Skip to main content

Biofilm Lifestyle of Thermophile and Acidophile Archaea

  • Chapter
  • First Online:
Biocommunication of Archaea

Abstract

In this chapter we provide an overview of the biofilm lifestyle of (hyper) thermophilic and acidophilic archaea. In contrast to the bacterial domain, biofilm formation of archaea is far less studied and understood. Recent evidence has shown that upon biofilm formation, archaeal cells are able to secrete extracellular polymeric substances (EPS), whose composition changes according to available energy sources, environmental fluctuations and biofilm maturity. Also, several type IV pili-like surface cell appendages (e.g. the archaellum and the aap pili) have been shown to be involved in the initial attachment of archaea to surfaces. Little is known about cell-to-cell interactions and potential cell-to-cell communication mechanisms in archaea. Therefore, molecules and signaling pathways involved in these processes might be substantially different from what it is already described in bacteria. Recently, the first archaeal transcriptional regulators involved in biofilm formation have been discovered in Sulfolobus species. Future avenues in archaeal biofilm research include: (i) the EPS biosynthesis pathways and biofilm-specific bio-molecules, (ii) cell-to-cell communication mechanisms and microbial interactions within multispecies archaeal biofilms, as well as (iii) potential interaction with bacterial and eukaryotic microorganisms. Finally, biotechnological applications of thermophilic and acidophilic archaeal biofilms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker-Austin C, Potrykus J, Wexler M, Bond PL, Dopson M (2010) Biofilm development in the extremely acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Extremophiles 14(6):485–491

    Article  PubMed  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44(2):139–152

    Article  CAS  PubMed  Google Scholar 

  • Barcon T, Alonso-Gutierrez J, Omil F (2012) Molecular and physiological approaches to understand the ecology of methanol degradation during the biofiltration of air streams. Chemosphere 87(10):1179–1185

    Article  CAS  PubMed  Google Scholar 

  • Bellack A, Huber H, Rachel R, Wanner G, Wirth R (2011) Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell-cell contacts. Int J Syst Evol Microbiol 61(Pt 6):1239–1245

    Google Scholar 

  • Brown MN, Briones A, Diana J, Raskin L (2013) Ammonia-oxidizing archaea and nitrite-oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system. FEMS Microbiol Ecol 83(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Castro C, Zhang R, Liu J, Bellenberg S, Neu TR, Donati E, Sand W, Vera M (2016) Biofilm formation and interspecies interactions in mixed cultures of thermo-acidophilic archaea Acidianus spp. and Sulfolobus metallicus. Res Microbiol 167(7):604–612

    Article  PubMed  Google Scholar 

  • Comolli LR, Baker BJ, Downing KH, Siegerist CE, Banfield JF (2009) Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon. ISME J 3(2):159–167

    Article  CAS  PubMed  Google Scholar 

  • Cowan DA, Fernandez-Lafuente R (2011) Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol 49(4):326–346

    Article  CAS  PubMed  Google Scholar 

  • Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004) Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70(4):2079–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287(5459):1796–1799

    Article  CAS  PubMed  Google Scholar 

  • Etzel K, Klingl A, Huber H, Rachel R, Schmalz G, Thomm M, Depmeier W (2008) Etching of 111 and 210 synthetic pyrite surfaces by two archaeal strains Metallosphaera sedula and Sulfolobus metallicus. Hydrometallurgy 94(1):116–120

    Article  CAS  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145(1):56–61

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    CAS  PubMed  Google Scholar 

  • Frols S, Dyall-Smith M, Pfeifer F (2012) Biofilm formation by haloarchaea. Environ Microbiol 14(12):3159–3174

    Article  PubMed  Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrateva TF, Moore ER, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50 Pt 3:997–1006

    Google Scholar 

  • Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7(9):1277–1288

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Silvan C, Molina-Munoz M, Poyatos JM, Ramos A, Hontoria E, Rodelas B, Gonzalez-Lopez J (2010) Structure of archaeal communities in membrane-bioreactor and submerged-biofilter wastewater treatment plants. Bioresour Technol 101(7):2096–2105

    Article  CAS  PubMed  Google Scholar 

  • Gundlach J, Rath H, Herzberg C, Mader U, Stulke J (2016) Second messenger signaling in Bacillus subtilis: accumulation of cyclic di-AMP inhibits biofilm formation. Front Microbiol 7:804. doi:10.3389/fmicb.2016.00804

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula gen, and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12(1):38–47

    Article  Google Scholar 

  • Johnson DB (2012) Geomicrobiology of extremely acidic subsurface environments. FEMS Microbiol Ecol 81(1):2–12

    Article  CAS  PubMed  Google Scholar 

  • Johnson MR, Montero CI, Conners SB, Shockley KR, Bridger SL, Kelly RM (2005) Population density-dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 55(3):664–674

    Article  CAS  PubMed  Google Scholar 

  • Justice NB, Pan C, Mueller R, Spaulding SE, Shah V, Sun CL, Yelton AP, Miller CS, Thomas BC, Shah M, VerBerkmoes N, Hettich R, Banfield JF (2014) Heterotrophic archaea contribute to carbon cycling in low-pH, suboxic biofilm communities. Appl Environ Microbiol 78(23):8321–8330

    Article  Google Scholar 

  • Koerdt A, Godeke J, Berger J, Thormann KM, Albers SV (2010) Crenarchaeal biofilm formation under extreme conditions. PLoS ONE 5(11):e14104. doi:10.1371/journal.pone.0014104

    Article  PubMed  PubMed Central  Google Scholar 

  • Koerdt A, Orell A, Pham TK, Mukherjee J, Wlodkowski A, Karunakaran E, Biggs CA, Wright PC, Albers SV (2011) Macromolecular fingerprinting of Sulfolobus species in biofilm: a transcriptomic and proteomic approach combined with spectroscopic analysis. J Proteome Res 10(9):4105–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozubal MA, Macur RE, Jay ZJ, Beam JP, Malfatti SA, Tringe SG, Kocar BD, Borch T, Inskeep WP (2012) Microbial iron cycling in acidic geothermal springs of yellowstone national park: integrating molecular surveys, geochemical processes, and isolation of novel fe-active microorganisms. Front Microbiol 3:109. doi:10.3389/fmicb.2012.00109

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Arch Microbiol 156(4):239–247

    Article  CAS  Google Scholar 

  • Lawrence J, Swerhone G, Leppard G, Araki T, Zhang X, West M, Hitchcock A (2003) Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl Environ Microbiol 69(9):5543–5554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen D, Kappler U, Webb RI, Rasch R, McEwan AG, Sly LI (2007) Visualisation of pyrite leaching by selected thermophilic archaea: Nature of microorganism-ore interactions during bioleaching. Hydrometallurgy 88:143–153

    Article  CAS  Google Scholar 

  • Morales M, Arancibia J, Lemus M, Silva J, Gentina JC, Aroca G (2011) Bio-oxidation of H2S by Sulfolobus metallicus. Biotechnol Lett 33(11):2141–2145

    Article  CAS  PubMed  Google Scholar 

  • Näther-Schindler DJ, Schopf S, Bellack A, Rachel R, Wirth R (2014) Pyrococcus furiosus flagella: biochemical and transcriptional analyses identify the newly detected flaB0 gene to encode the major flagellin. Front Microbiol 5:695. doi:10.3389/fmicb.2014.00695

    Article  PubMed  PubMed Central  Google Scholar 

  • Näther DJ, Rachel R, Wanner G, Wirth R (2006) Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts. J Bacteriol 188(19):6915–6923

    Article  PubMed  PubMed Central  Google Scholar 

  • Neu T, Lawrence J (2009) Extracellular polymeric substances in microbial biofilms. In: Moran ABP, Holst O, von Itzstein M (eds) Microbial glycobiology: Structures, relevance and applications. Elsevier, San Diego, pp 735–758

    Google Scholar 

  • Neu TR, Lawrence JR (2014) Investigation of microbial biofilm structure by laser scanning microscopy. Adv Biochem Eng Biotechnol 146:1–51

    PubMed  Google Scholar 

  • Nichols JD, Johnson MR, Chou CJ, Kelly RM (2009) Temperature, not LuxS, mediates AI-2 formation in hydrothermal habitats. FEMS Microbiol Ecol 68(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Norris PR, Burton NP, Foulis NA (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4(2):71–76

    Article  CAS  PubMed  Google Scholar 

  • Orell A, Frols S, Albers SV (2013a) Archaeal biofilms: the great unexplored. Annu Rev Microbiol 67:337–354

    Article  CAS  PubMed  Google Scholar 

  • Orell A, Peeters E, Vassen V, Jachlewski S, Schalles S, Siebers B, Albers SV (2013b) Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea. ISME J 7(10):1886–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng X, Zhang Y, Bai G, Zhou X, Wu H (2016) Cyclic di-AMP mediates biofilm formation. Mol Microbiol 99(5):945–959

    Article  CAS  PubMed  Google Scholar 

  • Pesavento C, Becker G, Sommerfeldt N, Possling A, Tschowri N, Mehlis A, Hengge R (2008) Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev 22(17):2434–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robb FT, Maeder DL, Brown JR, DiRuggiero J, Stump MD, Yeh RK, Weiss RB, Dunn DM (2001) Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol 330:134–157

    Article  CAS  PubMed  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63(3):239–248

    Article  CAS  PubMed  Google Scholar 

  • Romling U (2008) Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci Signal 1(33):pe39

    Google Scholar 

  • Sanhueza A, Ferrer IJ, Vargas T, Amils R, Sánchez C (1999) Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties. Hydrometallurgy 51(1):115–129

    Article  CAS  Google Scholar 

  • Schopf S, Wanner G, Rachel R, Wirth R (2008) An archaeal bi-species biofilm formed by Pyrococcus furiosus and Methanopyrus kandleri. Arch Microbiol 190(3):371–377

    Article  CAS  PubMed  Google Scholar 

  • Tommonaro G, Abbamondi GR, Iodice C, Tait K, De Rosa S (2012) Diketopiperazines produced by the halophilic archaeon, Haloterrigena hispanica, activate AHL bioreporters. Microb Ecol 63(3):490–495

    Article  CAS  PubMed  Google Scholar 

  • Weiner A, Schopf S, Wanner G, Probst A, Wirth R (2012) Positive, neutral and negative interactions in cocultures between Pyrococcus furiosus and different Methanogenic Archaea. Microbiology Insights 5:1–10

    Google Scholar 

  • Wilmes P, Remis JP, Hwang M, Auer M, Thelen MP, Banfield JF (2009) Natural acidophilic biofilm communities reflect distinct organismal and functional organization. ISME J 3(2):266–267

    Article  CAS  PubMed  Google Scholar 

  • Witte G, Hartung S, Buttner K, Hopfner KP (2008) Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell 30(2):167–178

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Zhang F, Ding G, Li J, Guo X, Zhu J, Zhou L, Cai S, Liu X, Luo Y, Shi W, Dong X (2012) Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. ISME J 6(7):1336–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhou W, Li K, Mao F, Wan L, Chen X, Zhou H, Qiu G (2015a) Synergetic effects of Ferroplasma thermophilum in enhancement of copper concentrate bioleaching by Acidithiobacillus caldus and Leptospirillum ferriphilum. Biochem Eng Journal 93:142–150

    Article  CAS  Google Scholar 

  • Zhang R, Neu T, Bellenberg S, Kuhlicke U, Sand W, Vera M (2014) Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms. Microb Biotechnol. doi:10.1111/1751-7915.12188

    Google Scholar 

  • Zhang R, Neu TR, Zhang Y, Bellenberg S, Kuhlicke U, Li Q, Sand W, Vera M (2015b) Visualization and analysis of EPS glycoconjugates of the thermoacidophilic archaeon Sulfolobus metallicus. Appl Microbiol Biotechnol 99(17):7343–7356

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Zhang R, Hu P, Zeng W, Xie Y, Wu C, Qiu G (2008) Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite. J Appl Microbiol 105(2):591–601

    Article  CAS  PubMed  Google Scholar 

  • Zippel B, Neu T (2011) Characterization of glycoconjugates of extracellular polymeric substances in tufa-associated biofilms by using fluorescence lectin-binding analysis. Appl Environ Microbiol 77(2):505–516

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alvaro Orell or Mario Vera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Orell, A., Schopf, S., Randau, L., Vera, M. (2017). Biofilm Lifestyle of Thermophile and Acidophile Archaea. In: Witzany, G. (eds) Biocommunication of Archaea. Springer, Cham. https://doi.org/10.1007/978-3-319-65536-9_9

Download citation

Publish with us

Policies and ethics