Skip to main content

Advertisement

Log in

Future developments in modelling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation

  • Short Scientific Communication
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

As a result of the serious consequences of the 2010 Eyjafjallajökull eruption (Iceland) on civil aviation, 52 volcanologists, meteorologists, atmospheric dispersion modellers and space and ground-based monitoring specialists from 12 different countries (including representatives from 6 Volcanic Ash Advisory Centres and related institutions) gathered to discuss the needs of the ash dispersal modelling community, investigate new data-acquisition strategies (i.e. quantitative measurements and observations) and discuss how to improve communication between the research community and institutions with an operational mandate. Based on a dedicated benchmark exercise and on 3 days of in-depth discussion, recommendations have been made for future model improvements, new strategies of ash cloud forecasting, multidisciplinary data acquisition and more efficient communication between different communities. Issues addressed in the workshop include ash dispersal modelling, uncertainty, ensemble forecasting, combining dispersal models and observations, sensitivity analysis, model variability, data acquisition, pre-eruption forecasting, first simulation and data assimilation, research priorities and new communication strategies to improve information flow and operational routines. As a main conclusion, model developers, meteorologists, volcanologists and stakeholders need to work closely together to develop new and improved strategies for ash dispersal forecasting and, in particular, to: (1) improve the definition of the source term, (2) design models and forecasting strategies that can better characterize uncertainties, (3) explore and identify the best ensemble strategies that can be adapted to ash dispersal forecasting, (4) identify optimized strategies for the combination of models and observations and (5) implement new critical operational strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alexander J, Barclay J, Susnik J, Loughlin SC, Herd RA, Darnell A, Crosweller S (2010) Sediment-charged flash floods on Montserrat: The influence of synchronous tephra fall and varying extent of vegetation damage. J Volcanol Geotherm Res 194(4):127–138

    Article  Google Scholar 

  • Baxter PJ (1999) Impacts of eruptions on human health. In: Sigutdson H (ed) Encyclopedia of Volcanoes. Academic Press, San Diego, pp 1035–1043

    Google Scholar 

  • Blong RJ (1984) Volcanic Hazards. A sourcebook on the effects of eruptions. Academic Press, Sidney, p 424

    Google Scholar 

  • Bonadonna C, Folch A, Loughlin S, Puempel H (2011a) Ash Dispersal Forecast and Civil Aviation Workshop - Consensual Document. https://vhub.org/resources/503

  • Bonadonna C, Folch A, Loughlin S, Puempel H (2011b) Ash Dispersal Forecast and Civil Aviation Workshop - Model Benchmark Document. https://vhub.org/resources/505

  • Carn SA, Krotkov NA, Yang K, Hoff RM, Prata AJ, Krueger AJ, Loughlin SC, Levelt PF (2007) Extended observations of volcanic SO2 and sulfate aerosol in the stratosphere. Atmos Chem Phys Discuss 7:2857‐2871

    Google Scholar 

  • Casadevall TJ (1994) The 1989–1990 eruption of Redoubt Volcano, Alaska: impacts on aircraft operations. J Volcanol Geoth Res 62:301–316

    Article  Google Scholar 

  • Casadevall TJ, Delos Reyes PJ, Schneider DJ (1996) The 1991 Pinatubo eruptions and their effects on aircraft operations. In: Newhall CG, Punongbaya RS (eds) Fire and Mud: Eruptions and Lahars of Mount Pinatubo. Philippine Institute of Volcanology and Seismology, Quezon City and University of Washington Press, Seattle, Philippines, p 1115

    Google Scholar 

  • Durant AJ, Bonadonna C, Horwell CJ (2010) Atmospheric and environmental impact of volcanic particulates. Elements 6(4):235–240

    Article  Google Scholar 

  • Guffanti M., Casadevall TJ, Budding K (2010) Encounters of aircraft with volcanic ash clouds; A compilation of known incidents, 1953–2009: U.S. Geological Survey Data Series 545, ver. 1.0, 12 p., plus appendixes

  • IAVW Handbook (2004) Handbook on the International Airways Volcano Watch (IAVW) operational procedures and contact list, Second Edition, International Civil Aviation Organization, Doc 9766-AN/968

  • Heiken G, Casadevall T, Newhall C (1992) The 1st International-Symposium on Volcanic Ash and Aviation Safety. Bull Volcanol 54(3):250–251

    Google Scholar 

  • Hoskuldsson A, Oskarsson N, Pedersen R, Gronvold K, Vogfjoro K, Olafsdottir R (2007) The millennium eruption of Hekla in February 2000. Bull Volcanol 70(2):169–182

    Article  Google Scholar 

  • Lecointre J, Hodgson K, Neall V, Cronin S (2004) Lahar-triggering mechanisms and hazard at Ruapehu volcano, New Zealand. Nat Hazards 31(1):85–109

    Article  Google Scholar 

  • Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186(1–2):10–21

    Article  Google Scholar 

  • Oxford-Economics (2010) The Economic Impacts of Air Travel Restrictions Due to Volcanic Ash, Report for Airbus. http://www.bevoelkerungsschutz.admin.ch/internet/bs/de/home/themen/ski/aktuell.parsys.9107.DownloadFile.tmp/economicimpactsofvolcanoinisland2010.pdf

  • Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption colums. Bull Volcanol 48:3–15

    Article  Google Scholar 

  • Spence RJS, Kelman I, Baxter PJ, Zuccaro G, Petrazzuoli S (2005) Residential building and occupant vulnerability to tephra fall. Nat Hazards Earth Syst Sci 5(4):477–494

    Article  Google Scholar 

  • van Westen CJ, Daag AS (2005) Analysing the relation between rainfall characteristics and lahar activity at Mount Pinatubo, Philippines. Earth Surface Processes and Landforms 30(13):1663–1674

    Article  Google Scholar 

  • Wilson L, Walker GPL (1987) Explosive volcanic-eruptions. 6. Ejecta dispersal in plinian eruptions - the control of eruption conditions and atmospheric properties. Geophys J R Astron Soc 89(2):657–679

    Google Scholar 

  • Witham CS, Hort MC, Potts R, Servranckx R, Husson P, Bonnardot F (2007) Comparison of VAAC atmospheric dispersion models using the 1 November 2004 Grimsvotn eruption. Meteorol Appl 14(1):27–38

    Article  Google Scholar 

Download references

Acknowledgements

All workshop participants (Appendix 2) are especially thanked for their enthusiastic contributions and hard work before, during and after the actual workshop and for the development of the consensual document, which represents the fundamental base of this manuscript. In particular, we would like to thank A. Durant, M. Pavolonis, P. Webley, R. Genco, M. Gouhier and G. Pappalardo for helping with the compilation of Tables 2 and 3, all data-acquisition experts that provided information to compile the Data-Acquisition Summary Document available at our website and all modelling groups for running the benchmark exercise and providing the information to compile the Model Summary Document also available at our website. Special thanks also to the convenors of the workshop sections (T. Casadevall, J. Phillips, M. Watson) for their crucial contribution and to the constructive reviews of M. Guffanti, M. Ripepe and J. White. This workshop was made possible by the support of our sponsors, and, in particular, the Faculty of Sciences of the University of Geneva, the Canton of Geneva, the International Association of Volcanology and Chemistry of the Earth's Interior and the World Meteorological Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costanza Bonadonna.

Additional information

Appendices

Appendix 1

AIRS:

Atmospheric Infrared Sounder

AOD:

Aerosol Optical Depth

ASTER:

Advanced Spaceborne Thermal Emission and Reflection Radiometer

ATHAM:

Active Tracer High Resolution Atmospheric Model

AVHRR:

Advanced Very High Resolution Radiometer

DIAL:

Differential absorption lidar technique

ECMWF:

European Centre Medium-Range Weather Forecast

EDM:

Environmental Dust Monitors

EUSAAR:

European Supersites for Atmospheric Aerosol Research

GOES:

Geostationary Operational Environmental Satellites

HYSPLIT:

HYbrid Single-Particle Lagrangian Integrated Trajectory

IASI:

Infrared Atmospheric Sounding Interferometer

IAVCEI:

International Association of Volcanology and Chemistry of the Earth Interior

IAVWOPSG:

International Airways Volcano Watch Operations Group

ICAO:

International Civil Aviation Organization

IMO:

Icelandic Meteorological Office

IR-SO2:

Infrared Spectroscopy of SO2

IVATF:

International Volcanic Ash Task Force

JMA:

Japan Meteorological Agency

LIDAR:

Light Detection And Ranging

MLDP0:

Modèle Lagrangien de Dispersion de Particules d'ordre zéro

MAXDOAS:

Multiple Axis Differential Optical Absorption Spectroscopy

MER:

Mass Eruption Rate

MISR:

Multi-angle Imaging Spectro-Radiometer

MOCAGE:

Modélisation de la Chimie Atmosphérique Grande Echelle

MODIS:

Moderate-Resolution Imaging Spectroradiometer

MTR:

Mass Transport Rate in the cloud

MTSAT:

Multi-Functional Transport Satellite

NAME:

Numerical Atmospheric-dispersion Modelling Environment

NCAR:

National Center for Atmospheric Research

NCEP:

National Centers for Environmental Prediction

NWP:

Numerical Weather Prediction (Models)

OMI:

Ozone Monitoring Instrument

OPC:

Optical Particle Counter

PDF:

Probability Density Function

SEVIRI:

Spinning Enhanced Visible and Infrared Imager

SNR:

Signal to Noise Ratio

TGSD:

Total Grain Size Distribution

TIR:

Thermal InfraRed

VATDM:

Volcanic Ash Transport and Dispersal Models

VAA:

Volcanic Ash Advisory

VAAC:

Volcanic Ash Advisory Centre

VAG:

Volcanic Ash Graphic

VO:

Volcano Observatories

VOGRIPA:

Volcano Global Risk Identification and Analysis project

VOL-CALPUFF:

Volcanic CALifornia PUFF model

VOLDORAD:

Volcano Doppler Radar

WMO:

World Meteorological Organization

WOVO:

World Organization of Volcano Observatories

Appendix 2

List of participants

Organising Committee

Institution

Email

Costanza Bonadonna

Section of Earth and Environmental Sciences, University of Geneva, Switzerland

costanza.bonadonna@unige.ch

Arnau Folch

Earth Sciences Division, Barcelona Supercomputing Center, Spain

arnau.folch@bsc.es

Herbert Puempel

Chief, Aeronautical Meteorology Division (C/AEM), WMO, Geneva

hpuempel@wmo.int

Sue Loughlin

British Geological Survey, Edinburgh, UK

sclou@bgs.ac.uk

Speaker

Institution

Email

Sara Barsotti

INGV, Sezione di Pisa, Italy

barsotti@pi.ingv.it

Marcus Bursik

SUNY at Buffalo, USA

mib@buffalo.edu

Thomas Casadevall

Denver Federal Center, USGS, USA

tcasadevall@usgs.gov

Hugh Coe

University of Manchester, UK

hugh.coe@manchester.ac.uk

Mauro Coltelli

INGV, Sezione di Catania, Italy

coltelli@ct.ingv.it

Antonio Costa

INGV, Sezione di Napoli, Italy

antonio.costa@ov.ingv.it

Real D'Amours

Canadian Meteorological Centre

real.d'amours@ec.gc.ca

Adam Durant

Centre for Atmospheric Science, University of Cambridge, UK

ajd90@cam.ac.uk

Mathieu Gouhier

Laboratoire Magmas et Volcans, Clermont-Ferrand, France

M.Gouhier@opgc.univ-bpclermont.fr

HHans Graf

Department of Geography, University of Cambridge, UK

hfg21@cam.ac.uk

Matthew Hort

Meteorological Office, London VAAC, UK

matthew.hort@metoffice.gov.uk

Armann Höskuldsson

Institute of Earth Sciences, University of Iceland, Iceland

armh@hi.is

Sigrún Karlsdóttir

Icelandic Meteorological Office

sigk@vedur.is

Nina Kristiansen

Atmosphere and Climate Department, Norwegian Institute for Air Research, Norway

Nina.Iren.Kristiansen@nilu.no

Larry Mastin

USGS—Cascades Volcano Observatory, USA

lgmastin@usgs.gov

Gelsomina Pappalardo

CNR—Potenza, Italy

pappalardo@imaa.cnr.it

Mike Pavolonis

NOAA/NESDIS, USA

mpav@ssec.wisc.edu

Aline Peuch

Meteo France, VAACToulouse, France

aline.peuch@meteo.fr

Maurizio Ripepe

Università di Firenze, Italy

maurizio.ripepe@unifi.it

Simona Scollo

INGV, Sezione di Catania, Italy

scollo@ct.ingv.it

Flavio Sgro

ENAV, Italy

santo.sgro@enav.it

Barbara Stunder

NOAA Air Resources Laboratory, USA

Barbara.Stunder@noaa.gov

Thor Thordarson

University of Edinburgh, UK

tthordar@staffmail.ed.ac.uk

Matt Watson

Department of Earth Sciences, University of Bristol, UK

Matt.Watson@bristol.ac.uk

Konradin Weber

Fachhochschule Düsseldorf, Germany

konradin.weber@fh-duesseldorf.de

Peter Webley

Geophysical Institute and Alaska Volcano Observatory, University of Alaska Fairbanks, USA

pwebley@gi.alaska.edu

Participant

Institution

Email

Sebastien Biass

Section of Earth and Environmental Sciences, University of Geneva, Switzerland

biasse3@etu.unige.ch

Fabrizia Buongiorno

INGV, Sezione di Roma, Italy

buongiorno@ingv.it

Helene Dacre

Department of Meteorology, University of Reading, UK

h.f.dacre@reading.ac.uk

Roger Denlinger

USGS—Cascades Volcano Observatory, USA

roger@usgs.gov

Jean-Luc Falcone

Computer Science Department, University of Geneva, Switzerland

Jean-Luc.Falcone@unige.ch

Riccardo Genco

Università di Firenze, Italy

r.genco@yahoo.it

Susanna Jenkins

Cambridge Architectural Research, UK

susanna.jenkins@gmail.com

Giovanni Macedonio

INGV, Sezione di Napoli, Italy

macedon@ov.ingv.it

Christina Magill

Risk Frontiers, ELS Division, Macquarie University, Australia

cmagill@els.mq.edu.au

Kazutaka Mannen

University of South Florida, USA

kmannen@usf.edu

Augusto Neri

INGV, Sezione di Pisa, Italy

neri@pi.ingv.it

Jeremy Phillips

Department of Earth Sciences, University of Bristol, UK

J.C.Phillips@bristol.ac.uk

Rodney Potts

Darwin RFC/RSMC/VAAC, Bureau of Meteorology, Australia

R.Potts@bom.gov.au

José Mª Ramírez

Agencia Estatal de Seguridad Aérea, Spain

jmramirez@fomento.es

Bill Rose

Michigan Technological University, USA

raman@mtu.edu

Chiara Scaini

Earth Sciences Division, Barcelona Supercomputing Center, Spain

saetachiara@gmail.com

Ulrich Schumann

DLR-Institut für Physik der Atmosphäre, Germany

ulrich.schumann@dlr.de

Hans Schwaiger

USGS—Cascades Volcano Observatory, USA

hschwaiger@usgs.gov

Claudia Spinetti

INGV, Italy

spinetti@ingv.it

Yujiro Suzuki

JAMSTEC, IFRE, Japan

yujiros@jamstec.go.jp

Alain Volentik

Department of Geology and Geophysics, University of Hawai'i, USA

avolenti@mail.usf.edu

Sibylle von Löwis

Icelandic Meteorological Office

sibylle@vedur.is

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonadonna, C., Folch, A., Loughlin, S. et al. Future developments in modelling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation. Bull Volcanol 74, 1–10 (2012). https://doi.org/10.1007/s00445-011-0508-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0508-6

Keywords

Navigation