Skip to main content

Infrasound Monitoring of Volcanic Eruptions and Contribution of ARISE to the Volcanic Ash Advisory Centers

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

In the current society, volcanic eruptions can have a great impact due to the escalation in communications and transport starting from 1950. With the advent of civil aviation and the exponential growth in the air traffic, the problem of a volcanic ash encounter has become an issue of paramount importance, which needs to be addressed in real time. This chapter describes the status of the art in volcano monitoring using infrasound technology at global, regional and local scale, the contribution of the ARISE project to volcano monitoring and to Volcanic Ash Advisory Centers (VAACs), and highlights the need for an integration of the CTBT IMS infrasound network with local and regional infrasound arrays capable of providing a timely early warning to VAACs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bonadonna C, Folch A, Loughlin S, Puempel H (2012) Future developments in modeling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on ash dispersal forecast and civil aviation. Bull Volcanol 74(1):1–10. https://doi.org/10.1007/s00445-011-0508-6

    Article  Google Scholar 

  • Campus P, Christie DR, Brown D (2005) Detection of infrasound from the eruption of Manam volcano on January 27, 2005. In: Proceedings of the 2005 infrasound technology workshop, Tahiti, 28 Nov–2 Dec 2005

    Google Scholar 

  • Campus P (2006) Monitoring volcanic eruptions with the IMS infrasound network. Inframatics 15:6–12

    Google Scholar 

  • Campus P, Christie DR (2010) The IMS infrasound network: worldwide observations of infrasonic waves. Infrasound monitoring for atmospheric studies. Springer Geosciences, p 745. ISBN: 978-1-4020-9507-8

    Google Scholar 

  • Cansi Y (1995) An automatic seismic event processing for detection and location: the P.M.C.C. Method. Geophys Res Lett 22:1021–1024. https://doi.org/10.1029/95GL00468

    Article  Google Scholar 

  • Cansi Y, Le Pichon A (2008) Infrasound event detection using the progressive multi-channel correlation algorithm. Handbook of signal processing in acoustics, chapter 77. Springer, New York, pp 1423–1434. ISBN: 978-0-387-77698-9

    Chapter  Google Scholar 

  • Casadevall TJ (1994) The 1989–1990 eruption of Redoubt volcano, Alaska: impacts on aircraft operations. J Volcanol Geoth Res 62(1):301–316

    Article  Google Scholar 

  • Caudron C, Taisne B, Garcés M, Alexis LP, Mialle P (2015) On the use of remote infrasound and seismic stations to constrain the eruptive sequence and intensity for the 2014 Kelud eruption. Geophys Res Lett 42:6614–6621. https://doi.org/10.1002/2015GL064885

    Article  Google Scholar 

  • Chen P, Christie DR (1995) Infrasonic detection of volcanic explosions by the International Monitoring System: implications for aviation safety. In: 2nd meeting international civil aviation volcanic ash warning study group, 2 Nov 1995, Montreal, Canada

    Google Scholar 

  • Chen P, Wotawa G, Becker A (2008) The importance of atmospheric transport modelling: over ten years of cooperation between the World Meteorological Organization and the CTBTO, CTBTO Spectrum, p 11

    Google Scholar 

  • Christie DR, Campus P (2010) The IMS infrasound network: design and establishment of infrasound stations. Infrasound monitoring for atmospheric studies. Springer Geosciences, p 745. ISBN: 978-1-4020-9507-8

    Google Scholar 

  • Cosher CR, Dunn MG (2016) Comparison of the sensitivity to foreign particle ingestion of the GE-F101 and P/W-F100 engines to modern aircraft. J Eng Gas Turbines Power 138(12):121201, Paper No: GTP-16-1251. https://doi.org/10.1115/1.4034021

    Article  Google Scholar 

  • Dabrowa AL, Green DN, Rust AC, Phillips JC (2011) A global study of volcanic infrasound characteristics and the potential for long-range monitoring. Earth Planet Sci Lett 310:369–379

    Article  Google Scholar 

  • Dahlman O, Mackby J, Mykkeltveit S, Haak H (2011) Detect and deter: can countries verify the nuclear test ban?. Springer

    Google Scholar 

  • Donn WL, Balachandran NK (1981) Mount St. Helens eruption of 18 May 1980: air waves and explosive yield. Science 213:539–541

    Article  Google Scholar 

  • Evans JE (1991) Development of a real-time ATC volcanic ash advisory system based on the future aviation weather system. In Proceedings of the first international symposium on volcanic ash and aviation safety. US geological survey bulletin 2047

    Google Scholar 

  • Fee D, McNutt SR, Lopez T, Arnoult KM, Szuberla CAL, Olson JV (2013) Combining local and remote infrasound recordings from the 2009 redoubt volcano eruption. J Volcanol Geoth Res 259:100–114. https://doi.org/10.1016/j.jvolgeores.2011.09.012

    Article  Google Scholar 

  • Garcés M, Harris A, Hetzer C, Johnson J, Rowland S, Marchetti E, Okubo P (2003) Infrasonic tremor observed at Kilauea Volcano, Hawaii. Geophys Res Lett 30:20. https://doi.org/10.1029/2003GL018038

    Article  Google Scholar 

  • Garcés M, Fee D, Steffke A, McCormack DP, Servranckx R, Bass H, Hetzer C, Hedlin M, Matoza RS, Yepez H, Ramon P (2008) Capturing the acoustic fingerprint of stratospheric ash injection. EOS Trans Am Geophys Union 89(40):377–378

    Article  Google Scholar 

  • Global Volcanism Program (2015) Report on Calbuco (Chile). Venzke E (ed) Bulletin of the global volcanism network, vol 40, p 6, Smithsonian Institution

    Google Scholar 

  • Green DN, Bowers D (2010) Estimating the detection capability of the International Monitoring System infrasound network. J Geophys Res 115:D18. https://doi.org/10.1029/2010JD014017

    Article  Google Scholar 

  • Guffanti M, Casadevall TJ, Budding K (2010) Encounters of aircraft with volcanic ash clouds; a compilation of known incidents, 1953–2009. U.S. geological survey data series 545, Ver. 1.0, p 12, plus 4 appendixes including the compilation database. http://pubs.usgs.gov/ds/545

  • IAVWOPSG: International Airways Volcano Watch Operations Group (2008) Volcano infrasound project between Toulouse VAAC and CTBTO, IAVWOPSG. In: Fourth meeting, /4-IP/8, 2/9/2008, 15–19 Sept 2008, Paris, France

    Google Scholar 

  • IAVWOPSG: International Airways Volcano Watch Operations Group (2011) Report on IAVWOPSG/5 conclusion 5/14—use of infrasound data in support of the VAACs, IAVWOPSG. In: Sixth meeting, /6-WP/16, 25/7/11, 15–23 Sept 2011, Dakar, Senegal

    Google Scholar 

  • ICAO: International Civil Aviation Organization (2007) Annex 3 to the convention on international civil aviation. Meteorological service for international air navigation, 16th edn. http://www.wmo.int/pages/prog/www/ISS/Meetings/CT-MTDCF-ET-DRC_Geneva2008/Annex3_16ed.pdf

  • Lacanna G, Ichihara M, Iwakuni M, Takeo M, Iguchi M, Ripepe M (2014) Influence of atmospheric structure and topography on infrasonic wave propagation. J Geophys Res Solid Earth 119:2988–3005. https://doi.org/10.1002/2013JB010827

    Article  Google Scholar 

  • Le Pichon A, Vergoz J, Blanc E, Guilbert J, Ceranna L, Evers LG, Brachet N (2009) Assessing the performance of the International Monitoring System infrasound network: geographical coverage and temporal variabilities. J Geophys Res 114:D08112. https://doi.org/10.1029/2008JD010907

    Article  Google Scholar 

  • Le Pichon A, Ceranna L, Vergoz J (2012) Incorporating numerical modelling into estimates of the detection capability of the IMS infrasound network. J Geophys Res. https://doi.org/10.1029/2011jd0166702009

  • Le Pichon A, Assink JD, Heinrich P, Blanc E, Charlton-Perez A, Lee CF, Keckhut P, Hauchecorne A, Rüfenacht R, Kämpfer N, Drob DP, Smets PSM, Evers LG, Ceranna L, Pilger C, Ross O, Claud C (2015) Comparison of co-located independent ground-based middle-atmospheric wind and temperature measurements with Numerical Weather Prediction models. J Geophys Res 120. https://doi.org/10.1002/2015jd023273

    Google Scholar 

  • Marty J (2019) The IMS infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62

    Google Scholar 

  • Matoza RS, Vergoz J, Le Pichon A, Ceranna L, Green DN, Evers LG, Ripepe M, Campus P, Liszka L, Kvaerna T, Kjartansson E, Höskuldsson Á (2011) Long-range acoustic observations of the Eyjafjallajkull eruption, Iceland, April–May 2010 Geophys Res Lett 38 (6)

    Google Scholar 

  • Matoza RS, Green DN, Le Pichon A, Shearer PM, Fee D, Mialle P, Ceranna L (2017) Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network. J Geophys Res Solid Earth 122. https://doi.org/10.1002/2016jb013356

    Google Scholar 

  • Matoza R, Fee D, Green D, Mialle P (2019) Volcano infrasound and the international monitoring system. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1023–1077

    Google Scholar 

  • McCormack D, Bass H, Garcés MA, Hedlin M, Yepez H (2006) Acoustic Surveillance for Hazardous Eruptions (ASHE): a proof-of-concept experiment for operational near-real-time infrasonic remote sensing. Cities of Volcanoes, Quito, p 2006

    Google Scholar 

  • Mialle P, Brachet N, Gaillard P, Le Pichon A, Blanc E, Tailpied D, Marchetti E, Ripepe M, Husson P, Ceranna L, Khemiri L, Friha N (2015) Towards a volcanic notification system with infrasound data in support of the VAACs in the framework of ARISE project. In: Science and Technology Conference, Vienna, Austria, 22–26 June 2015

    Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238. https://doi.org/10.1029/JC087iC02p01231

    Article  Google Scholar 

  • Ponceau D, Bosca L (2010) Low-noise broadband microbarometers. Infrasound monitoring for atmospheric studies. Springer Geosciences, p 745. ISBN: 978-1-4020-9507-8

    Google Scholar 

  • Ripepe M, De Angelis S, Lacanna G, Poggi P, Williams C, Marchetti E, Donne DD, Ulivieri G (2009) Tracking pyroclastic flows at Soufrière Hills Volcano. EOS Trans AGU 90(27):229–230. https://doi.org/10.1029/2009EO270001

    Article  Google Scholar 

  • Ripepe M, Marchetti E (2002) Array tracking of infrasonic sources at Stromboli volcano. Geophys Res Lett 29(22):2076. https://doi.org/10.1029/2002GL015452

    Article  Google Scholar 

  • Ripepe M, Marchetti E (2019) Infrasound monitoring of volcano-related hazards for civil protection. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1107–1140

    Google Scholar 

  • Romero JE, Morgavi D, Arzilli F, Dagad R, Casellie A, Reckziegele F, Viramonte J, Díaz-Alvarado J, Polacci M, Burton M, Perugini D (2016) Eruption dynamics of the 22–23 April 2015 Calbuco Volcano (Southern Chile): analyses of tephra fall deposits. J Volcanol Geoth Res 317:15–29. https://doi.org/10.1016/j.jvolgeores.2016.02.027

    Article  Google Scholar 

  • Symons GJ (ed) (1888) The eruption of Krakatoa and subsequent phenomena. Harrison & Sons, London

    Google Scholar 

  • Tailpied D, Le Pichon A, Marchetti E, Assink J (2016) Assessing and optimizing the performance and infrasound monitoring network. Geophys J Int 208. https://doi.org/10.1093/gji/ggw400

    Article  Google Scholar 

  • Ulivieri G, Ripepe M, Marchetti E (2013) Infrasound reveals transition to oscillatory gas flow regime during lava fountaining: implication for early-warning. Geophys Res Lett 40(12):3008–3013. https://doi.org/10.1002/grl.50592

    Article  Google Scholar 

  • Van Eaton AR, Amigo Á, Bertin D, Mastin LG, Giacosa RE, González J, Valderrama O, Fontijn K, Behnke SA (2016) Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile. Geophys Res Lett 43:3563–3571. https://doi.org/10.1002/2016gl068076

    Article  Google Scholar 

  • Vernier J-P et al (2011) Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys Res Lett 38:L12807. https://doi.org/10.1029/2011GL047563

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results was performed within the ARISE2 project (http://arise-project.eu/) and received funding from the H2020 programme under grant agreement 653980.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Marchetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marchetti, E. et al. (2019). Infrasound Monitoring of Volcanic Eruptions and Contribution of ARISE to the Volcanic Ash Advisory Centers. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_36

Download citation

Publish with us

Policies and ethics