenaria affected with haemic neoplasia. J Invertebr Pathol 102:133–140

    Article  CAS  PubMed  Google Scholar 

  • AboElkhair M, Iwamoto T, Clark KF, McKenna P, Siah A, Greenwood SJ, Berthe F, Casey JW, Cepica A (2012) Lack of detection of a putative retrovirus associated with haemic neoplasia in the soft shell clam Mya arenaria. J Invertebr Pathol 109:97–104

    Article  CAS  PubMed  Google Scholar 

  • Aguilera F (2017) Neoplasia in mollusks: what does it tell us about cancer in humans? – a review. J Genet Disord 1:07

    Google Scholar 

  • Alderman DJ, van Banning P, Perz-Colomer A (1977) Two European oyster (Ostrea edulis) mortalities associated with an abnormal haemocytic condition. Aquaculture 10:335–340

    Article  Google Scholar 

  • Anand SK, Tikoo SK (2013) Viruses as modulators of mitochondrial functions. Adv Virol 2013:17

    Article  CAS  Google Scholar 

  • Arriagada G, Metzger MJ, Muttray AF, Sherry J, Reinisch C, Street C, Lipkind WI, Goff SP (2014) Activation of transcription and retrotransposition of a novel retroelement, Steamer, in neoplastic hemocytes of the mollusk Mya arenaria. Proc Natl Acad Sci U S A 111:14175–14180

    Article  CAS  Google Scholar 

  • Balint E, Reisman D (1996) Increased rate of transcription contributes to elevated expression of the mutant p53 gene in Burkitt's lymphoma cells. Cancer Res 56:1648–1653

    CAS  PubMed  Google Scholar 

  • Baptiste N, Friedlander P, Chen X, Prives C (2002) The proline-rich domain of p53 is required for cooperation with anti-neoplastic agents to promote apoptosis of tumor cells. Oncogene 21:9–21

    Article  CAS  PubMed  Google Scholar 

  • Barber BJ (2004) Neoplastic diseases of commercially important marine bivalves. Aquat Living Resour 17:449–466

    Article  Google Scholar 

  • Belyi VA, Ak P, Markert E, Wang H, Hu W, Puzio-Kuter A, Levine AJ (2010) The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 2:a001198

    PubMed  Google Scholar 

  • Bos JL (1989) Ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689

    CAS  PubMed  Google Scholar 

  • Böttger S, Jerszyk E, Low B, Walker C (2008) Genotoxic stress-induced expression of p53 and apoptosis in leukemic clam hemocytes with cytoplasmically sequestered p53. Cancer Res 68:777–782

    Article  PubMed  CAS  Google Scholar 

  • Böttger S, Amarosa EJ, Geoghegan P, Walker C (2013) Chronic natural occurrence of disseminated neoplasia in select populations of the soft-shell clam, Mya arenaria, in New England. Northeast Nat 20:430–440

    Article  Google Scholar 

  • Bourdon J-C (2007) p53 and its isoforms in cancer. Br J Cancer 97:277–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bower SM (2010) Synopsis of infectious diseases and parasites of commercially exploited shellfish. http://www.dfo-mpo.gc.ca/science/aah-saa/diseases-maladies/index-eng.html. Accessed November 2017. (Nanaimo, BC, Fisheries and Oceans Canada)

  • Brousseau DJ, Baglivo JA (1991) Field and laboratory comparisons of mortality in normal and neoplastic Mya arenaria. J Invertebr Pathol 57:59–65

    Article  CAS  PubMed  Google Scholar 

  • Burns TF, El-Deiry WS (1999) The p53 pathway and apoptosis. J Cell Physiol 181:231–239

    Article  CAS  PubMed  Google Scholar 

  • Calabro V, Mansueto G, Parisi T, Vivo M, Calogero RA, La Mantia G (2002) The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63. J Biol Chem 277:2674–2681

    Article  CAS  PubMed  Google Scholar 

  • Carballal MJ, Iglesias D, Díaz S, Villalba A (2013) Disseminated neoplasia in clams Venerupis aurea from Galicia (NW Spain): histopathology, ultrastructure and ploidy of the neoplastic cells, and comparison of diagnostic procedures. J Invertebr Pathol 112:16–19

    Article  PubMed  Google Scholar 

  • Carballal MJ, Barber BJ, Iglesias D, Villalba A (2015) Neoplastic diseases of marine bivalves. J Invertebr Pathol 131:83–106

    Article  PubMed  Google Scholar 

  • Carballal MJ, Iglesias D, Darriba S, Cao A, Mariño JC, Ramilo A, No E, Villalba A (2016) Parasites and pathological conditions of the lagoon cockle Cerastoderma glaucum from Galicia (NW Spain) and its resistance to Marteilia cochillia. Dis Aquat Org 122:137–152

    Article  CAS  Google Scholar 

  • Carella F, De Vico G, Landini G (2017) Nuclear morphometry and ploidy of normal and neoplastic haemocytes in mussels. PLoS One 12:e0173219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cetin-Atalay R, Ozturk M (2000) p53 mutations as fingerprints of environmental carcinogens. Pure Appl Chem 72:995–999

    Article  CAS  Google Scholar 

  • Chillemi G, Kehrloesser S, Bernassola F, Desideri A, Dötsch V, Levine AJ, Melino G (2017) Structural evolution and dynamics of the p53 proteins. Cold Spring Harb Perspect Med April 7:a028308

    Article  CAS  Google Scholar 

  • Christensen DJ, Farley A, Kern FG (1974) Epizootic neoplasms in the clam Macoma balthica (L.) from Chesapeake Bay. J Natl Cancer Inst 52:1739–1749

    Article  CAS  PubMed  Google Scholar 

  • Ciocan CM, Moore JD, Rotchell JM (2006) The role of ras gene in the development of haemic neoplasia in Mytilus trossulus. Mar Environ Res Pollut Resp Mar Org (PRIMO 13) 62:S147–S150

    CAS  Google Scholar 

  • Coffill CR, Lee AP, Siau JW, Chee SM, Joseph TL, Tan YS, Madhumalar A, Tay B-H, Brenner S, Verma CS et al (2016) The p53–Mdm2 interaction and the E3 ligase activity of Mdm2/Mdm4 are conserved from lampreys to humans. Genes Dev 30:281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins CM, Mulcahy MF (2013) Cell-free transmission of a haemic neoplasm in the cockle Cerastoderma edule. Dis Aquat Org 54:61–67

    Article  Google Scholar 

  • Copper HL, Mackay CM, Banfield WG (1964) Chromosome studies of a contagious reticulum cell sarcoma of the Syrian hamster. J Natl Cancer Inst 33:691–706

    CAS  PubMed  Google Scholar 

  • Cox RL, Stephens RE, Reinisch CL (2003) p63/73 homologues in surf clam: novel signaling motifs and implications for control of expression. Gene 320:49–58

    Article  CAS  PubMed  Google Scholar 

  • Cremonte F, Vázquez N, Silva MR (2011) Gonad atrophy caused by disseminated neoplasia in Mytilus chilensis cultured in the Beagle Channel, Tierra Del Fuego Province, Argentina. J Shellfish Res 30:845–849

    Article  Google Scholar 

  • De Tomaso AW, Nyholm SV, Palmeri KJ, Ishizuka KJ, Ludington WB, Mitchel K, Weissman IL (2005) Isolation and characterization of a protochordate histocompatibility locus. Nature 438:454–459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ (1979) Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A 76:2420–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz S, Cao A, Villalba A, Carballal MJ (2010) Expression of the mutant protein p53, hsp70 and hsp90 chaperons in the haemolymph of cockles, Cerastoderma edule affected by disseminated neoplasia. Dis Aquat Org 90:219–226

    Article  CAS  Google Scholar 

  • Díaz S, Renault T, Carballal MJ, Villalba A (2011) Disseminated neoplasia in cockles Cerastoderma edule: ultrastructural characterisation of neoplastic cells and effects of disseminated neoplasia on haemolymph cell parameters. Dis Aquat Org 96:157–167

    Google Scholar 

  • el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1:45–49

    Article  CAS  PubMed  Google Scholar 

  • Elston RA, Kent ML, Drum AS (1988a) Progression, lethality and remission of hemic neoplasia in the bay mussel Mytilus edulis. Dis Aquat Org 4:135–142

    Article  Google Scholar 

  • Elston RA, Kent ML, Drum AS (1988b) Transmission of hemic neoplasia in the bay mussel, Mytilus edulis, using whole cells and cell homogenate. Dev Comp Immunol 12:719–727

    Article  CAS  PubMed  Google Scholar 

  • Elston RA, Moore JD, Brooks K (1992) Disseminated neoplasia in bivalve molluscs. Rev Aquat Sci 6:405–466

    Google Scholar 

  • Everett H, McFadden G (1999) Apoptosis: an innate immune response to virus infection. Trends Microbiol 7:160–165

    Article  CAS  PubMed  Google Scholar 

  • Farley CA (1969) Probable neoplastic disease of the hematopoietic system in oysters, Crassostrea virginica and Crassostrea gigas. Natl Cancer Inst Monogr 31:541–555

    Google Scholar 

  • Ford SE, Barber RD, Marks E (1997) Disseminated neoplasia in juvenile eastern oysters Crassostrea virginica, and its relationship to the reproductive cycle. Dis Aquat Org 28:73–77

    Article  Google Scholar 

  • Gestl EE, Boettger SA (2012) Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines. Biochem Biophys Res Commun 423:411–416

    Article  CAS  PubMed  Google Scholar 

  • Gosling E (2003) Bivalve molluscs: biology, ecology and culture. Fishing News Books, a division of Blackwell Publishing, Oxford, UK

    Book  Google Scholar 

  • Greenblatt M, Bennett W, Hollstein M, Harris C (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–4878

    CAS  PubMed  Google Scholar 

  • Greiss S, Schumacher B, Grandien K, Rothblatt J, Gartner A (2008) Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family. BMC Genomics 9:334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harms K, Nozell S, Chen X (2004) The common and distinct target genes of the p53 family transcription factors. Cell Mol Life Sci 61:822–842

    Article  CAS  PubMed  Google Scholar 

  • Hofseth L, Hussain S, Harris CC (2004) p53: 25 years after its discovery. Trends Pharmacol Sci 25:117–181

    Article  CAS  Google Scholar 

  • Holbrook LAC, Butler RA, Cashon RE, Van Beneden RJ (2009) Soft-shell clam (Mya arenaria) p53: a structural and functional comparison to human p53. Gene 433:81–87

    Article  CAS  PubMed  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  CAS  PubMed  Google Scholar 

  • House ML, Kim CH, Reno PW (1998) Soft shell clams Mya arenaria with disseminated neoplasia demonstrate reverse transcriptase activity. Dis Aquat Org 34:187–192

    Article  CAS  Google Scholar 

  • Jessen-Eller K, Kreiling JA, Begley GS, Steele ME, Walker CW, Stephens RE, Reinisch CL (2002) A new invertebrate member of the p53 gene family is developmentally expressed and responds to polychlorinated biphenyls. Environ Health Perspect 110:377–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joerger AC, Fersht AR (2016) The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem 85:375–404

    Article  CAS  PubMed  Google Scholar 

  • Johannesen J, Pie A, Karlsen AE, Larsen ZM, Jensen A, Vissing H, Kristiansen OP, Pociot F, Nerup J (2004) Is mortalin a candidate gene for T1DM. Autoimmunity 37:423–430

    Article  CAS  PubMed  Google Scholar 

  • Kaul SC, Deocaris CC, Wadhwa R (2007) Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 42:263–274

    Article  CAS  PubMed  Google Scholar 

  • Kelley ML, Winge P, Heaney JD, Stephens RE, Farell JH, Van Beneden RJ, Reinisch CL, Lesser MP, Walker CW (2001) Expression of homologues for p53 and p73 in the softshell clam (Mya arenaria), a naturally-occurring model for human cancer. Oncogene 20:748–758

    Article  CAS  PubMed  Google Scholar 

  • Kelley ML, Walker CW, Beneden RJV (2008) Accession number FJ041332, direct submission to Genbank, submitted (13-AUG-2008) School of Marine Sciences. University of Maine, Orono

    Google Scholar 

  • Kent ML, Wilkinson MT, Drum AS, Elston RA (1991) Failure of transmission of hemic neoplasia of bay mussels, Mytilus trossulus, to other bivalve species. J Invertebr Pathol 57:435–436

    Article  CAS  PubMed  Google Scholar 

  • Kouidou S, Agidou T, Kyrkou A, Andreou A, Katopodi T, Georgioua E, Krikelis D, Dimitriadou A, Spanos P, Tsilikas C et al (2005) Non-CpG cytosine methylation of p53 exon 5 in non-small cell lung carcinoma. Lung Cancer 50:299–307

    Article  PubMed  Google Scholar 

  • Kouidou S, Malousi A, Maglaveras N (2006) Methylation and repeats in silent and nonsense mutations of p53. Mutat Res 599:167–177

    Article  CAS  PubMed  Google Scholar 

  • Landsberg JH (1996) Neoplasia and biotoxins in bivalves: is there a connection? J Shellfish Res 15:203–230

    Google Scholar 

  • Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263

    Article  CAS  PubMed  Google Scholar 

  • Lane DP, Cheok CF, Brown C, Madhumalar A, Ghadessy FJ, Verma C (2010a) Mdm2 and p53 are highly conserved from placozoans to man. Cell Cycle 9:540–547

    Article  CAS  PubMed  Google Scholar 

  • Lane DP, Cheok CF, Brown CJ, Madhumalar A, Ghadessy FJ, Verma C (2010b) The Mdm2 and p53 genes are conserved in the Arachnids. Cell Cycle 9:748–754

    Article  CAS  PubMed  Google Scholar 

  • Levin TC, King N (2013) Evidence for sex and recombination in the choanoflagellate Salpingoeca rosetta. Curr Biol 23:2176–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang J, Melino G (2000) The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci 113:1661–1670

    Article  CAS  PubMed  Google Scholar 

  • Linzer DI, Levine AJ (1979) Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Pochampally R, Chen L, Traidej M, Wang Y, Chen J (2000) Nuclear exclusion of p53 in a subset of tumors requires MDM2 function. Oncogene 19:232–240

    Article  CAS  PubMed  Google Scholar 

  • Lu W-J, Amatruda JF, Abrams JM (2009) p53 ancestry: gazing through an evolutionary lens. Nat Rev Cancer 9:758–762

    Article  CAS  PubMed  Google Scholar 

  • Manso CF, Díaz S, Carballal MJ, Villalba A, Romalde JL (2012) Detection of reverse transcriptase activity in golden carpet shell clams (Venerupis aurea) with disseminated neoplasia. Bull Eur Assoc Fish Pathol 32:56–63

    Google Scholar 

  • Marin MC, Kaelin WGJ (2000) p63 and p73: old members of a new family. Biochim Biophys Acta 1470:M93–M100

    CAS  PubMed  Google Scholar 

  • Marine J-C, Jochemsen AG (2005) Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun 331:750–760

    Article  CAS  PubMed  Google Scholar 

  • Metzger MJ, Reinisch C, Sherry J, Goff SP (2015) Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161:255–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger M, Villalba A, Carballal M, Iglesias D, Sherry J, Reinisch C, Muttray A, Baldwin S, Goff S (2016) Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 534:705–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miciak J, Bunz F (2016) Long story short: p53 mediates innate immunity. Biochim Biophys Acta 1865:220–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miosky D, Smolowitz R, Reinisch C (1989) Leukemia cell specific protein of the bivalve mollusc Mya arenaria. J Invertebr Pathol 53:32–40

    Article  CAS  PubMed  Google Scholar 

  • Mix MC (1983) Haemic neoplasia of bay mussels, Mytilus edulis L., from Oregon: Occurence, prevalence, seasonality and histopathological progression. J Fish Dis 6:239–248

    Article  Google Scholar 

  • Moll UM, Slade N (2004) p63 and p73: roles in development and tumor formation. Mol Cancer Res 2:371–386

    CAS  PubMed  Google Scholar 

  • Moll UM, Zaika A (2001) Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett 493:65–69

    Article  CAS  PubMed  Google Scholar 

  • Moll UM, Ostermeyer AG, Haladay R, Winkfield B, Frazier M, Zambetti G (1996) Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol 16:1126–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momand J, Villegas A, Belyi VA (2011) The evolution of MDM2 family genes. Gene 486:23–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murgia C, Pritchard JK, Kim SY, Fassati A, Weiss RA (2006) Clonal origin and evolution of a transmissible cancer. Cell 126:477–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muttray AF, Cox RL, St-Jean SD, van Poppelen P, Reinisch CL (2005) Identification and phylogenetic comparison of p53 in two distinct mussel species (Mytilus). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 140:237–250

    Article  CAS  Google Scholar 

  • Muttray AF, Cox RL, Reinisch CL, Baldwin SA (2007) Identification of DeltaN isoform and polyadenylation site choice variants in molluscan p63/p73-like homologues. Mar Biotechnol 9:217–230

    Article  CAS  Google Scholar 

  • Muttray AF, Schulte PM, Baldwin SA (2008) Invertebrate p53-like mRNA isoforms are differentially expressed in mussel haemic neoplasia. Mar Environ Res 66:412–421

    Article  CAS  PubMed  Google Scholar 

  • Muttray AF, O'Toole TF, Morrill W, Van Beneden RJ, Baldwin SA (2010) An invertebrate mdm homolog interacts with p53 and is differentially expressed together with p53 and ras in neoplastic Mytilus trossulus haemocytes. Comp Biochem Physiol Part B 156:298–308

    Article  CAS  Google Scholar 

  • Muttray A, Reinisch C, Miller J, Ernst W, Gillis P, Losier M, Sherry J (2012) Haemocytic leukemia in Prince Edward Island (PEI) soft shell clam (Mya arenaria): spatial distribution in agriculturally impacted estuaries. Sci Total Environ 424:130–142

    Article  CAS  PubMed  Google Scholar 

  • Nedelcu AM, Tan C (2007) Early diversification and complex evolutionary history of the p53 tumor suppressor gene family. Dev Genes Evol 217:801–806

    Article  PubMed  Google Scholar 

  • Noda T (2011) The maternal genes Ci-p53/p73-a and Ci-p53/p73-b regulate zygotic ZicL expression and notochord differentiation in Ciona intestinalis embryos. Dev Biol 360:216–229

    Article  CAS  PubMed  Google Scholar 

  • Noël D, Pipe RK, Elston RA, Bachere E, Mialhe E (1994) Antigenic characterization of haemocyte subpopulations in the mussel Mytilus edulis by means of monoclonal antibodies. Mar Biol 119:549–556

    Article  Google Scholar 

  • Nzoughet JK, Hamilton JTG, Botting CH, Douglas A, Devine L, Nelson J, Elliott CT (2009) Proteomics identification of azaspiracid toxin biomarkers in blue mussels, Mytilus edulis. Mol Cell Proteomics MCP 8:1811–1822

    Article  CAS  PubMed  Google Scholar 

  • O'Brate A, Giannakakou P (2003) The importance of p53 location: nuclear or cytoplasmic zip code? Drug Resist Updat 6:313–322

    Article  CAS  PubMed  Google Scholar 

  • Oprandy JJ, Chang PW (1983) 5-bromodeoxyuridine induction of hematopoietic neoplasia and retrovirus activation in the soft-shell clam, Mya arenaria. J Invertebr Pathol 42:196–206

    Article  CAS  PubMed  Google Scholar 

  • Oprandy JJ, Chang PW, Pronovost AD, Cooper KR, Brown RS, Yates VJ (1981) Isolation of a viral agent causing hematopoietic neoplasia in the soft-shell clam, Mya arenaria. J Invertebr Pathol 38:45–51

    Article  Google Scholar 

  • Ou HD, Löhr F, Vogel V, Mäntele W, Dötsch V (2007) Structural evolution of C-terminal domains in the p53 family. EMBO J 26:3463–3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owens L, Malham S (2015) Review of the RNA interference pathway in molluscs including some possibilities for use in bivalves in aquaculture. J Mar Sci Eng 3:87

    Article  Google Scholar 

  • Pankow S, Bamberger C (2007) The p53 tumor suppressor-like protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis. PLoS One 2:e782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavletich NP, Chambers KA, Pabo CO (1993) The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev 7:2556–2564

    Article  CAS  PubMed  Google Scholar 

  • Pearse AM, Swift K (2006) Allograft theory: transmission of devil facial-tumour disease. Nature 439:549

    Article  CAS  PubMed  Google Scholar 

  • Poder M, Auffret M (1986) Sarcomatous lesion in the cockle Cerastoderma edule: I. Morphology and population survey in Brittany, France. Aquaculture 58:1–8

    Google Scholar 

  • Potts M-S (1996) Effects of hematopoietic neoplasia on reproduction and population size distribution in the softshell clam. J Shellfish Res 15:519

    Google Scholar 

  • Reinisch CL, Charles AM, Troutner J (1983) Unique antigens on neoplastic cells of the soft shell clam Mya arenaria. Dev Comp Immunol 7:33–39

    Article  CAS  PubMed  Google Scholar 

  • Rhodes LD, Van Beneden RJ (1997) Isolation of the cDNA and characterization of mRNA expression of ribosomal protein S19 from the soft-shell clam, Mya arenaria. Gene 197:295–304

    Article  CAS  PubMed  Google Scholar 

  • Robert J (2010) Comparative study of tumorigenesis and tumor immunity in invertebrates and nonmammalian vertebrates. Dev Comp Immunol 34:915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romalde JL, Luz Vilarino M, Beaz R, Rodriguez JM, Diaz S, Villalba A, Carballal MJ (2007) Evidence of retroviral etiology for disseminated neoplasia in cockles (Cerastoderma edule). J Invertebr Pathol 94:95–101

    Article  PubMed  Google Scholar 

  • Rowley AF, Powell A (2007) Invertebrate immune systems–specific, quasi-specific, or nonspecific? J Immunol 179:7209–7214

    Article  CAS  PubMed  Google Scholar 

  • Ruiz P, Díaz S, Orbea A, Carballal MJ, Villalba A, Cajaraville MP (2013) Biomarkers and transcription levels of cancer-related genes in cockles Cerastoderma edule from Galicia (NW Spain) with disseminated neoplasia. Aquat Toxicol 136-137:101–111

    Article  CAS  PubMed  Google Scholar 

  • Ruiz M, Darriba S, Rodríguez R, Lopez C (2015) Marteilia sp. and other parasites and pathological conditions in Solen marginatus populations along the Galician coast (NW Spain). Dis Aquat Org 112:177–184

    Article  CAS  Google Scholar 

  • Sacht G, Brigelius-Flohe R, Kiess M, Sztajer H, Flohe L (1999) ATP-sensitive association of mortalin with the IL-1 receptor type I. Biofactors 9:49–60

    Article  CAS  PubMed  Google Scholar 

  • Seton-Rogers S (2016) Tumour metabolism: adapting to harsh conditions. Nature Review Cancer 16:616–617

    Article  CAS  Google Scholar 

  • Shabalina S, Ogurtsov A, Spiridonov N (2006) A periodic pattern of mRNA secondary structure created by the genetic code. Nucleic Acids Res 34:2428–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shadfan M, Lopez-Pajares V, Yuan Z-M (2012) MDM2 and MDMX: alone and together in regulation of p53. Translat Cancer Res 1:88–89

    Google Scholar 

  • Shieh S-Y, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334

    Article  CAS  PubMed  Google Scholar 

  • Siah A, Delaporte M, Pariseau J, McKenna P, Berthe FCJ (2008) Patterns of p53, p73 and mortalin gene expression associated with haemocyte polyploidy in the soft-shell clam, Mya arenaria. J Invertebr Pathol 98:148–152

    Article  CAS  PubMed  Google Scholar 

  • Siah A, McKenna P, Danger JM, Johnson G, Berthe FCJ (2011) Induction of transposase and polyprotein RNA levels in disseminated neoplastic hemocytes of soft-shell clams: Mya arenaria. Dev Comp Immunol 35:151–154

    Article  CAS  PubMed  Google Scholar 

  • Siddlea HV, Kreissb A, Tovarb C, Yuena CK, Chengc Y, Belovc K, Swiftd K, Pearsed A-M, Hamedee R, Jonese ME et al (2013) Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer. PNAS 110:5103–5108

    Article  Google Scholar 

  • Smolarz K, Renault T, Wolowicz M (2005) Histology, cytogenetics and cytofluorymetry in diagnosis of neoplasia in Macoma balthica (Bivalvia, L.) from the southern Baltic Sea. Caryologia 58:212–219

    Article  Google Scholar 

  • Smolowitz RM, Miosky D, Reinisch CL (1989) Ontogeny of leukemic cells of the soft shell clam. J Invertebr Pathol 53:41–51

    Article  CAS  PubMed  Google Scholar 

  • Spadafora C (2004) Endogenous reverse transcriptase: a mediator of cell proliferation and differentiation. Cytogenet Genome Res 105:346–350

    Article  CAS  PubMed  Google Scholar 

  • Stephens RE, Walker CW, Reinisch CL (2001) Multiple protein differences distinguish clam leukemia cells from normal hemocytes: evidence for the involvement of p53 homologues. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 129:329–338

    Article  CAS  Google Scholar 

  • Stifanic M, Micic M, RamÅ¡ak A, BlaÅ¡kovic S, Ruso A, Zahn RK, Batel R (2009) p63 in Mytilus galloprovincialis and p53 family members in the phylum Mollusca. Comp Biochem Physiol B: Biochem Mol Biol 154:264–273

    Article  CAS  Google Scholar 

  • St-Jean SD, Stephens RE, Courtenay SC, Reinisch CL (2005) Detecting p53 family proteins in leukemia cells of Mytilus edulis from Pictou Harbour, Nova Scotia. Can J Fish Aquat Sci 62:2055–2066

    Article  CAS  Google Scholar 

  • Suh EK, Yang A, Kettenbach A, Bamberger C, Michaelis AH, Zhu Z, Elvin JA, Bronson RT, Crum CP, McKeon F (2006) p63 protects the female germ line during meiotic arrest. Nature 444:624–628

    Article  CAS  PubMed  Google Scholar 

  • Sunila I (2003) Disseminated sarcoma in the soft shell clam (Mya arenaria) – physiological and molecular aspects. AAC Spec. Publ. 6:56–59

    Google Scholar 

  • Taraska NG, Böttger AS (2013) Selective initiation and transmission of disseminated neoplasia in the soft shell clam Mya arenaria dependent on natural disease prevalence and animal size. J Invertebr Pathol 112:94–101

    Article  CAS  PubMed  Google Scholar 

  • Thanos CD, Bowie JU (1999) p53 family members p63 and p73 are SAM domain-containing proteins. Protein Sci 8:1708–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilenko E, Baldwin SA (2013) p53 sequence polymorphisms in late-stage leukemic Mytilus edulis are homologous with M. trossulus p53. Mar Biol 160:1751–1760

    Article  CAS  Google Scholar 

  • Vassilenko EI, Baldwin SA (2014) Using flow cytometry to detect haemic neoplasia in mussels (Mytilus trossulus) from the Pacific Coast of Southern British Columbia, Canada. J Invertebr Pathol 117:68–72

    Article  PubMed  Google Scholar 

  • Vassilenko EI, Muttray AF, Schulte PM, Baldwin SA (2010) Variations in p53-like cDNA sequence are correlated with mussel haemic neoplasia: a potential molecular-level tool for biomonitoring. Mutat Res 701:145–152

    Article  CAS  PubMed  Google Scholar 

  • Vázquez N, Cremonte F (2017) Review of parasites and pathologies of the main bivalve species of commercial interest of Argentina and Uruguay, Southwestern Atlantic Coast. Arch Parasitol 1:2

    Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  • von der Chevallerie K, Rolfes S, Schierwater B (2014) Inhibitors of the p53–Mdm2 interaction increase programmed cell death and produce abnormal phenotypes in the placozoon Trichoplax adhaerens (FE Schulze). Dev Genes Evol 224:79–85

    Article  CAS  PubMed  Google Scholar 

  • Voskoboynik A, Newman AM, Corey DM, Sahoo D, Pushkarev D, Neff NF, Passarelli B, Koh W, Ishizuka KJ, Palmeri KJ et al (2013) Identification of a colonial chordate histocompatibility gene. Science 341:384–387

    Article  CAS  PubMed  Google Scholar 

  • Wadhwa R, Yaguchi T, Hasan MK, Mitsui Y, Reddel RR, Kaul SC (2002) Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp Cell Res 274:246

    Article  CAS  PubMed  Google Scholar 

  • Walker C, Bottger S, Low B (2006) Mortalin-based cytoplasmic sequestration of p53 in a nonmammalian cancer model. Am J Pathol 168:1526–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker C, Bottger SA, Mulkern J, Jerszyk E, Litvaitis M, Lesser M (2009) Mass culture and characterization of tumor cells from a naturally occurring invertebrate cancer model: applications for human and animal disease and environmental health. Biol Bull 216:23–39

    Article  PubMed  Google Scholar 

  • Walker CL, Van Benedeny RJ, Muttray AF, Bottger SA, Kelley ML, Tucker AE, Kelley Thomas W (2011) p53 superfamily proteins in marine bivalve cancer and stress biology. Adv Mar Biol 59:1–36

    Article  PubMed  Google Scholar 

  • Walker C, Low B, Böttger SA (2012) Mortalin in invertebrates and the induction of apoptosis by wild-type p53 following defeat of mortalin-based cytoplasmic sequestration in cancerous clam hemocytes. In: Kaul S, Wadhwa R (eds) Mortalin biology: life, stress and death. Springer, Dordrecht, pp 97–113

    Chapter  Google Scholar 

  • Wolowicz M, Smolarz K, Sokolowski A (2005) Neoplasia in estuarine bivalves: effect of feeding behaviour and pollution in the Gulf of Gdansk (Baltic Sea, Poland). Springer, Berlin

    Google Scholar 

  • Yoon M-K, Ha J-H, Lee M-S, Chi S-W (2015) Structure and apoptotic function of p73. BMB Rep 48:81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude to Charles Walker, Antonio Villalba, and Patricia Keen for their thorough review of this chapter and for their thoughtful contributions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muttray, A.F., Vassilenko, K. (2018). Mollusca: Disseminated Neoplasia in Bivalves and the p53 Protein Family. In: Cooper, E. (eds) Advances in Comparative Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-76768-0_28

Download citation

Publish with us

Policies and ethics