Skip to main content

Classical and Digital Technologies for the Pythagorean Theorem

  • Chapter
  • First Online:
Uses of Technology in Primary and Secondary Mathematics Education

Part of the book series: ICME-13 Monographs ((ICME13Mo))

Abstract

This paper aims to discuss the use of material tools, called mathematical machines, and digital tools in approaching the Pythagorean theorem. These mathematical machines are related to different proofs of the theorem. Teaching experiments with 13-year old students were carried out within the laboratory approach developed from the theoretical frameworks of the Theory of Semiotic Mediation and Instrumental approach in mathematics education. Their analysis shows that behind the kinesthetic experience with the machines, there are important cognitive processes such as the identification of invariants, relationships between the components and usage schemes. It also shows the only manipulation of the first machine does not imply the emergence of the mathematical meanings embedded in the materials tools and the crucial role of the teacher with his different instrumental orchestrations in that process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.macchinematematiche.org/ and http://archiviomacmat.unimore.it/CR/Copertina.html. Accessed: 2 January 2017.

  2. 2.

    http://www.mathunion.org/fileadmin/ICMI/files/Digital_Library/ICMEs/Bulletin_Maschietto_BartoliniBussi2_01.pdf. Accessed: 2 January 2017.

  3. 3.

    https://www.unige.ch/math/EnsMath/Rome2008/WG4/WG4.html. Accessed: 2 January 2017.

  4. 4.

    http://www.cut-the-knot.org/pythagoras/index.shtml. Accessed: 2 January 2017.

  5. 5.

    http://www.dynamicgeometry.com/JavaSketchpad/Gallery/Geometry/Pythagoras.html. Accessed: 2 January 2017.

  6. 6.

    http://nlvm.usu.edu/en/nav/frames_asid_164_g_3_t_3.html?open=instructions&from=category_g_3_t_3.html. Accessed: 2 January 2017.

  7. 7.

    Pitagora e il suo teorema, https://php.math.unifi.it/archimede/archimede/pitagora/immagini/virtuale.php?id=1. Accessed: 2 January 2017.

  8. 8.

    Referring to the example of a pair of compasses (Bartolini Bussi & Maschietto, 2008), this can be used as technical tools to produce round shapes. It is externally oriented (Vygotskij, 1978). As a psychological tool it has the potentiality to evoke the peculiar feature of circles (i.e., the constancy of the radius) and to create the link with the geometrical static relational definition of Euclid. It is internally oriented (Vygotskij, 1978).

  9. 9.

     http://www.umi-ciim.it/wp-content/uploads/2013/10/Mat2003.zip. Accessed: 2 January 2017. 


  10. 10.

    http://www.macchinematematiche.org/index.php?option=com_content&view=article&id=162&Itemid=243&lang=it. Accessed: 2 January 2017.

  11. 11.

    They regularly follow the methodology of mathematics laboratory with their classes and take part of the research team of mathematics education at the Laboratory of Mathematical Machines at the University of Modena and Reggio Emilia.

References

  • Anichini, G., Arzarello, F., Ciarrapico, L., & Robutti, O. (Eds.). (2003). Matematica 2003. La matematica per il cittadino. Attività didattiche e prove di verifica per un nuovo curricolo di Matematica (Ciclo secondario). Lucca: Matteoni stampatore.

    Google Scholar 

  • Barbieri, S., Scorcioni, F., & Maschietto, M. (2014). Scoperta del Teorema di Pitagora con le macchine matematiche: elementi di discussione di didattica laboratoriale. In B. D’Amore & S. Sbaragli (Eds.), Parliamo tanto e spesso di didattica della matematica. Incontri con la matematica n. 28 (pp. 155–158). Bologna: Pitagora Editrice.

    Google Scholar 

  • Bardelle, C. (2010). Visual proofs: An experiment. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of CERME 6 (pp. 251–260). Lyon: INRP.

    Google Scholar 

  • Bartolini Bussi, M. G. (2010). Historical artefacts, semiotic mediation and teaching proof. In G. Hanna, H. N. Jahnke, & H. Pulte (Eds.), Explanation and proof in mathematics (pp. 151–167). New York: Springer.

    Chapter  Google Scholar 

  • Bartolini Bussi, M. G., & Borba, M. C. (Eds.). (2010). The role of resources and technology in mathematics education. ZDM Mathematics Education, 42(1), 1–4.

    Article  Google Scholar 

  • Bartolini Bussi, M. G., Garuti, R., Martignone, F., & Maschietto, M. (2011). Tasks for teachers in the MMLAB-ER Project. In B. Ubuz (Ed.), Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 127–130). Ankara, Turkey: PME.

    Google Scholar 

  • Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. In L. English et al. (Eds.), Handbook of international research in mathematics education (II ed., pp. 746–783). New York, NY: Routledge.

    Google Scholar 

  • Bartolini Bussi, M. G., & Maschietto, M. (2006). Macchine Matematiche: dalla storia alla scuola. Collana Convergenze. Milano: Springer.

    Google Scholar 

  • Bartolini Bussi, M. G., & Maschietto, M. (2008). Machines as tools in teacher education. In D. Tirosh & T. Wood (Eds.), Tools and processes in mathematics teacher education, The international handbook of mathematics teacher education (Vol. 2, pp. 183–208). Rotterdam: SensePublishers.

    Google Scholar 

  • Drijvers, P. (2015). Digital technology in mathematics education: Why it works (or doesn’t). In S. J. Cho (Ed.), Selected regular lectures from the 12th international congress on mathematical education (pp. 135–151). Switzerland: Springer.

    Chapter  Google Scholar 

  • Drijvers, P., Ball, L., Barzel, B., Heid, M. K., Cao, Y., & Maschietto, M. (2016). Use of technology in lower secondary mathematics education. ICME 13 Topical Surveys. Switzerland: Springer.

    Google Scholar 

  • Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool; instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75(2), 213–234.

    Article  Google Scholar 

  • Duval, R. (2005). Les conditions cognitives de l'apprentissage de la géométrie: développement de la visualisation, différenciation des raisonnements et coordination de leurs fonctionnements. Annales de didactique et de sciences cognitives, 10, 5–53.

    Google Scholar 

  • Eaves, J. C. (1954). Pythagoras, his theorem and some gadgets. Mathematics Magazine, 27(3), 161–167.

    Article  Google Scholar 

  • Giacardi, L. (2012). L’emergere dell’idea di laboratorio di matematica agli inizi del Novecento. In O. Robutti & M. Mosca (Eds.), Atti del Convegno Di.Fi.Ma. 2011 (pp. 55–66). Torino: Kim Williams Books.

    Google Scholar 

  • Hoyles, C., & Healy, L. (2007). Curriculum change and geometrical reasoning. In P. Boero (Ed.), Theorems in schools: From history, epistemology and cognition to classroom practice (pp. 81–115). Rotterdam: Sense Publishers.

    Google Scholar 

  • II Giardino di Archimede. (2001). Pitagora e il suo teorema. Firenze: Edizioni Polistampa.

    Google Scholar 

  • Kratky, J. L. (2016). Pedagogical moves as characteristics of one instructor’s instrumental orchestrations with tinkerplots and the TI-73 explorer: A case study (Doctoral dissertations). Retrieved from http://scholarworks.wmich.edu/dissertations/2480 (Order No. 2480).

  • Mariotti, M. A. (2005). La geometria in classe. Riflessioni sull’insegnamento e apprendimento della geometria. Bologna: Pitagora Editrice.

    Google Scholar 

  • Mariotti, M. A. (2007). Geometrical proof. In P. Boero (Ed.), Theorems in schools: From history, epistemology and cognition to classroom practice (pp. 285–304). Rotterdam: Sense Publishers.

    Google Scholar 

  • Maschietto, M., & Bartolini Bussi, M. G. (2011). Mathematical machines: From history to the mathematics classroom. In P. Sullivan & O. Zavlasky (Eds.), Constructing knowledge for teaching secondary mathematics: Tasks to enhance prospective and practicing teacher learning (Vol. 6, pp. 227–245). New York: Springer.

    Chapter  Google Scholar 

  • Maschietto, M., & Bartolini Bussi, M. G. (2014). The laboratory of mathematical machines of Modena. ICMI BULLETIN. Papers from unpublished issues of the ICMI Bulletin. http://www.mathunion.org/fileadmin/ICMI/files/Digital_Library/ICMEs/Bulletin_Maschietto_BartoliniBussi2_01.pdf. Accessed January 2, 2017.

  • Maschietto, M., & Soury-Lavergne, S. (2013). Designing a duo of material and digital artifacts: The pascaline and Cabri Elem e-books in primary school mathematics. ZDM Mathematics Education, 45(7), 959–971.

    Article  Google Scholar 

  • Maschietto, M., & Trouche, L. (2010). Mathematics learning and tools from theoretical, historical and practical points of view: The productive notion of mathematics laboratories. ZDM Mathematics Education, 42, 33–47.

    Article  Google Scholar 

  • Monaghan, J., Touche, L., & Borwein, J. M. (2016). Tools and mathematics. Instruments for learning. Mathematics education library. Switzerland: Springer.

    Google Scholar 

  • Moutsios-Rentzos, A., Spyrou, P., & Peteinara, A. (2014). The objectification of the right triangle in the teaching of the Pythagorean theorem: An empirical investigation. Educational Studies in Mathematics, 85, 29–51.

    Article  Google Scholar 

  • Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8(6), 372–377.

    Google Scholar 

  • Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: A developmental perspective. Interacting with Computers, 15(5), 665–691.

    Article  Google Scholar 

  • Rufus, I. (1975). Two mathematical papers without words. Mathematics Magazine, 48(4), 198. For Fig. 11.1 Copyright 1975 Mathematical Association of America. All Rights Reserved.

    Google Scholar 

  • Sinclair, N., Pimm, D., Skelin, M., & Zbiek, R. M. (2012). Developing essential understanding of geometry for teaching mathematics in grades 6-8. Reston: NCTM.

    Google Scholar 

  • Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: Guiding student’s command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281–307.

    Article  Google Scholar 

  • Vygotskij, L. S. (1978). Mind in society. The development of higher psychological processes. Harvard, MA: Harvard University Press.

    Google Scholar 

Download references

Acknowledgements

I wish to sincerely thank the teachers Stefano Barbieri and Francesca Scorcioni, and the anonymous referees for their precious suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Maschietto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maschietto, M. (2018). Classical and Digital Technologies for the Pythagorean Theorem. In: Ball, L., Drijvers, P., Ladel, S., Siller, HS., Tabach, M., Vale, C. (eds) Uses of Technology in Primary and Secondary Mathematics Education. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-319-76575-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76575-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76574-7

  • Online ISBN: 978-3-319-76575-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics