Skip to main content

Vanilla: The Most Popular Flavour

  • Chapter
  • First Online:
Biotechnology of Natural Products

Abstract

Vanillin is the world’s most popular flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. The isolation of vanillin from vanilla pods is a laborious and costly process. Currently, less than 1% of the globally produced vanillin is derived from vanilla pods, while the greater part is produced synthetically. Industrial application of bioengineered microorganisms for vanillin production has gained quite a lot of attention not only from the flavour and fragrance industries, but also from environmental groups, the general public and politicians. The recent identification of VpVAN from the vanilla orchid can contribute to an entirely new opportunity for biotechnology-based production of natural vanillin. In the following sections, we give a thorough introduction to vanilla plants, pods and vanillin biosynthesis in the vanilla pods and highlight the current state of biotechnology-derived vanillin synthesis using bacteria, fungi and yeast as microbial production hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

°C:

Celsius

cm:

Centimetre

DNA:

Deoxyribonucleic acid

ER:

Endoplasmic reticulum

EU:

European Union

g:

Gram

h:

Hour

kg:

Kilogram

l:

Liter

m:

Meter

mM:

Millimolar

sp.:

Species

UDP:

Uridine diphosphate glucose

US$:

United States dollar

References

  1. Gallage NJ, Møller BL. Vanillin–bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol Plant. 2015;8(1):40–57.

    Article  CAS  Google Scholar 

  2. Pansarin ER, et al. Pollination systems in Pogonieae (Orchidaceae: Vanilloideae): a hypothesis of evolution among reward and rewardless flowers. Flora. 2012;207(12):849–61.

    Article  Google Scholar 

  3. Pansarin ER, Pansarin LM. Floral biology of two Vanilloideae (Orchidaceae) primarily adapted to pollination by euglossine bees. Plant Biol (Stuttg). 2014;16(6):1104–13.

    CAS  Google Scholar 

  4. Porras-Alfaro A, Bayman P. Mycorrhizal fungi of Vanilla: diversity, specificity and effects on seed germination and plant growth. Mycologia. 2007;99(4):510–25.

    Article  CAS  Google Scholar 

  5. Daphna HF, Belanger F. Handbook of vanilla science and technology. Hoboken: Wiley; 2010.

    Google Scholar 

  6. Cameron KM, Molina MC. Photosystem II gene sequences of psbB and psbC clarify the phylogenetic position of Vanilla (Vanilloideae, Orchidaceae). Cladistics. 2006;22(3):239–48.

    Article  Google Scholar 

  7. Sinha AK, Sharma UK, Sharma N. A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents. Int J Food Sci Nutr. 2008;59(4):299–326.

    Article  CAS  Google Scholar 

  8. Gallage NJ, et al. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nat Commun. 2014;5:1–14.

    Article  Google Scholar 

  9. Odoux EaG, M. Vanilla. In: Odoux EaG M, editor. Medicinal and aromatic plants: CRC Press; 2010. p. 387.

    Google Scholar 

  10. Cameron KM. Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. Mol Phylogenet Evol. 2004;31(3):1157–80.

    Article  CAS  Google Scholar 

  11. Cameron KM. On the value of nuclear and mitochondrial gene sequences for reconstructing the phylogeny of vanilloid orchids (Vanilloideae, Orchidaceae). Ann Bot. 2009;104(3):377–85.

    Article  CAS  Google Scholar 

  12. Cameron KM, et al. A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide. Am J Bot. 1999;86(2):208–24.

    Article  Google Scholar 

  13. Anuradha K, Shyamala BN, Naidu MM. Vanilla- its science of cultivation, curing, chemistry, and nutraceutical properties. Crit Rev Food Sci Nutr. 2013;53(12):1250–76.

    Article  CAS  Google Scholar 

  14. Fouche JG, Jouve L. Vanilla planifolia: history, botany and culture in Reunion Island. Agronomie. 1999;19(8):689–703.

    Article  Google Scholar 

  15. Rodolphe G, et al. The dynamical processes of biodiversity – Case studies of evolution and spatial distribution. In: Grillo O, editor. Biodiversity and evolution in the Vanilla Genus. Rijeka: InTech; 2011.

    Chapter  Google Scholar 

  16. Odoux E, Brillouet JM. Anatomy, histochemistry and biochemistry of glucovanillin, oleoresin and mucilage accumulation sites in green mature vanilla pod (Vanilla planifolia; Orchidaceae): a comprehensive and critical reexamination. FRUITS. 2009;64(4):221–41.

    Article  CAS  Google Scholar 

  17. Rao SR, Ravishankar GA. Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agr. 2000;80(3):289–304.

    Article  CAS  Google Scholar 

  18. Jones MA, Vincente GC. Criteria for testing vanilla in relation to killing and curing methods. J Agric Res. 1949;78:425–34.

    CAS  Google Scholar 

  19. Sharp MD, et al. Rapid discrimination and characterization of vanilla bean extracts by attenuated total reflection infrared spectroscopy and selected Ion flow tube mass spectrometry. J Food Sci. 2012;77(3):C284–92.

    Article  CAS  Google Scholar 

  20. Silva AP, et al. New insight on the genesis and fate of odor-active compounds in vanilla beans (Vanilla planifolia G. Jackson) during traditional curing. Food Res Int. 2011;44(9):2930–7.

    Article  Google Scholar 

  21. De La Cruz Medina J, Jiménes GCR, García HS. Vanilla: post-harvest operations. 2009. Available from: http://www.fao.org/fileadmin/user_upload/inpho/docs/Post_Harvest_Compendium_-_Vanilla.pdf.

  22. Gobley MJ. Recherches sur le principe odorant de la vanille. Pharmacie, J R Soc. 1858;34:401–5.

    Google Scholar 

  23. Palama TL, et al. Metabolic changes in different developmental stages of Vanilla planifolia pods. J Agric Food Chem. 2009;57(17):7651–8.

    Article  CAS  Google Scholar 

  24. Boonchird C, Flegel TW. In vitro antifungal activity of eugenol and vanillin against Candida albicans and Cryptococcus neoformans. Can J Microbiol. 1982;28(11):1235–41.

    Article  CAS  Google Scholar 

  25. Bomgardner MM. The problem with vanilla – After vowing to go natural, food brands face a shortage of the favored flavor. In: Chemical and Engineering news. Washington: ACS; 2017. p. 38–42.

    Google Scholar 

  26. Brochado AR, et al. Improved vanillin production in baker’s yeast through in silico design. Microb Cell Fact. 2010;9:1–15.

    Article  Google Scholar 

  27. Walton NJ, Mayer MJ, Narbad A. Molecules of interest – Vanillin. Phytochemistry. 2003;63(5):505–15.

    Article  CAS  Google Scholar 

  28. Walton NJ, et al. Novel approaches to the biosynthesis of vanillin. Curr Opin Chem Biol. 2000;11(5):490–6.

    CAS  Google Scholar 

  29. Hocking M. Vanillin: synthetic flavoring from spent sulfite liquor (vol 74, pg 1055, 1997). J Chem Educ. 1997;74(12):1384.

    Article  CAS  Google Scholar 

  30. Borregaard. Vanilla House. 2017 [cited 2017 01–08]; Available from: http://www.vanillin.com/.

  31. Zenk MH. Biosynthese von vanillin in Vanilla planifolia Andr. Z Pflanzenphysiol. 1965;53:404–14.

    CAS  Google Scholar 

  32. Havkin-Frenkel D, Belanger F. Handbook of vanilla science and technology. Chichester: Wiley; 2010. p. 360.

    Book  Google Scholar 

  33. Anwar MH. Paper Chromatography of Monohydroxyphenols in Vanilla extract. Anal Chem. 1963;35(12):1974–6.

    Article  CAS  Google Scholar 

  34. Podstolski A, et al. Unusual 4-hydroxybenzaldehyde synthase activity from tissue cultures of the vanilla orchid Vanilla planifolia. Phytochemistry. 2002;61(6):611–20.

    Article  CAS  Google Scholar 

  35. Negishi O, Sugiura K, Negishi Y. Biosynthesis of vanillin via ferulic acid in Vanilla planifolia. J Agric Food Chem. 2009;57(21):9956–61.

    Article  CAS  Google Scholar 

  36. Rosazza JPN, et al. Review: biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J Ind Microbiol Biotechnol. 1995;15(6):457–71.

    CAS  Google Scholar 

  37. Fritz RR, Hodgins DS, Abell CW. Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals. J Biol Chem. 1976;251(15):4646–50.

    CAS  Google Scholar 

  38. Gabriac B, et al. Purification and immunocharacterization of a plant cytochrome P450: the cinnamic acid 4-hydroxylase. Arch Biochem Biophys. 1991;288(1):302–9.

    Article  CAS  Google Scholar 

  39. Schoch G, et al. CYP98A3 from Arabidopsis thaliana is a 3 ‘-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem. 2001;276(39):36566–74.

    Article  CAS  Google Scholar 

  40. Lam KC, et al. Structure, function, and evolution of plant O-methyltransferases. Genome. 2007;50(11):1001–13.

    Article  CAS  Google Scholar 

  41. Yang H, et al. A re-evaluation of the final step of vanillin biosynthesis in the orchid Vanilla planifolia. Phytochemistry. 2017;139:33–46.

    Article  CAS  Google Scholar 

  42. Cambra I, et al. Structural basis for specificity of propeptide-enzyme interaction in barley C1A cysteine peptidases. Plos One. 2012;7(5):e37234.

    Article  CAS  Google Scholar 

  43. Turk V, et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. BBA Proteins Proteomics. 2012;1824(1):68–88.

    Article  CAS  Google Scholar 

  44. Odoux E, Chauwin A, Brillouet JM. Purification and characterization of vanilla bean (Vanilla planifolia Andrews) beta-D-glucosidase. J Agric Food Chem. 2003;51(10):3168–73.

    Article  CAS  Google Scholar 

  45. Pollan M. Why ‘Natural’ Doesn’t Mean Anything Anymore, in The New York times magazine. New York: The New York Times Magazine; 2015.

    Google Scholar 

  46. Bratanova B, et al. Savouring morality. Moral satisfaction renders food of ethical origin subjectively tastier. Appetite. 2015;91:137–49.

    Article  Google Scholar 

  47. FDA. CFR – Code of Federal Regulations Title 21. 2015 [cited 2016 24–08]; Available from: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=501.22.

  48. Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008;54(4):712–32.

    Article  CAS  Google Scholar 

  49. Solvay. Solvay. 2017 [cited 2016 01–08-2016]; Rhovanil® vanillin]. Available from: http://www.solvay.com/en/index.html.

  50. Aromatics DM vanillin natural (ex-ferulic acid) 2017 [cited 2016 01–08]; vanillin natural (ex-ferulic acid)]. Available from: http://www.demonchyaromatics.com/.

  51. Mane. Sense Capture Vanillin. 2017 [cited 2016 01–08]; Available from: http://www.mane.com/.

  52. Evolva. Making Vanillin in Yeast. 2017 [cited 2016 01–08]; Making Vanillin in Yeast]. Available from: http://www.evolva.com/.

  53. Hansen EH, et al. De Novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and Baker’s Yeast (Saccharomyces cerevisiae). Appl Environ Microbiol. 2009;75(9):2765–74.

    Article  CAS  Google Scholar 

  54. LesageMeessen L, et al. A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J Biotechnol. 1996;50(2–3):107–13.

    Article  CAS  Google Scholar 

  55. Di Gioia D, et al. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. J Biotechnol. 2011;156(4):309–16.

    Article  Google Scholar 

  56. Schwab W. Genetic engineering of plants and microbial cells for flavour production. In: Berger RG, editor. Chemistry, bioprocessing and sustainability. Berlin: Springer; 2007. p. 648.

    Google Scholar 

  57. Hartley RD, Ford CW. Phenolic constituents of plant-cell walls and wall biodegradability. ACS Symp Ser. 1989;399:137–45.

    Article  CAS  Google Scholar 

  58. Priefert H, Rabenhorst J, Steinbuchel A. Biotechnological production of vanillin. Appl Microbiol Biotechnol. 2001;56(3–4):296–314.

    Article  CAS  Google Scholar 

  59. Sigma-Aldrich, product Eugenol. [cited 2016 24–08]; Available from:http://www.sigmaaldrich.com/catalog/search? term=eugenol&interface=All&N=0&mode=match%20partialmax&lang=en®ion=DK&focus=product

  60. Lesage-Meessen L, et al. Fungal transformation of ferulic acid from sugar beet pulp to natural vanillin. J Sci Food Agr. 1999;79(3):487–90.

    Article  CAS  Google Scholar 

  61. Bonnin E, et al. Enzymic release of cellobiose from sugar beet pulp, and its use to favour vanillin production in Pycnoporus cinnabarinus from vanillic acid. Carbohydr Polym. 2000;41(2):143–51.

    Article  CAS  Google Scholar 

  62. Zheng LR, et al. Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresour Technol. 2007;98(5):1115–9.

    Article  CAS  Google Scholar 

  63. de Vries RP, et al. The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol. 1997;63(12):4638–44.

    Google Scholar 

  64. Benoit I, et al. Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products. Carbohydr Res. 2006;341(11):1820–7.

    Article  CAS  Google Scholar 

  65. Lesage-Meessen L, et al. A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran. Appl Biochem Biotechnol. 2002;102:141–53.

    Article  Google Scholar 

  66. Faulds CB, Bartolome B, Williamson G. Novel biotransformations of agro-industrial cereal waste by ferulic acid esterases. Ind Crops Prod. 1997;6(3–4):367–74.

    Article  CAS  Google Scholar 

  67. Torres BR, et al. Vanillin bioproduction from alkaline hydrolyzate of corn cob by Escherichia coli JM109/pBB1. Enzyme Microb Technol. 2009;44(3):154–8.

    Article  CAS  Google Scholar 

  68. Higuchi T, Ito Y, Kawamura I. P-Hydroxyphenylpropane component of grass lignin and role of tyrosine-ammonia lyase in its formation. Phytochemistry. 1967;6(6):875–81.

    Article  CAS  Google Scholar 

  69. Biotech N. Ferulic acid Ex Rice Bran. 2017 [cited 2016 01–08]; Available from: http://www.novorate.com/.

  70. Plaggenborg R, et al. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl Microbiol Biotechnol. 2006;72(4):745–55.

    Article  CAS  Google Scholar 

  71. Muheim A, Lerch K. Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol. 1999;51(4):456–61.

    Article  CAS  Google Scholar 

  72. Yamada M, et al. Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Appl Microbiol Biotechnol. 2007;73(5):1025–30.

    Article  CAS  Google Scholar 

  73. Zhao LQ, et al. Biotransformation of isoeugenol to vanillin by a novel strain of Bacillus fusiformis. Biotechnol Lett. 2005;27(19):1505–9.

    Article  CAS  Google Scholar 

  74. van Wezel GP, et al. Unlocking streptomyces spp. for use as sustainable industrial production platforms by morphological engineering (vol 72, pg 5283, 2006). Appl Environ Microbiol. 2006;72(10):6863.

    Article  Google Scholar 

  75. Yoon SH, et al. Production of vanillin from ferulic acid using recombinant strains of Escherichia coli. Biotechnol Bioprocess Eng. 2005;10(4):378–84.

    Article  CAS  Google Scholar 

  76. Fleige C, et al. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin. Appl Environ Microbiol. 2013;79(1):81–90.

    Article  CAS  Google Scholar 

  77. Graf N, Wenzel M, Altenbuchner J. Identification and characterization of the vanillin dehydrogenase YfmT in Bacillus subtilis 3NA. Appl Microbiol Biotechnol. 2016;100(8):3511–21.

    Article  CAS  Google Scholar 

  78. Mukai N, et al. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J Biosci Bioeng. 2010;109(6):564–9.

    Article  CAS  Google Scholar 

  79. Ramaen O, Sauveplane V, Pandjaitan R, Gelo-Pujic M. 2014. Improved production of vanilloids by fermentation. EP20140305939. 

    Google Scholar 

  80. Gallage NJ, Moller BL, Hansen EH, Hansen J, 2014. Vanillin synthase. PCT/DK2013/050357.

    Google Scholar 

  81. Li K, Frost JW. Synthesis of vanillin from glucose. J Am Chem Soc. 1998;120(40):10545–6.

    Article  CAS  Google Scholar 

  82. Joergen Hansen EHH, Sompalli HP, Sheridan JM, Heal JR, Hamilton WDO. 2013 Compositions and methods for the biosynthesis of vanillin or vanillin beta-d-glucoside. PCT7US2012/049842 

    Google Scholar 

  83. Topakas E, et al. Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus Sporotrichum thermophile. LWT - Food Sci Technol. 2003;36(6):561–5.

    Article  CAS  Google Scholar 

  84. Hua DL, et al. Enhanced vanillin production from ferulic acid using adsorbent resin. Appl Microbiol Biotechnol. 2007;74(4):783–90.

    Article  CAS  Google Scholar 

  85. Erika CH. Synthetic-biology firms shift focus. Nature News. 2014;505:598.

    Article  Google Scholar 

  86. Rupp R. The History of Vanilla, in National Geographic. National Geographic Society; 2014.

    Google Scholar 

  87. Earth F.o.t. Synthetic Biology Vanillin: not natural, not sustainable, not likely to be labeled, and coming to an ice-cream cone near you [cited 2016 22–08]; Available from: http://www.foe.org/system/storage/877/eb/6/3136/synbio_vanillin_fact_sheet.pdf

  88. Michael G, Nadene G. Madagascar’s vanilla farmers face volatile times after poor harvest, in The Guardian. 2016. Guardian News and Media Limited: UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birger Lindberg Møller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gallage, N.J., Møller, B.L. (2018). Vanilla: The Most Popular Flavour. In: Schwab, W., Lange, B., Wüst, M. (eds) Biotechnology of Natural Products. Springer, Cham. https://doi.org/10.1007/978-3-319-67903-7_1

Download citation

Publish with us

Policies and ethics