Skip to main content

Hydroxychalcones: Synthetic Alternatives to Enhance Oxidative Stability of Biodiesel

  • Chapter
  • First Online:
Increased Biodiesel Efficiency

Abstract

In this chapter, the main aspects about biodiesel synthesis and established quality parameters are reviewed and discussed in the perspective of oxidative stability. First, the characteristics, which define biodiesel as a promising, renewable green fuel, are listed. On the other hand, the propensity of biodiesel to oxidation is explained as one of the limitations to its application. Along this line of thought, the majority of natural and synthetic antioxidants usually applied in the industry are discussed, in which it can be noted that phenolic compounds are very representative. Chalcones containing hydroxyl groups in its structure are phenolic compounds, and so, their origins, sources, and synthetic approaches to obtain these types of molecules are presented. Antioxidant effects of hydroxychalcones already reported in the literature are pointed, and then an experimental topic shows the influence of two synthetic hydroxychalcones, namely (E)-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one and (E)-1-(2-hydroxyphenyl)-3-(3-hydroxyphenyl) prop-2-en-1-one, on the oxidative stability of biodiesel obtained from frying soybean oil. The effects assessed by calorimetric analysis revealed interesting effects on the enhancement of biodiesel oxidative stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aly MRES, Fodah HHAER, Saleh SY (2014) Antiobesity, antioxidant and cytotoxicity activities of newly synthesized chalcone derivatives and their metal complexes. Eur J Med Chem 76:517–530

    Article  Google Scholar 

  • Association of Official Analytical Chemists (AOAC) (1997) Section C: Commercial Fats and Oils, American Oil Chemists Society (AOCS) official method Cd 3–25 for saponification value. Association of Official Analytical Chemists, Washington

    Google Scholar 

  • ASTM D (1997) Standard test method for iodine value of drying oils and fatty acids. Int Annual book of ASTM standards

    Google Scholar 

  • ASTM Standard (1995) D93: standard test methods for flash point by Pensky-Martens closed cup tester. American Society for Testing and Materials, Philadelphia, PA (USA)

    Google Scholar 

  • ASTM Standard (2006) D445: standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). American Society for Testing and Materials, West Conshohocken, PA (USA)

    Google Scholar 

  • ASTM Standard (2011) Standard test method for acid number of petroleum products by potentiometric titration-ASTM D 664-11A. ASTM International, West Conshohocken, PA

    Google Scholar 

  • Atabani AE, Silitonga AS, Ong HC et al (2013) Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sustain Energy Rev 18:211–245

    Article  Google Scholar 

  • Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med 22:749–760

    Article  Google Scholar 

  • Chavan BB, Gadekar AS, Mehta PP, et al (2016) Synthesis and medicinal significance of chalcones—a review. Asian J Biomed Pharm Sci 56:1–7

    Google Scholar 

  • da CĂ©sar AS, Werderits DE, de Oliveira Saraiva GL, da Guabiroba RCS (2017) The potential of waste cooking oil as supply for the Brazilian biodiesel chain. Renew. Sustain. Energy Rev 72:246–253

    Google Scholar 

  • Dantas MB, Albuquerque AR, Barros AK et al (2011) Evaluation of the oxidative stability of corn biodiesel. Fuel 90:773–778

    Article  Google Scholar 

  • Dao TTH, Linthorst HJM, Verpoorte R (2011) Chalcone synthase and its functions in plant resistance. Phytochem Rev 10:397–412

    Article  Google Scholar 

  • Dawane BS, Konda SG, Shaikh BM, Bhosale RB (2009) An improved procedure for synthesis of some new 1,3-diaryl-2-propen-1-ones using PEG-400 as a recyclable solvent and their antimicrobial evaluation. Acta Pharm 59:473–482

    Article  Google Scholar 

  • De Oliveira DM, Ongaratto DP, Fontoura LAM et al (2013) ObtenĂ§Ă£o de biodiesel por transesterificaĂ§Ă£o em dois estĂ¡gios e sua caracterizaĂ§Ă£o por cromatografia gasosa Ă³leos e gorduras em laboratĂ³rio de quĂ­mica orgĂ¢nica. Quim Nova 36:734–737

    Article  Google Scholar 

  • Detsi A, Majdalani M, Kontogiorgis CA et al (2009) Natural and synthetic 2′-hydroxy-chalcones and aurones: synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. Bioorganic Med Chem 17:8073–8085

    Article  Google Scholar 

  • DĂ­as-Tielas C, Graña E, Reigosa MJ, SĂ¡nchez-Moreiras AM (2016) Biological activities and novel applications of chalcones. Planta Daninha 34:607–616

    Article  Google Scholar 

  • Dunn RO (2006) Oxidative stability of biodiesel by dynamic mode pressurized–differential Scanning Calorimetry (P–Dsc). Am Soc Agric Biol Eng 49:1633–1641

    Google Scholar 

  • Dunn RO (2008) Antioxidants for improving storage stability of biodiesel. Biofuels, Bioprod Biorefining 2:304–318

    Article  Google Scholar 

  • Encinar JM, GonzĂ¡lez JF, RodrĂ­guez-Reinares A (2007) Ethanolysis of used frying oil. Biodiesel preparation and characterization. Fuel Process Technol 88:513–522

    Article  Google Scholar 

  • Focke WW, Van Der Westhuizen I (2010) Oxidation induction time and oxidation onset temperature of polyethylene in air: testing Gimzewski’s postulate. J Therm Anal Calorim 99:285–293

    Article  Google Scholar 

  • Franceschelli S, Pesce M, Vinciguerra I et al (2011) Licocalchone-C extracted from glycyrrhiza glabra inhibits lipopolysaccharide-interferon-gamma inflammation by improving antioxidant conditions and regulating inducible nitric oxide synthase expression. Molecules 16:5720–5734

    Article  Google Scholar 

  • Fu J, Hue BTB, Turn SQ (2017) Oxidation stability of biodiesel derived from waste catfish oil. Fuel 202:455–463

    Article  Google Scholar 

  • Georgogianni KG, Kontominas MG, Tegou E, et al (2007) Biodiesel production: reaction and process parameters of alkali-catalyzed transesterification of waste frying oils biodiesel production: reaction and process parameters of alkali-catalyzed transesterification of waste frying oils. Energy 3023–3027. https://doi.org/10.1021/ef070102b

  • Gui MM, Lee KT, Bhatia S (2008) Feasibility of edible oil versus non-edible oil versus waste edible oil as biodiesel feedstock. Energy 33:1646–1653

    Article  Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584

    Article  Google Scholar 

  • Herbinet O, Pitz WJ, Westbrook CK (2010) Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate. Combust Flame 157:893–908

    Article  Google Scholar 

  • Hoekman SK, Broch A, Robbins C et al (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16:143–169

    Article  Google Scholar 

  • Jayapal MR, Sreenivasa Prasad K, Sreedhar NY (2010) Synthesis and characterization of 2,4-dihydroxy substituted chalcones using aldol condensation by SOCl2/EtOH. J Chem Pharm Res 2:127–132

    Google Scholar 

  • Jhala YS, Dulawat SS, Verma BL (2006) Solvent-free improved syntheses of some substituted 1, 3-diaryl-propenones and 3, 5-diaryl-6-carbethoxycyclohexenones under microwave irradiation and their antibacterial activity. Indian J Chem 45:466–469

    Google Scholar 

  • Kamboj RC, Arora R, Sharma G et al (2010) Eco-friendly synthesis and antimicrobial activity of chalcones. Der Pharma Chem 2:157–170

    Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  Google Scholar 

  • Knothe G (2006) Analyzing biodiesel: standards and other methods. JAOCS J Am Oil Chem Soc 83:823–833

    Article  Google Scholar 

  • Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88:669–677

    Article  Google Scholar 

  • Knothe G, Razon LF (2017) Biodiesel fuels. Prog Energy Combust Sci 58:36–59

    Article  Google Scholar 

  • Kulkarni MG, Dalai AK (2006) Waste cooking oil - An economical source for biodiesel: a review. Ind Eng Chem Res 45:2901–2913

    Article  Google Scholar 

  • Kumar N (2017) Oxidative stability of biodiesel: causes, effects and prevention. Fuel 190:328–350

    Article  Google Scholar 

  • Lapuerta M, Herreros JM, Lyons LL et al (2008) Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel 87:3161–3169

    Article  Google Scholar 

  • Lee CK, Son SH, Park KK et al (2008) Licochalcone a inhibits the growth of colon carcinoma and attenuates cisplatin-induced toxicity without a loss of chemotherapeutic efficacy in mice. Basic Clin Pharmacol Toxicol 103:48–54

    Article  Google Scholar 

  • Marcon NS, Colet R, Balen DS et al (2017) Enzymatic biodiesel production from microalgae biomass using propane as pressurized fluid. Can J Chem Eng 95:1340–1344

    Article  Google Scholar 

  • Mathew B, Adeniyi AA, Joy M et al (2017) Anti-oxidant behavior of functionalized chalcone-a combined quantum chemical and crystallographic structural investigation. J Mol Struct 1146:301–308

    Article  Google Scholar 

  • Mathiesena L, Malterud KE, Sund RB (1996) Hydrogen bond formation as basis for radical scavenging activity: a structure-activity study of C-methylated dihydrochalcones from Myrica gale and structurally related acetophenones. Free Radic Biol Med 22:307–311

    Article  Google Scholar 

  • Mekhilef S, Siga S, Saidur R (2011) A review on palm oil biodiesel as a source of renewable fuel. Renew Sustain Energy Rev 15:1937–1949

    Article  Google Scholar 

  • Misutsu MY, Cavalheiro LF, Ricci TG et al (2015) Thermoanalytical methods in verifying the quality of biodiesel. In: Biernat K (ed) Biofuels—status and perspective. InTech, Croatia, pp 251–269

    Google Scholar 

  • Mittelbach M, Schober S (2003) The influence of antioxidants on the oxidation stability of biodiesel. JAOCS, J Am Oil Chem Soc 80:817–823

    Article  Google Scholar 

  • Nishida J, Kawabata J (2006) DPPH radical scavenging reaction of hydroxy- and methoxychalcones. Biosci Biotechnol Biochem 70:193–202

    Article  Google Scholar 

  • Niu H, Wang W, Li J et al (2017) A novel structural class of coumarin-chalcone fibrates as PPARalpha/gamma agonists with potent antioxidant activities: Design, synthesis, biological evaluation and molecular docking studies. Eur J Med Chem 138:212–220

    Article  Google Scholar 

  • Ohkatsu Y, Satoh T (2008) Antioxidant and photo-antioxidant activities of chalcone derivatives. J Japan Pet Inst 51:298–308. https://doi.org/10.1627/jpi.51.298

    Article  Google Scholar 

  • Oliveira M, Rockembach CT, Dias D, et al (2013). AplicaĂ§Ă£o de Chalconas como Reagente Antioxidante em Biodiesel. Brazilian Patent BR 10 2013 030049 7 A2, 22 Nov 2013

    Google Scholar 

  • Orlikova B, Tasdemir D, Golais F et al (2011) Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr 6:125–147

    Article  Google Scholar 

  • Padhye S, Ahmad A, Oswal N et al (2010) Fluorinated 2′-hydroxychalcones as garcinol analogs with enhanced antioxidant and anticancer activities. Bioorganic Med Chem Lett 20:5818–5821

    Article  Google Scholar 

  • Pereira CMP, Hobuss CB, Maciel JV et al (2012) Biodiesel renovĂ¡vel derivado de microalgas: avanços e perspectivas tecnolĂ³gicas. Quim Nova 35:2013–2018

    Article  Google Scholar 

  • Petrov O, Ivanova Y, Gerova M (2008) SOCl2/EtOH: catalytic system for synthesis of chalcones. Catal Commun 9:315–316

    Article  Google Scholar 

  • Pinto FV (2017) Boletim Mensal do biodiesel. In: AgĂªncia Nac. do PetrĂ³leo GĂ¡s Nat. e BiocombustĂ­veis—ANP. Web Page. http://www.anp.gov.br/wwwanp/publicacoes/boletins-anp/2386-boletim-mensal-do-biodiesel. Accessed 28 Aug 2017

  • Pinzi S, Garcia IL, Lopez-Gimenez FJ et al (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuels 23:2325–2341

    Article  Google Scholar 

  • Pullen J, Saeed K (2012) An overview of biodiesel oxidation stability. Renew Sustain Energy Rev 16:5924–5950

    Article  Google Scholar 

  • Qian H, Liu D (2011) Synthesis of chalcones via claisen-schmidt reaction catalyzed by sulfonic acid-functional ionic liquids. Ind Eng Chem Res 50:1146–1149

    Article  Google Scholar 

  • Rezk BM, Haenen GRMM, Van der Vijgh WJF, Bast A (2002) The antioxidant activity of phloretin: The disclosure of a new antioxidant pharmacophore in flavonoids. Biochem Biophys Res Commun 295:9–13

    Article  Google Scholar 

  • Righi AA, Alves TR, Negri G et al (2011) Brazilian red propolis: unreported substances, antioxidant and antimicrobial activities. J Sci Food Agric 91:2363–2370

    Article  Google Scholar 

  • Ritter M, Martins RM, Rosa SA et al (2015) Green synthesis of chalcones and microbiological evaluation. J Braz Chem Soc 26:1201–1210

    Google Scholar 

  • Rizwanul Fattah IM, Hassan MH, Kalam MA et al (2014a) Synthetic phenolic antioxidants to biodiesel: path toward NOx reduction of an unmodified indirect injection diesel engine. J Clean Prod 79:82–90

    Article  Google Scholar 

  • Rizwanul Fattah IM, Masjuki HH, Kalam MA et al (2014b) Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks. Renew Sustain Energy Rev 30:356–370. https://doi.org/10.1016/j.rser.2013.10.026

    Article  Google Scholar 

  • Rockembach CT, Dias D, Vieira BM et al (2014) Synthesis of biodiesel from grape seed oil using ultrasound irradiation. Rev Virtual QuĂ­mica 6:884–897

    Google Scholar 

  • Rozmer Z, PerjĂ©si P (2016) Naturally occurring chalcones and their biological activities. Phytochem Rev 15:87–120

    Article  Google Scholar 

  • Sajjadi B, Raman AAA, Arandiyan H (2016) A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models. Renew Sustain Energy Rev 63:62–92

    Article  Google Scholar 

  • Saluja RK, Kumar V, Sham R (2016) Stability of biodiesel—a review. Renew Sustain Energy Rev 62:166–181

    Article  Google Scholar 

  • Sarin R, Sharma M, Sinharay S, Malhotra RK (2007) Jatropha-Palm biodiesel blends: an optimum mix for Asia. Fuel 86:1365–1371

    Article  Google Scholar 

  • Senevirathne M, Kim S-H, Siriwardhana N et al (2006) Antioxidant potential of Ecklonia cava on reactive oxygen species scavenging, metal chelating, reducing power and lipid peroxidation inhibition. Food Sci Technol Int 12:27–38

    Article  Google Scholar 

  • Serifi O, Tsopelas F, Kypreou AM et al (2013) Antioxidant behaviour of 2′-hydroxy-chalcones: a study of their electrochemical properties. J Phys Org Chem 26:226–231

    Article  Google Scholar 

  • Serqueira DS, Fernandes DM, Cunha RR et al (2014) Influence of blending soybean, sunflower, colza, corn, cottonseed, and residual cooking oil methyl biodiesels on the oxidation stability. Fuel 118:16–20

    Article  Google Scholar 

  • Shahidi F, Wanasundara PK (1992) Phenolic antioxidants. Crit Rev Food Sci Nutr 32:67–103

    Article  Google Scholar 

  • Sikander M, Malik S, Yadav D et al (2011) Cytoprotective activity of a trans-chalcone against hydrogen peroxide induced toxicity in hepatocellular carcinoma (HepG2) cells. Asian Pacific J Cancer Prev 12:2513–2516

    Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: An answer to debatable land based fuels. Bioresour Technol 102:10–16

    Article  Google Scholar 

  • Singh SP, Singh D (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sustain Energy Rev 14:200–216

    Article  Google Scholar 

  • Stuart BH (2012) Forensic analytical techniques. Wiley, New Jersey, 234 p

    Google Scholar 

  • TomĂ¡s-BarberĂ¡n FA, Clifford MN (2000) Flavanones, chalcones and dihydrochalcones—nature, occurrence and dietary burden. J Sci Food Agric 80:1073–1080

    Article  Google Scholar 

  • Veith NC, Grayer RJ (2006) Chalcones, Dihydrochalcones, and Aurones. In: Andersen OM, Markham KR (eds) Flavonoids: chemistry, biochemistry, and applications, pp 1003–1071. CRC Press Taylor & Francis Group, Florida

    Google Scholar 

  • Vieira BM, Elicker C, Nunes CFP et al (2016) The synthesis and characterization of Butia capitata seed oil as a FAME feedstock. Fuel 184:533–535

    Article  Google Scholar 

  • Wang F-W, Wang S-Q, Zhao B-X, Miao J-Y (2014) Discovery of 2′-hydroxychalcones as autophagy inducer in A549 lung cancer cells. Org Biomol Chem 12:3062–3070

    Article  Google Scholar 

  • Wang Y, Pengzhan Liu SO, Zhang Z (2007) Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energy Convers Manag 48:184–188

    Article  Google Scholar 

  • Xin J, Imahara H, Saka S (2009) Kinetics on the oxidation of biodiesel stabilized with antioxidant. Fuel 88:282–286

    Article  Google Scholar 

  • Xue Y, Zheng Y, An L et al (2012) A theoretical study of the structure-radical scavenging activity of hydroxychalcones. Comput Theor Chem 982:74–83

    Article  Google Scholar 

  • Yaakob Z, Narayanan BN, Padikkaparambil S et al (2014) A review on the oxidation stability of biodiesel. Renew Sustain Energy Rev 35:136–153

    Article  Google Scholar 

  • Zhuang C, Zhang W, Sheng C et al (2017) Chalcone: a privileged structure in medicinal chemistry. Chem Rev 117:7762–7810

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Martin Pereira de Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Da Silva, C.C. et al. (2018). Hydroxychalcones: Synthetic Alternatives to Enhance Oxidative Stability of Biodiesel. In: Trindade, M. (eds) Increased Biodiesel Efficiency. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-73552-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73552-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73551-1

  • Online ISBN: 978-3-319-73552-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics