Skip to main content

Fluoride Pollution in Groundwater

  • Chapter
  • First Online:
Groundwater Development and Management

Abstract

With burgeoning population, the water demand of the world has increased by many folds and this increasing demand is met from surface water and groundwater resources. Though about 70% of the earth’s surface is covered with water, only a tiny part of it is suitable for drinking. Surface water present in lakes, swamps and rivers (0.014%) and groundwater present in sub surface aquifers (1.7%) are the major source of water suitable for human consumption. But the quality of groundwater deteriorates due to natural or anthropogenic causes. Presence of arsenic, fluoride, nitrate, iron, manganese and heavy metals in groundwater, above permissible limit, may cause serious health problems. Among numerous contaminants, arsenic and fluoride are considered as the two main contaminants in India both in terms of the number of people affected and their areal extent of distribution. Present chapter attempts to summarize various aspects of fluoride contamination of groundwater with special emphasis on its source as well as its occurrence in South Asian countries, in general and in India, in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amouei, A., Mahvi, A.H., Mohammadi, A.A., Fallah, S.H., Asgharnia, H.A. and Khafajeh, A.A. (2012). Physical and Chemical Quality Assessment of Potable Groundwater in Rural Areas of Khaf, Iran. Wrld Appl Sc J, 18(5): 693–697.

    Google Scholar 

  • Ayoob, S. and Gupta, A.K. (2006). Fluoride in drinking water: A review on the status and stress effects. Critical Reviews in Environmental Science and Technology, 36: 433–487.

    Article  Google Scholar 

  • Azizullah, A., Khattak, M.N.K., Richter, P. and Häder, D. (2011). Water pollution in Pakistan and its impact on public health – A review. Environ Inter, 37: 479–497.

    Article  Google Scholar 

  • Bailey, K., Chilton,J., Dahi, E., Lennon,M., Jackson, P. and Fawell. J. (Eds) (2006) Fluoride in Drinking-water. World Health Organization, Geneva

    Google Scholar 

  • Banks, D., Frengstad, B., Midtġard, A., Jan, R.K. and Strand, T. (1998). The chemistry of Norwegian groundwaters: I. The distribution of radon, major and minor elements in 1604 crystalline bedrock groundwaters. The Sc Tot Environ, 222: 71–91.

    Article  Google Scholar 

  • Bia, G., De Pauli, C.P. and Borgnino, L. (2012). The role of Fe(III) modified montmorillonite on fluoride mobility: Adsorption experiments and competition with phosphate. J Environ Manag, 100: 1–9.

    Article  Google Scholar 

  • BIS (Bureau of Indian Standards) (1992). Indian Standard Specifications for Drinking Water, IS:10500.

    Google Scholar 

  • BIS (Bureau of Indian Standards). 2012. Specification for drinking water IS 10500: 2012, New Delhi, India

    Google Scholar 

  • Borgnino, L., Garcia, M.G., Bia, G., Stupar, Y., Le Coustumer, P.H. and Depetris, P.J. (2013). Mechanisms of fluoride release in sediments of Argentina’s central region. Sc Tot Environ, 443: 245–255.

    Article  Google Scholar 

  • Brahman, K.D., Kazi, T.G., Afridi, H.I., Naseem, S., Arain, S.S. and Ullah, N. (2013). Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: A multivariate study. Water Research, 47: 1005–1020.

    Article  Google Scholar 

  • Brigatti, M.F. and Guggenheim, S. (2002). Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. In: Mottana, A., Sassi, F. P., Thompson, Jr. J. B. and Guggenheim, S. (ed.) Micas: Crystal Chemistry & Metamorphic Petrology. Mineralogical Society of America.

    Google Scholar 

  • Brindha, K. and Elango, L. (2011). Fluoride in Groundwater: Causes, Implications and Mitigation Measures. In: Monroy, S.D. (ed.), Fluoride Properties, Applications and Environmental Management.

    Google Scholar 

  • Brindha, K., Rajesh, R., Murugan, R. and Elango, L. (2011). Fluoride contamination in groundwater in parts of Nalgonda district, Andhra Pradesh, India. Environ Monit and Assess, 172: 481–492.

    Article  Google Scholar 

  • Carrillo-Rivera, J.J., Cardona, A. and Edmundo, W.M. (2002). Use of abstraction regime and knowledge of hydrogeological conditions to control high fluoride concentration in abstracted groundwater San Luis Potosy basin, Mexico. Hydrogeol J, 261: 24–47.

    Google Scholar 

  • Carpenter, R. (1969). Factors controlling the marine geochemistry of fluorine. Geochimica et Cosmochimica Acta, 33: 1156–1167.

    Article  Google Scholar 

  • Chae, G.T., Yun, S.T., Mayer, B., Kim, K.H., Kim, S.Y., Kwon, J.S., Kim, K. and Koh, Y.K. (2007). Fluorine geochemistry in bedrock groundwater of South Korea. Sc Tot Environ, 385: 272–283.

    Article  Google Scholar 

  • Chakrabarty, S., Deka, J. and Sarma, H.P. (2009). Water quality issues in Baihata area of Kamrup (Rural) District, Assam, India. Int J Chem Sci, 7(4): 2914–2920.

    Google Scholar 

  • Chandrajith, R., Padmasiri, J.P., Dissanayake, C.B. and Prematilaka, K.M. (2012). Spatial distribution of fluoride in groundwater of Sri Lanka. J Natn Sci Foundation Sri Lanka, 40(4): 303–309.

    Article  Google Scholar 

  • Chidambaram, S., Ramanathan, AL. and Vasudevan, S. (2003). Fluoride removal studies in water using natural materials. Water SA, 29(3): 339–344.

    Google Scholar 

  • Churchill, H.V., Rowley, R.J. and Martin, L.N. (1948). Fluorine content of certain vegetation in Western Pennsylvania area. Analytical Chemistry, 20(1): 69–71.

    Article  Google Scholar 

  • Culp, R.L. and Stoltemberg, H.A. (1958). Fluoride reduction at La Crosse, Kansas. J. American Water Works Association, 50(3): 427.

    Google Scholar 

  • Dahi, E., Mtalo, F., Njau, B. and Bregnhj, H. (2013). Defluoridation using the Nalgonda Technique in Tanzania. Ecological Engineering, 52: 211–218.

    Article  Google Scholar 

  • D’Alessandro, W. (2006). Human fluorosis related to volcanic activity: A review. Environmental Toxicology Transaction: Biomedicine and Health, 10: 21–30.

    Google Scholar 

  • Das, B., Talukdar, J., Sarma, S., Gohain, B., Dutta, R.K., Das, H.B. and Das, S.C. (2003). Fluoride and other inorganic constituents in groundwater of Guwahati, Assam, India. Cur Sc, 85(5): 657–661.

    Google Scholar 

  • Datta, P.S., Deb, D.L. and Tyagi, S.K. (1996). Stable isotope (18O) investigations on the processes controlling fluoride contamination of groundwater. J Contam Hydrol, 24(1): 85–96. doi: https://doi.org/10.1016/0169-7722(96)00004-6.

    Article  Google Scholar 

  • Davraz, A., Sener, E. and Sener, S. (2008). Temporal variations of fluoride concentration in Isparta public water system and health impact assessment (SW-Turkey). Environ Geol, 56: 159–170.

    Article  Google Scholar 

  • Delmelle, P., Lambert, M., Dufrene, Y., Gerin, P. and Oskarsson, N. (2007). Gas/aerosol–ash interaction in volcanic plumes: New insights from surface analyses of fine ash particles. Erth Planet Sc Let, 259: 159–170.

    Article  Google Scholar 

  • Derakhshani, R., Tavallaie, M., Raoof, M., Mohammadi, T.M., Abbasnejad, A. and Haghdoostf, A.A. (2014). Occurrence of fluoride in groundwater of Zarand region, Kerman province, Iran. Fluoride, 47(2): 133–138.

    Google Scholar 

  • Desbarats, A.J. (2009). On elevated fluoride and boron concentrations in groundwaters associated with the Lake Saint-Martin impact structure, Manitoba. Applied Geochemistry, 24: 915–927.

    Article  Google Scholar 

  • Dhiman, S.D. and Keshari, A.K. (2006). Hydrogeochemical evaluation of high-fluoride groundwaters: A case study from Mehsana District, Gujarat, India. Hydrol Sc J, 51(6): 1149–1162.

    Article  Google Scholar 

  • Dissanayake, C.B. and Weerasooriya, S.V.R. (1986). Fluorine as an indicator of mineralization hydrogeochemistry of a Precambrian mineralized belt in Sri Lanka. Chemical Geology, 56: 257–270.

    Article  Google Scholar 

  • Dissanayake, C.B. (1991). The fluoride problem in the ground water of Sri Lanka – environmental management and health. Inter J Environ Stud, 38(2): 137–155.

    Article  Google Scholar 

  • Diwakar, J., Johnston, S.G., Burtona, E.D. and Shresthab, S.D. (2015). Arsenic mobilization in an alluvial aquifer of the Terai region, Nepal. J of Hydrol: Regional Studies, 4: 59–79.

    Google Scholar 

  • Edmunds, W.M. and Smedley, P.L. (1996). Groundwater Geochemistry and Health: An Overview. In: Appleton, Fuge and McCall (Eds), Environmental Geochemistry and Health 113: Geological Society Special Publication, London.

    Google Scholar 

  • Edmunds, W.M. and Smedley, P.L. (2001). Fluoride in natural waters. In: Selinus, O. (ed.), Essentials of medical geology. Springer, Netherlands.

    Google Scholar 

  • Edmunds W. M. and Smedley P.L., (2013), Fluoride in Natural Waters. In: Essentials of Medical Geology, Second Edition. 2013. Eds: Selinus, O., Alloway, B., Centeno, J.A., Finkelman, R.B., Fuge, R., Lindh, U. and Smedley, P.L. Springer pp 311–336

    Google Scholar 

  • Farooqi, A., Masuda, H. and Firdous, N. (2007a). Toxicfluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environ Pollut, 145: 839–849.

    Article  Google Scholar 

  • Farooqi, A., Masuda, H., Kusakabe, M., Naseem, M. and Firdous, N. (2007b). Distribution of highly arsenic and fluoride contaminated groundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle. Geocheml J, 41: 213–234.

    Article  Google Scholar 

  • Farrah, H., Slavek, J. and Pickering, W.F. (1987). Fluoride interactions with hydrous aluminum oxides and alumina. Australian Journal of Soil Research, 25: 55–69.

    Article  Google Scholar 

  • Fawell, J., Bailey, K., Chilton, J., Dahi, E., Fewtrell, L. and Magara, Y. (2006) Fluoride in drinking water. WHO, IWA Publishing.

    Google Scholar 

  • Frengstad, B., Banks, D. and Siewers, U. (2001) The chemistry of Norwegian groundwaters: IV. The pH-dependence of element concentrations in crystalline bedrock groundwaters. Sci Total Environ 277: 101–117.

    Article  Google Scholar 

  • Gaciri, S.J. and Davies, T.C. (1993) The occurrence and geochemistry of fluoride in some natural waters of Kenya. J Hydrology, 143: 395–412.

    Article  Google Scholar 

  • García, M.G. and Borgnino, L. (2015) Fluoride in the Context of the Environment. doi: https://doi.org/10.1039/9781782628507-00003.

  • Garg, V.K., Suthar, S., Singh, S., Sheoran, A., Garima, M. and Jain, S. (2009). Drinking water quality in villages of southwestern Haryana, India: Assessing human health risks associated with hydrochemistry. Environ Geol, 58: 1329–1340.

    Article  Google Scholar 

  • Genxu, W. and Guodong, C. (2001). Fluoride distribution in water and the governing factors of environment in arid north–west China. J Arid Environ, 49(3): 601–614. doi: https://doi.org/10.1006/jare.2001.0810.

    Article  Google Scholar 

  • Ghorai, S. and Pant, K.K. (2004). Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed. Chem Engineer J, 98(1–2): 165–173.

    Article  Google Scholar 

  • Gillespie, R.J., Humphries, D.A., Baird, N.C. and Robinson, E.A. (1989). Chemistry. Second ed. Allyn and Bacon, Boston.

    Google Scholar 

  • Gizaw, B. (1996). The origin of high bicarbonate and fluoride concentration in waters of the main Ethiopian rift valley, East African rift system. J of Afric Erth Sc, 22: 391–402.

    Article  Google Scholar 

  • Guo, Q., Wang, Y., Ma, T. and Ma, R. (2006). Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J Geochem Explor, 93(1): 1–12.

    Article  Google Scholar 

  • Guo, Q., Wang, Y., Ma, T. and Ma, R. (2007). Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J Geochem Explor, 93(1): 1–12. doi: https://doi.org/10.1016/j.gexplo.2006.07.001.

    Article  Google Scholar 

  • Gupta, S.K., Deshpande, D., Agarwal, M. and Raval, B.R. (2005). Origin of high fluoride in groundwater in the North Gujarat-Cambay region, India. Hydrogeol J, 3: 596–605.

    Article  Google Scholar 

  • Gurung, A. and Oh, S. (2012). An overview of water pollution and constructed wetlands for sustainable wastewater treatment in Kathmandu Valley: A review. Scientific Research and Essays, 7(11): 1185–1194.

    Google Scholar 

  • Gupta, S., Banerjee, S., Saha, R., Datta, J.K. and Mondal, N. (2006). Fluoride geochemistry of groundwater in Nalhati-1 Block of the Birbhum district, West Bengal, India Research report. Fluoride, 39(4): 318–320.

    Google Scholar 

  • Haidouti, C. (1991). Fluoride distribution in soils in the vicinity of a point emission source in Greece. Geoderma, 49: 129–138.

    Article  Google Scholar 

  • Handa, B.K. (1975). Geochemistry and genesis of fluoride-containing ground waters in India. Groundwater, 13(3): 275–281.

    Article  Google Scholar 

  • Hassan Saffi, M. and Jawid Kohistani, A. (2013). Scientific Investigation report in Afghanistan: Water Resources potential, quality problems, challenges and solutions in Afghanistan. DACAAR report, Kabul, July 2013.

    Google Scholar 

  • Hassan Saffi, M. and Jawid Kohistani, A. (2015). Study on water quality status with respect to fluoride contamination in drinking water sources of Balkh province, Afghanistan. Scientific Investigation Report. Editor Leendert Vijselaar.

    Google Scholar 

  • Hem, J.D. (1985). Study and Interpretation of the Chemical Characteristics of Natural Water. 3rd Edition. US Geological Survey Water-Supply Paper 2254, University of Virginia, Charlottesville. 263 p.

    Google Scholar 

  • Hiemstra, T. and Van Riemsdijk, W.H. (2000). Fluoride adsorption on goethite in relation to different types of surface sites. Journal of Colloid and Interface Science, 225: 94–104.

    Article  Google Scholar 

  • Hoque, A.K.M., Fazlul Khaliquzzaman, M., Hossain, M.D. and Khan, A.H. (2003). Fluoride levels in different drinking Water sources in Bangladesh. Fluoride, 36(1): 38–44.

    Google Scholar 

  • Jadhav, S.V., Bringas, E., Yadav, G.D., Rathod, V.K., Ortiz, I. and Marathe, K.V. (2015). Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. J Environ Manag, 162: 306–325. doi: https://doi.org/10.1016/j.jenvman.2015.07.020

    Article  Google Scholar 

  • Janardhana Raju, N., Dey, S. and Das, K. (2009). Fluoride contamination in groundwaters of Sonbhadra District, Uttar Pradesh, India. Curr Sc, 96(7): 979–985.

    Google Scholar 

  • Jha, S.K., Nayak, A.K., Sharma, Y.K., Mishra, V.K. and Sharma, D.K. (2008). Fluoride Accumulation in Soil and Vegetation in the Vicinity of Brick Fields. Bulletin of Environmental Contamination and Toxicology, 80: 369–373.

    Article  Google Scholar 

  • Kotoky, P., Barooah, P.K., Baruah, M.K., Goswami, A., Borah, G.C., Gogoi, H.M., Ahmed, F., Gogoi, A. and Paul, A.B. (2008). Fluoride and endemic fluorosis in the Karbianglong district, Assam, India. Fluoride, 41(1): 42–45.

    Google Scholar 

  • Karthikeyan, K., Nanthakumar, K., Velmurugan, P., Tamilarasi, S. and Lakshmanaperumalsamy, P. (2010). Prevalence of certain inorganic constituents in groundwater samples of Erode district, Tamilnadu, India, with special emphasis on fluoride, fluorosis and its remedial measures. Environ Monit and Assess 160:141–155.

    Article  Google Scholar 

  • Kausar, R., Ahmad, S., Rehman, K.U. and Ahmad, R. (2003). Fluoride Status of Underground Water of Faisalabad City Area. International Journal of Agriculture & Biology, 05(4): 536–539.

    Google Scholar 

  • Keshavarzi, B., Moore, F., Esmaeili, A. and Rastmanesh, F. (2010). The source of fluoride toxicity in Muteh area, Isfahan, Iran. Environmental Earth Sciences, doi: https://doi.org/10.1007/s12665-009-0390-0 doi:https://doi.org/10.1109/ICEET.2009.361.

  • Khan, N., Hussain, S.T., Saboor, A., Jamila, N., Khan, S.N. and Kim, K.S. (2013) Chemical Investigation of the Drinking Water Sources from Mardan, Khyber Pakhtunkhwa, Pakistan. World Applied Sciences Journal, 27(1): 112–122.

    Google Scholar 

  • Khan, S.A., Thakur, S.K., Sarkar, A. and Shekhar, S. (2016). Worldwide contamination of water by fluoride. Environ Chem Lett., doi: https://doi.org/10.1007/s10311-016-0563-5.

  • Kim, K. and Jeong, G.Y. (2005), Factors influencing natural occurrence of fluoride rich groundwaters: A case study in the southeastern part of the Korean Peninsula. Chemosphere, 58(10): 1399–1408.

    Article  Google Scholar 

  • Koritnig, S. (1978). Fluorine. In: Wedepohl, K.H. (ed.), Handbook of Geochemistry, vol. II/1. Springler-Verlag, Berlin. 9C1-B9O3.

    Google Scholar 

  • Krauskopf, K.B. and Bird, D.K. (1995). An introduction to geochemistry. McGraw-Hill Int., Singapore.

    Google Scholar 

  • Kraynov, S.R., Merkov, A.N., Petrova, N.G., Baturinskaya, I.V. and Zharikova, V.M. (1969). Highly alkaline (pH 12) fluosilicate waters in the deeper zone of the Lovozero Massif. Geochemistry International, 6: 635–640.

    Google Scholar 

  • Kundu, M.C. and Mandal, B. (2009). Assessment of potential hazards of fluoride contamination in drinking groundwater of an intensively cultivated district in West Bengal, India. Environ Monit and Assess, 152: 97–103.

    Article  Google Scholar 

  • Kundu, N., Panigrahi, M., Tripathy, S., Munshi, S., Powell, M.A. and Hart, B. (2001). Geochemical appraisal of fluoride contamination of groundwater in the Nayagarh District of Orissa, India. Environ Geol, 41(3–4): 451–460. doi: https://doi.org/10.1007/s002540100414.

  • Lennon, M.A., Whelton, H., Mullane, D.O. and Ekstrand, J. (2004). Rolling Revision of the WHO Guidelines for Drinking-water Quality: Fluoride. World Health Organization.

    Google Scholar 

  • Li, X., Hou, X., Zhou, Z. and Liu, L. (2009). Distribution and Geochemical Evolution of Fluoride in Groundwater of Taiyuan Basin, China. ICEET ’09 Proceedings of the 2009 International Conference on Energy and Environment Technology, 2: 507–510.

    Google Scholar 

  • Looie, S.B. and Moore, F. (2010). A study of fluoride groundwater occurrence in Posht-e-Koohe-Dashtestan, South of Iran. World Applied Sciences Journal, 8(11): 1317–1321.

    Google Scholar 

  • Ma, W., Ya, F., Wang, R. and Zhao, Y. (2008). Fluoride removal from drinking water by adsorption using bone char as a biosorbent. Inter J Environ Techn Manag, 9(1): 59–69.

    Article  Google Scholar 

  • Ma, Y., Shi, F., Zheng, X., Ma, J. and Gao, C. (2010). Removal of fluoride from aqueous solution using granular acid-treated bentonite (GHB): Batch and column studies. Journal of Hazardous Materials. doi: https://doi.org/10.1016/j.jhazmat.2010.10.016

  • Madhnure, P., Sirsikar, D.Y., Tiwari, N., Ranjan, B. and Malpe, D.B. (2007). Occurrence of fluoride in the groundwaters of Pandharkawada area, Yavatmal district, Maharashtra, India. Current Science, 92(5): 675–679.

    Google Scholar 

  • Mahapatra, M.K., Mishra, A. and Das, B.P. (2005). Fluorosis first reported in Naupada district of Orissa India. Ecology Environment and Conservation, 11(2): 277–280.

    Google Scholar 

  • Maithani, P.B., Gurjar, R., Banerjee, R., Balaji, B.K., Ramachandran, S. and Singh, R. (1998). Anomalous fluoride in groundwater from western part of Sirohi district, Rajasthan and its crippling effect of human health. Cur Sc, 74(9): 773–777.

    Google Scholar 

  • Mamatha, P. and Rao, S.M. (2010). Geochemistry of fluoride rich groundwater in Kolar and Tumkur districts of Karnataka. Environ Erth Sc, 61: 131–142.

    Article  Google Scholar 

  • Mameri, N., Yedou, A.R., Lounici, H., Belhocine, D., GRIB, H. and Bariou, B. (1998). Defluoridation of Septentrional Sahara Water of North Africa by Electrocoagulation Process using Bipolar Aluminium Electrodes. Wat Res, 32(1): 1604–1612.

    Article  Google Scholar 

  • Meenakshi, S. and Viswanathan, N. (2007). Identification of selective ion-exchange resin for fluoride sorption. J Colloid and Interface Science, 308(2): 438–450.

    Article  Google Scholar 

  • Messaïtfa, A. (2008). Fluoride contents in groundwaters and the main consumed foods (dates and tea) in Southern Algeria region. Special Issue: “Groundwater Flow – Selected papers from XXXIII IAH Congress, Zacatecas, Mexico (233–320)”. Environ Geol, 55(2): 377–383.

    Article  Google Scholar 

  • Mirlean, N. and Roisenberg, A. (2007). Fluoride distribution in the environment along the gradient of a phosphate-fertiliser production emission (southern Brazil). Environ Geochem and Health, 29(3): 179–187.

    Article  Google Scholar 

  • Moghaddam, A.A. and Fijani, E. (2008). Distribution of fluoride in groundwater of Maku area, northwest of Iran. Environ Geol, 56: 281–287.

    Article  Google Scholar 

  • Mondal, N.C., Prasad, R.K., Saxena, V.K., Singh, Y. and Singh, V.S. (2009). Appraisal of highly fluoride zones in groundwater of Kurmapalli watershed, Nalgonda district, Andhra Pradesh (India). Environ Erth Sc, 59: 63–73.

    Article  Google Scholar 

  • Msonda, K.W.M., Masamba, W.R.L. and Fabiano, E. (2007). A study of fluoride groundwater occurrence in Nathenje, Lilongwe, Malawi. Physics and Chemistry of the Earth, Parts A/B/C, 32(15–18): 1178–1184.

    Google Scholar 

  • Muralidharan, D., Nair, A.P. and Satyanarayana, U. (2002). Fluoride in shallow aquifers in Rajgarh Tehsil of Churu District, Rajasthan – An arid environment. Curr Sc, 83: 699–702.

    Google Scholar 

  • Naseem, S., Rafique, T., Bashir, E., Bhanger, M.I., Laghari, A. and Usmani, T.H. (2010). Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan. Chemosphere, 78: 1313–1321.

    Article  Google Scholar 

  • Nordstrom, D.K. and Jenne, E.A. (1977). Fluorite solubility equilibria in selected geothermal waters. Geochimica et Cosmochimica Acta, 41: 175–188.

    Article  Google Scholar 

  • Oruc, N. (2003). Problems of high fluoride waters in Turkey (hydrogeology and health aspects). The short course on medical geology – health and environment. Canberra, Australia.

    Google Scholar 

  • Oruc, N. (2008). Occurrence and problems of high fluoride waters in Turkey: An overview. Issue entitled “Medical Geology in Developing Countries, Part 2”. Environmental Geochemistry and Health, 30(4): 315–323.

    Article  Google Scholar 

  • Ozsvath, D.L. (2009). Fluoride and environmental health: A review. Reviews in Environ Sc and Biotech, 8: 59–79.

    Article  Google Scholar 

  • Pan, Y. and Fleet, M.E. (2002). Compositions of the Apatite-group Minerals: Substitution Mechanisms and Controlling Factors. In: Kohn, M.L., Rakovan, J. and Hughes, J.M. (eds), Phosphates. Mineralogical Society of America.

    Google Scholar 

  • Pant, B. (2011). Ground water quality in the Kathmandu valley of Nepal. Environ Monit Assess, 178(1): 477–485.

    Article  Google Scholar 

  • Pickering, W.F. (1985). The mobility of soluble fluoride in soils. Environ Pollut Ser B Chem Phys, 9(4): 281–308. doi: https://doi.org/10.1016/0143-148X(85)90004-7.

    Article  Google Scholar 

  • Prasad, B. and Mondal, K.K. (2006). Leaching Characteristics of Fluoride from Coal Ash. Asian J Water Environ and Pollut, 4(2): 17–21.

    Google Scholar 

  • Rafique, T., Naseem, S., Bhanger, M.I. and Usmani, T.H. (2008). Fluoride ion contamination in the groundwater of Mithi sub-district, the Thar Desert, Pakistan. Environ Geol, 56: 317–326.

    Article  Google Scholar 

  • Ramesam, V. and Rajagopalan, K. (1985). Fluoride ingestion into natural water of hard rock areas, Peninsular India. Geol. Sco. India, 26: 125–132.

    Google Scholar 

  • Rao, N.S., Rao, P.S., Dinakar, A., Rao, P.V.N. and Marghade, D. (2015). Fluoride occurrence in the groundwater in a coastal region of Andhra Pradesh, India. Appl Water Sci. doi: https://doi.org/10.1007/s13201-015-0338-3.

  • Reddy, D.V., Nagabhushanam, P., Sukhija, B.S., Reddy, A.G.S. and Smedley, P.L. (2010). Fluoride dynamics in the granitic aquifer of the Wailapally watershed, Nalgonda District, India. Chem Geol, 269(3–4): 278–289.

    Article  Google Scholar 

  • Robison, W.D. and Edigton, G. (1946). Fluorine in soil. Soil Sci, 61: 341–353.

    Article  Google Scholar 

  • Rosi, M., Papale, P., Lupi, L. and Stoppato, M. (2003). Volcanoes. Firefly Books Ltd., Spain.

    Google Scholar 

  • Ruggeri, F., Saavedra, J., Fernandez-Turiel, J.L., Gimeno, D. and Garcia-Valles, M. (2010). Environmental geochemistry of ancient volcanic ashes. J of Hazard Mater, 183: 353–365.

    Article  Google Scholar 

  • Rukah, Y.A. and Alsokhny, K. (2004). Geochemical assessment of groundwater contamination with special emphasis on fluoride concentration, North Jordan. Chemie der Erde – Geochemistry, 64(2): 171–181.

    Article  Google Scholar 

  • Sankararamakrishnan, N., Sharma, A.K. and Iyengar, L. (2008). Contamination of nitrate and fluoride in ground water along the Ganges alluvial plain of Kanpur district, Uttar Pradesh, India. Environ Monit and Assess, 146: 375–382.

    Article  Google Scholar 

  • Saxena, V. and Ahmed, S. (2001). Dissolution of fluoride in groundwater: A water-rock interaction study. Environ Geol, 40(9): 1084–1087. doi: https://doi.org/10.1007/s002540100290.

    Article  Google Scholar 

  • Shaji, E., Viju, B.J. and Thambi, D.S. (2007). High fluoride in groundwater of Palghat District, Kerala. Cur Sc, 92(2): 240–245.

    Google Scholar 

  • Shrott, H.E., Merobert, G.R., Barnald, T.W. and Nayar, A.S.M. (1937). Endemic fluorosis in the Madras presidency. Ind J Medical Research, 25: 553–561.

    Google Scholar 

  • Siddique, A., Mumtaz, M., Saied, S., Karim, Z. and Zaigham, N.A. (2006). Fluoride concentration in drinking water of Karachi city (Pakistan). Environ Monit Assess, 120(1–3): 177–185.

    Article  Google Scholar 

  • Singh, C.K. and Mukherjee, S. (2014). Aqueous geochemistry of fluoride enriched groundwater in arid part of Western India. Environ Sci Pollut Res, 22(4): 2668–2678. doi: https://doi.org/10.1007/s11356-014-3504-5.

    Article  Google Scholar 

  • Sorg, T.J. and Logsdon, G.S. (1978). Treatment technology to meet the interim primary drinking water regulations for inorganics, part 2. J. Am. Water Works Assoc., 70: 379–393.

    Article  Google Scholar 

  • Srinivasa Rao, N. (1997). The occurrence and behaviour of fluoride in the groundwater of the Lower Vamsadhara River basin, India. Hydrol Sc, 42(6): 877–892.

    Article  Google Scholar 

  • Srivastav, A.L., Singh, P.K. and Sharma, Y.C. (2015). Synthesis of a novel adsorbent, hydrous bismuth oxide (HBO2) for the removal of fluoride from aqueous solutions. Desalination Water Treatment, 55(3): 604–614.

    Article  Google Scholar 

  • Stumm, W. (1992). Chemistry of the Solid-Water Interface. Wiley Interscience Publication.

    Google Scholar 

  • Su, C., Wang, Y., Xie, X. and Zhu, Y. (2015). An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China. Environ Sci Process Impacts, 17(4): 791–801. doi: https://doi.org/10.1039/C4EM00584H.

    Article  Google Scholar 

  • Sujana, M.G. and Anand, S. (2010). Iron and aluminium based mixed hydroxides: A novel sorbent for fluoride removal from aqueous solutions. Appl Surface Science, 256: 6956–6962.

    Article  Google Scholar 

  • Suriyaraj, S.P., Bhattacharyya, A. and Selvakumar, R. (2012). Hybrid Al2O3/Bio-TiO2Nanocomposite impregnated Thermoplastic polyurethane (TPU) nanofibrous membrane for Fluoride removal from aqueous Solution. RSC Adv., 5: 26905–26912.

    Article  Google Scholar 

  • Suthar, S., Garg, V.K., Jangir, S., Kaur, S., Goswami, N. and Singh, S. (2008). Fluoride contamination in drinking water in rural habitations of Northern Rajasthan, India. Environ Monit and Assess, 145: 1–6.

    Article  Google Scholar 

  • Symonds, R.B., Rose, W.I. and Reed, M.H. (1988). Contribution of Cl and F bearing gases to the atmosphere by volcanoes. Nature, 334: 415–419.

    Article  Google Scholar 

  • Teotia, S.P.S. and Teotai, M. (1994). Dental Caries: A disorder of high fluoride and low dietary calcium interactions (30 years of personal research). Fluoride, 27: 59–66.

    Google Scholar 

  • Tekle-Haimanot, R., Melaku, Z., Kloos, H., Reimann, C., Fantaye, W., Zerihun, L. and Bjorvatn, K. (2006). The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Sc Tot Environ, 367: 182–190.

    Article  Google Scholar 

  • Tirumalesh, K., Shivanna, K. and Jalihal, A.A. (2007). Isotope hydrochemical approach to understand fluoride release into groundwaters of Ilkal area, Bagalkot District, Karnataka, India. Hydrogeol J, 15(3): 589–598.

    Article  Google Scholar 

  • Tor, A., Danaoglu, N., Arslan, G. and Cengeloglu, Y. (2008). Removal of Fluoride from Water by Using Granular Red Mud: Batch and Column Studies. J Hazard Materls, 164(1): 271–278.

    Article  Google Scholar 

  • UNESCO (2007). (Internet source, status January 2007) Trace elements in Groundwater and public health. http://www.iah.org/briefings/Trace/trace.pdf. Accessed on 9th February, 2017.

  • Valenzuela-Vásquez, L., Ramírez-Hernández, J., Reyes-López, J., Sol-Uribe, A. and Lázaro-Mancilla, O. (2006). The origin of fluoride in groundwater supply to Hermosillo City, Sonora, Mexico. Environ Geol, 51: 17–27.

    Article  Google Scholar 

  • Van Cappellen, P. and Berner, R. (1988). A mathematical model for the early diagenesis of phosphorous and fluorine in marine sediments: Apatite precipitation. Ameri J of Sc, 288: 289–333.

    Article  Google Scholar 

  • Vivona, R., Preziosi, E., Madé, B. and Giuliano, G. (2007). Occurrence of minor toxic elements in volcanic-sedimentary aquifers: A case study in central Italy. Hydrogeol J, 15: 1183–1196.

    Article  Google Scholar 

  • Wedepohl, K.H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59: 1217–1232.

    Article  Google Scholar 

  • Weinstein, L.H. and Davison, A. (2003). Fluorides in the Environment – Effects on Plants and Animals. CABI Publishing, UK.

    Google Scholar 

  • WHO. (1984). International Standards for drinking water. 3rd guidelines for drinking water quality. Vol. 2: Health criteria and other supporting information. Geneva, World Health Organization.

    Google Scholar 

  • WHO (2001). Naturally Occurring Hazards; Water, Health and Human Rights; Floods and Droughts. World Water Day 2001.

    Google Scholar 

  • WHO (2002). Fluorides. Environmental Health Criteria 227, 268. World Health Organization, Geneva.

    Google Scholar 

  • Wodeyar, B.K. and Sreenivasan, G. (1996). Occurrence of fluoride in the groundwaters and its impact in Peddavankahalla basin, Bellary district, Karnataka – A preliminary study. Curr Sc, 70(1): 71–74.

    Google Scholar 

  • Yidana, S.M., Yakubo, B.B. and Akabzaa, T.M. (2010). Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. J Afric Erth Sc, 58: 220–234.

    Article  Google Scholar 

  • Young, S.M., Pitawala, A. and Ishiga, H. (2010). Factors controlling fluoride contents of groundwater in north-central and northwestern Sri Lanka. Environl Erth Sc, doi: https://doi.org/10.1007/s12665-010-0804-z.

  • Zhang, S., Lub, Y., Linb, X., Sub, X. and Zhang, Y. (2014). Removal of fluoride from groundwater by adsorption onto La(III)-Al(III) loaded scoria adsorbent. Applied Surface Science, 303: 1–5.

    Article  Google Scholar 

  • Zheng, L., Luo, H., Bandou, K., Kanai, F., Terasaki, K., Yoshimura, T., Sakai, Y., Kimura, S. and Hagiwara, H. (2006). High fluoride groundwater with high salinity and fluorite in aquifer sediments in Inner Mongolia, China. Chinese Journal of Geochemistry, 25(1): 103.

    Article  Google Scholar 

  • Zhuang, J.I.E. and Yu, G.R. (2002). Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. Chemosphere, 49: 619–628.

    Article  Google Scholar 

  • Zidarova, B. (2010). Hydrothermal fluorite-forming processes in the Mikhalkovo deposit (Central Rhodopes, Bulgaria) field observation and experimental confirmation. Neues Jahrbuch für Mineralogie, 187: 133–157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulami Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, P. (2019). Fluoride Pollution in Groundwater. In: Sikdar, P. (eds) Groundwater Development and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-75115-3_14

Download citation

Publish with us

Policies and ethics