Skip to main content

Infrasound Monitoring of Volcano-Related Hazards for Civil Protection

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

In the last 20 years, infrasound has increased significantly the potentials of volcano monitoring, with direct impact on risk evaluation for civil protection. Automatic systems based on infrasound are nowadays used operationally, and future improvements will reinforce this technique especially when integrated with other ground-based or satellite observations. We show how by using dedicated array processing, infrasound can be used to detect and notify, automatically and in real time, the onset of explosive eruptions and the run-out of density currents based on the apparent velocity, propagation back-azimuth, and frequency change. Such procedures have been tested and tuned for several years and are currently being applied to early warning of explosive eruption at Etna volcano and to avalanche analysis and risk forecasting in several sites in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alparone A, Andronico D, Sgroi T, Ferrari F, Lodato L, Reitano D (2007) Alert system to mitigate tephra fallout hazards at Mt. Etna Volcano, Italy. Nat Hazards 43:333–350. https://doi.org/10.1007/s11069-007-9120-7

    Article  Google Scholar 

  • Baines PG, Sacks S (2013) Atmospheric internal waves generated by explosive volcanic eruptions In: Wadge G, Voight B (eds) The Eruption of Soufriere Hills Volcano, Montserrat from 2000 to 2010, vol 39. Geological Society, London

    Google Scholar 

  • Baxter PJ, Horwell KJ (2015) Impacts of eruptions on human health In: The encyclopedia of volcanoes, 2nd edn, pp 1035–1047. https://doi.org/10.1016/b978-0-12-385938-9.00060-2

    Chapter  Google Scholar 

  • Bonadonna C, Folch A, Loughlin S, Puempel H (2012) Future developments in modeling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on ash dispersal forcast and civil aviation. Bull Volcanol 74(1):1–10. https://doi.org/10.1007/s00445-011-0508-6

    Article  Google Scholar 

  • Braun T, Ripepe M (1993) Interaction of seismic and air waves recorded at Stromboli volcano. Geophys Res Lett 20. https://doi.org/10.1029/92gl02543

    Article  Google Scholar 

  • Buckingham M, Garcés M (1996) Canonical model of volcano acoustics. J Geophys Res 101:B4. https://doi.org/10.1029/95JB01680

    Article  Google Scholar 

  • Bursik M (2001) Effects of wind on the rise height of volcanic plumes. Geophys Res Lett 28(18):3621–3624

    Article  Google Scholar 

  • Campus P, Christie DR (2010) Worldwide observations of infrasonic waves. In: Le Pichon A , Balc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, pp 185–234

    Google Scholar 

  • Caplan-Auerbach J, Bellesiles A, Fernandez JK (2010) Estimates of eruption velocity and plume height from infrasonic recordings of the 2006 eruption of Augustine volcano, Alaska. J Volcanol Geoth Res 189:12–18. https://doi.org/10.1016/j.jvolgeores.2009.10.002

    Article  Google Scholar 

  • Carazzo G, Kaminski E, Tait S (2006) The route to self-similarity in turbulent jets and plumes. J Fluid Mech 547:137–148

    Article  Google Scholar 

  • Carazzo G, Kaminski E, Tait S (2008) On the rise of turbulent plumes: quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra terrestrial explosive volcanism. J Geophys Res 113:B09201. https://doi.org/10.1029/2007JB005458

    Article  Google Scholar 

  • Carey S, Sigurdsson H, Mandeville C, Bronto S (1996) Pyroclastic flows and surges over water: an example from the 1883 Krakatau eruption. Bull Volcanol 57:493. https://doi.org/10.1007/bf00304435

    Article  Google Scholar 

  • Cioni R, Pistolesi M, Rosi M (2015) Plinian and Subplinian eruptions. In: The encyclopedia of volcanoes, 2nd edn, pp 519–536. https://doi.org/10.1016/b978-0-12-385938-9.00029-8

    Chapter  Google Scholar 

  • Clarke A, Esposti Ongaro T, Belousov A (2015) Vulcanian eruptions. In: The encyclopedia of volcanoes, 2nd edn, pp 505–518. https://doi.org/10.1016/b978-0-12-385938-9.00028-6

    Chapter  Google Scholar 

  • Cole PD, Neri A, Baxter PJ (2015) Hazards from pyroclastic density currents. In: The encyclopedia of volcanoes, 2nd edn, pp 943–956. https://doi.org/10.1016/b978-0-12-385938-9.00054-7

    Chapter  Google Scholar 

  • Dabrowa AL, Green DN, Rust AC, Phillips JC (2011) A global study of volcanic infrasound characteristics and the potential for long-range monitoring. Earth Planet Sci Lett 310:369–379

    Article  Google Scholar 

  • De Angelis S, Fee D, Haney M, Schneider D (2012) Detecting hidden volcanic explosions from Mt. Cleveland Volcano, Alaska with infrasound and ground-coupled airwaves. Geophys Res Lett 39:L21312. https://doi.org/10.1029/2012GL053635

    Article  Google Scholar 

  • Delle Donne D, Ripepe M (2012) High-frame rate thermal imagery of Strombolian explosions: implications for explosive and infrasonic source dynamics. J Geophys Res 117:B09206. https://doi.org/10.1029/2011JB008987

    Article  Google Scholar 

  • Delle Donne D, Ripepe M, De Angelis S, Cole PD, Lacanna G, Poggi P, Stewart R (2015) Thermal, acoustic and seismic signals from pyroclastic density currents and Vulcanian explosions at Soufrière Hills Volcano, Montserrat. In: Wadge G, Robertson REA, Voight B (eds) The eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010, vol 39. Geological Society of London, London, Memoirs, 2014, pp 169–178

    Google Scholar 

  • Dibble RR, Kienle J, Kyle PR, Shibuya K (1984) Geophysical studies of Erebus volcano, Antarctica, from 1974 December to 1982 January. NZ J Geol Geophys 27(4):425–455

    Article  Google Scholar 

  • Donn WL, Balachandran NK (1981) Mount St. Helens eruption of 18 May 1980: air waves and explosive yield. Science 213:539–541. https://doi.org/10.1126/science.213.4507.539

    Article  Google Scholar 

  • Fee D, Garcés M, Steffke A (2010) Infrasound from Tungurahua Volcano 2006–2008: Strombolian to Plinian eruptive activity. J Volcanol Geoth Res 193:67–81. https://doi.org/10.1016/j.jvolgeores.2010.03.006

    Article  Google Scholar 

  • Fee D, Matoza RS (2013) An overview of volcano infrasound: from hawaiian to plinian, local to global. J Volcanol Geotherm Res 249:123–139. https://doi.org/10.1016/j.jvolgeores.2012.09.002

    Article  Google Scholar 

  • Firstov PP, Storcheus AV (1987) Acoustic signals that accompanied the March–June 1983 eruption at Klyuchevskoy Volcano. Volcanol Seismol 5:66–80

    Google Scholar 

  • Garces M, Fee D, Steffke A, McCormack DP, Servranckx R, Bass H, Hetzer C, Hedlin M-, Matoza RS, Yepez H, Ramon P (2008) Capturing the acoustic fingerprint of stratospheric ash injection. EOS Trans Am Geophys Union 89(40):377–378

    Article  Google Scholar 

  • Gorshkov GS (1959) Gigantic eruption of the Volcano Bezymianny. Bull. Volcan 20:77–109

    Article  Google Scholar 

  • Hooper DM, Mattioli GS (2001) Kinematic modeling of pyroclastic flows produced by gravitational dome collapse at Soufriere Hills Volcano, Montserrat. Nat Hazards 23:65. https://doi.org/10.1023/A:1008130605558

    Article  Google Scholar 

  • Iguchi M, Ishihara K (1990) Comparison of earthquakes and airshocks accompanied with explosive eruptions at Sakurajima and Sawunosejima volcanoes. Ann Disaster Prev Res Inst Kyoto Univ 33(B-1):1–12

    Google Scholar 

  • Johnson JB, Aster R, Jone R, Kyle P, McIntosh B (2011) Acoustic source characterization of impulsive Strombolian eruptions from the Mount Erebus lava lake. J Volcanol Geoth Res 177. https://doi.org/10.1016/j.jvolgeores.2008.06.028

    Article  Google Scholar 

  • Johnson J (2019) Local volcano infrasound monitoring. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 989–1022

    Google Scholar 

  • Johnson JB, Ripepe M (2011) Volcano Infrasound: a review. J Volcanol Geoth Res 206:61–69. https://doi.org/10.1016/j.jvolgeore.2011.06.006

    Article  Google Scholar 

  • Jolly AD, Thompson G, Norton GE (2002) Locating pyroclastic flows on Soufrière Hills volcano, Montserrat, West Indies, using amplitude signals from high dynamic range instruments. J Volcan Geoth Res 118:299–317

    Article  Google Scholar 

  • Kanamori H, Given JW (1982) Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens—a terrestrial monopole? J Geophys Res 87:5422–5432. https://doi.org/10.1029/JB087iB07p05422

    Article  Google Scholar 

  • Kanamori H, Mori J, Harkrider DG (1994) Excitation of atmospheric oscillations by volcanic eruptions. J Geophys Res 99:21947–21961. https://doi.org/10.1029/94JB01475

    Article  Google Scholar 

  • Kim K, Lees JM, Ruiz M (2012) Acoustic multipole source model for volcanic explosions and inversion for source parameters. Geophys J Int 191:1192–1204. https://doi.org/10.1111/j.1365-246X.2012.05696.x

    Article  Google Scholar 

  • Kogelnig A, Hubl J, Surinach E, Vilajosana I, McArdell BW (2014) Infrasound produced by debris flows: propagation and frequency content evolution. Nat Hazard 70:1713–1733. https://doi.org/10.1007/s11069-011-9741-8

    Article  Google Scholar 

  • Lacanna G, Ichihara M, Iwakuni M, Takeo M, Iguchi M, Ripepe M (2014) Influence of atmospheric structure and topography on infrasonic wave propagation. J Geophys Res. Solid Earth 119:2988–3005. https://doi.org/10.1002/2013JB010827

    Article  Google Scholar 

  • Lacanna G, Ripepe M (2012) Influence of near-source volcano topography on the acoustic wavefield and implication for source modeling. J Volcanol Geoth Res 250:9–18. https://doi.org/10.1016/j.jvolgeores.2012.10.005

    Article  Google Scholar 

  • Lamb OD, De Angelis S, Lavallem Y (2015) Using infrasound to constrain ash plume rise. J Appl Volcanol 4:20. https://doi.org/10.1186/s13617-015-0038-6

    Article  Google Scholar 

  • Lighthill J (1978) Waves in fluids. Cambridge University Press, Cambridge, London, New York, Melbourne

    Google Scholar 

  • Marchetti E, Ripepe M, Delle Donne D, Genco R, Finizola A, Garaebiti E (2013) Blast waves from violent explosive activity at Yasur volcano. Vanuatu Geophys Res Lett 40(1–6):5838–5843. https://doi.org/10.1002/2013GL057900

    Article  Google Scholar 

  • Marchetti E, Ripepe M, Ulivieri G, Caffo S, Privitera E (2009) Infrasonic evidences for branched conduit dynamics at Mt. Etna volcano, Italy. Geoph Res Lett 36:L19308. https://doi.org/10.1029/2009gl040070

  • Marchetti E, Ripepe M, Ulivieri G, Kogelnig A (2015). Infrasound array criteria for automatic detection and front velocity estimation of snow avalanches: towards a real-time early-warning system. Nat Hazards Earth Syst Sci 15: 2545–2555. ISSN: 1561-8633. https://doi.org/10.5194/nhess-15-2545-2015

    Article  Google Scholar 

  • Marchetti E, Ripepe M, Campus P, Le Pichon A, Brachet N, Blanc E, Gaillard P, Mialle P, Husson P (2019) Infrasound monitoring of volcanic eruptions and contribution of ARISE to the volcanic ash advisory centers. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1141–1162

    Google Scholar 

  • Marzano FS, Picciotti E, Montopoli M, Vulpiani G (2013) Inside volcanic clouds: remote sensing of ash plumes using microwave weather radars. Bull Am Meteorol Soc 94(10)

    Article  Google Scholar 

  • Mastin LG et al (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geoth Res. https://doi.org/10.1016/j.jvolgeores.2009.01.008

    Article  Google Scholar 

  • Matoza RS, Fee D, Garcés MA, Seiner JM, Ramón PA, Hedlin MAH (2009) Infrasonic jet noise from volcanic eruptions. Geophys Res Lett 36. ISSN: 0094–8276. https://doi.org/10.1029/2008gl036486

  • Matoza RS, Fee D, Neilsen TB, Gee KL, Ogden DE (2013) Aeroacoustics of volcanic jets: Acoustic power estimation and jet velocity dependence. J Geophys Res Solid Earth 118:6269–6284. https://doi.org/10.1002/2013JB010303

    Article  Google Scholar 

  • Matoza R, Fee D, Green D, Mialle P (2019) Volcano infrasound and the international monitoring system. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1023–1077

    Google Scholar 

  • Matoza RS, Le Pichon A, Vergoz J, Herry P, Lalande JM, Lee H, Che IY, Rybin A (2011a) Infrasonic observations of the June 2009 Sarychev Peak eruption, Kuril Islands: implications for infrasonic monitoring of remote explosive volcanism. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2010.11.022

    Article  Google Scholar 

  • Matoza RS, Vergoz J et al (2011b) Long-range acoustic observations of the Eyjafjallajokull eruption, Iceland, April-May 2010. Geophys Res Lett 38:L06308. https://doi.org/10.1029/2011GL047019

    Article  Google Scholar 

  • Mauk FJ (1983) Utilization of seismically recorded infrasonic and acoustic signals to monitor volcanic explosions: the El Chichon Sequence 1982—a case study. J Geophys Res 88:10385–10401. https://doi.org/10.1029/JB088iB12p10385

    Article  Google Scholar 

  • McNutt SR (1994) Volcanic tremor amplitude correlated with eruption explosivity and its potential use in determining ash hazard to aviation. In: Proceedings of the 1st international symposium on volcanic ash and aviation safety, vol 2047. US Geological Survey Bulletin, pp 377–385

    Google Scholar 

  • McCormack D, Bass H, Garcés MA, Hedlin M, Yepez H (2006) Acoustic Sourveillance for Hazardous Eruptions (ASHE): a proof-of-concept experiment for operational near-real-time infrasonic remote sensing. Cities of volcanoes, Quito, January, p 2006

    Google Scholar 

  • Medici EF, Allen JS, Waite GP (2014) Modeling shock waves generated by explosive volcanic eruptions. Geophys Res Lett 41:414–421. https://doi.org/10.1002/2013GL058340

    Article  Google Scholar 

  • Mikumo T, Bolt BA (1985) Excitation mechanism of atmospheric pressure waves from the 1980 Mount St Helens eruption. Geophys J Int 81:445–461

    Article  Google Scholar 

  • Montopoli M, Vulpiani G, Cimini D, Picciotti E, Marzano FS (2014) Interpretation of observed microwave signatures from ground dual polarization radar and space multi frequency radiometer for the 2011 Grímsvötn volcanic eruption. Atmos Meas Tech 7:537–552

    Article  Google Scholar 

  • Nairn IA (1976) Atmospheric shock waves and condensation clouds from Ngauruhoe explosive eruptions. Nature 259:190–192. https://doi.org/10.1038/259190a0

    Article  Google Scholar 

  • Nishimura T, McNutt SR (2008) volcanic tremor during eruptions: temporal characteristics, scaling and estimates of vent radius. J Volcanol Geotherm 178:10–18

    Google Scholar 

  • Okada H, Nishimura Y, Miyamachi H, Mori H, Ishihara K (1990) Geophysical significance of the 1988–1989 explosive eruptions of Mt. Tokachi, Hokkaido, Japan. Bull Volcanol Soc Jpn Ser 2 35(2):175–203

    Google Scholar 

  • O’Regan M (2011) On the edge of chaos: European aviation and disrupted mobilities. Mobilities 6(1):21–30

    Article  Google Scholar 

  • Pallister J, McNutt S (2015) synthesis of volcano monitoring. In: The encyclopedia of volcanoes, 2nd edn, pp 1151–1171. https://doi.org/10.1016/b978-0-12-385938-9.00066-3

    Chapter  Google Scholar 

  • Prejean SG, Brodsky EE (2011) Volcanic plume height measured by seismic waves based on a mechanical model. J Geophys Res 116:B01306. https://doi.org/10.1029/2010JB007620

    Article  Google Scholar 

  • Reed JW.(1987) Air pressure waves from Mount St. Helens eruptions. J Geophys Res 92(D10):11979–11992

    Article  Google Scholar 

  • Richards AF (1963) Volcanic sounds: investigation and analysis. J Geophys Res 68(3):919–928

    Article  Google Scholar 

  • Ripepe M, Barfucci G, De Angelis S, Delle Donne D, Lacanna G, Marchetti E (2016) Modeling volcanic eruption parameters by near-source internal gravity waves, Scientific reports, SREP-16–15817B

    Google Scholar 

  • Ripepe M, Bonadonna C, Folch A, Delle Donne D, Lacanna G, Marchetti E, Höskuldsson A (2013) Ash-Plume Dynamics and Eruption Source Parameters by infrasound and thermal Imagery: the 2010 Eyjafjallajökull Eruption. Earth Planet Sci Lett 366:112–121. https://doi.org/10.1017/j.epsl.2013.02.005

    Article  Google Scholar 

  • Ripepe M, Ciliberto S, Della Schiava M (2001) Time constraints for modeling source dynamics of volcanic explosions at Stromboli. J Geophys Res 106(B5):8713–8727. https://doi.org/10.1029/2000JB900374

    Article  Google Scholar 

  • Ripepe M, De Angelis S, Lacanna G, Poggi P, Williams C, Marchetti E, Delle Donne D, Ulivieri G (2009) Tracking pyroclastic flows at Soufriere Hills Volcano. Eos Trans Am Geophys Union 90(27):229–230. https://doi.org/10.1029/2009eo270001

    Article  Google Scholar 

  • Ripepe M, De Angelis S, Lacanna G, Voight B (2010) Observation of infrasonic and gravity waves at Soufrière Hills Volcano, Montserrat. Geophys Res Lett 37(L00E14):1–5

    Article  Google Scholar 

  • Ripepe M, Marchetti E (2002) Array tracking of infrasonic sources at Stromboli volcano. Geophys Res Lett 29(22):2076. https://doi.org/10.1029/2002GL015452

    Article  Google Scholar 

  • Self S (2006) The effects and consequences of very large explosive volcanic eruptions. Phil Trans R Soc A 364:2073–2097. https://doi.org/10.1098/rsta.2006.1814

    Article  Google Scholar 

  • Simkin T, Fiske RS (1983) Krakatau 1883—The volcanic eruption and its effects. Smithsonian Institute Press, Washington D.C., p 464

    Google Scholar 

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods A (1997) Volcanic plumes. Wiley, Chirchester, UK, 574 p

    Google Scholar 

  • Sparks RSJ, Young RS (2002) The eruption of Soufrière Hills Volcano, Montserrat (1995–1999): overview of scientific results. Geolog Soc Lond Momoires 21:45–69. https://doi.org/10.1144/gslmem.2002.02.1.01.03

  • Tahira M, Nomura M, Sawada Y, Kamo K (1996), Infrasonic and acoustic-gravity waves generated by the Mount Pinatubo eruption of June 15, 1991, In Newhall CG, Punongbayan RS (eds) Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, University of Washington Press, Seattle, pp 601–614

    Google Scholar 

  • Ulivieri G, Marchetti E, Ripepe M, Chiambretti I, De Rosa G, Segor V (2011) Monitoring snow avalanches in Northwestern Italian Alps using an infrasound array. Cold Reg Sci Technol 69:177–183. ISSN: 0165-232X. https://doi.org/10.1016/j.coldregions.2011.09.006

    Article  Google Scholar 

  • Ulivieri G, Ripepe M, Marchetti E (2013) Infrasound reveals transition to oscillatory discharge regime during lava fountaining: Implication for early warning. Geophys Res Let 40:3008–3013. ISSN: 0094-8276. https://doi.org/10.1002/grl.50592

    Article  Google Scholar 

  • Vergniolle S, Brandeis G (1994) Origin of the sound generated by Strombolian explosions. Geophys Res Lett 21(18). https://doi.org/10.1029/94gl01286

    Article  Google Scholar 

  • Vergniolle S, Caplan-Auerbach J (2006) Basaltic thermals and Subplinian plumes: Constraints from acoustic measurements at Shishaldin volcano, Alaska. Bull Volcanol 68(7–8):611–630. https://doi.org/10.1007/s00445-005-0035-4

    Article  Google Scholar 

  • Vulpiani G, Ripepe M, Valade S (2016) Mass discharge rate retrieval combining weather radar and thermal camera observations (2016). J Geophys Res 121(8):5679–5695. https://doi.org/10.1002/2016JB013191

    Article  Google Scholar 

  • Wadge G, Jackson P, Bower SM, Woods AW, Calder E (1998) Computer simulations of pyroclastic flows from dome collapse. Geophys Res Lett 25:3677–3680

    Article  Google Scholar 

  • Woulff G, McGetchin TR (1976) Acoustic noise from volcanoes: theory and experiments. Geophys J R Astron Soc 45:601–616

    Article  Google Scholar 

  • Yamasato H (1998) Quantitative analysis of pyroclastic flows using infrasonic and seismic data at Unzen volcano, Japan. J Phys Earth 45(6):397–416

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results was performed within the ARISE2 project (www.arise-project.eu) and received funding from the H2020 program under grant agreement 653980.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Ripepe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ripepe, M., Marchetti, E. (2019). Infrasound Monitoring of Volcano-Related Hazards for Civil Protection. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_35

Download citation

Publish with us

Policies and ethics