Skip to main content

Biotechnological Perspectives of Legume–Rhizobium Symbiosis

  • Chapter
  • First Online:
Rhizobium Biology and Biotechnology

Part of the book series: Soil Biology ((SOILBIOL,volume 50))

Abstract

For the last two decades, research on legume–rhizobia symbiosis has outlined opportunities for biotechnological approaches to supply nitrogen to crop plants. New research results on legume and rhizobial diversity suggest about the conserved genes/proteins in host and symbionts and help to determine whether the nitrogen-fixing ability can be transferred to non-legume crops. In addition, the wild rhizobia with specific characters are a source for genetic information to improve symbiotic characters of other rhizobia and may be also used for other biotechnological approaches. These approaches include the production of polysaccharides, phytohormones, metabolites, bioremediation, etc. This field of research will be the focus of future investigations for biotechnological purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Arrighi JF, Barre A, Amor BB, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet EP, Ghérardi M, Huguet T, Geurts R (2006) The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol 142:265–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augé RM, Stodola AJ, Tims JE, Saxton AM (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230:87–97

    Article  Google Scholar 

  • Ausili P, Borisov A, Lindblad P, Mårtensson A (2002) Cadmium affects the interaction between peas and root nodule bacteria. Acta Agric Scand Sect B Soil Plant Sci 52:8–17

    CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soil 45:405–413

    Article  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria. A Van Leeuw 81:365–371

    Article  CAS  Google Scholar 

  • Brígido C, Nascimento FX, Duan J, Glick BR, Oliveira S (2013) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Mesorhizobium spp. reduces the negative effects of salt stress in chickpea. FEMS Microbiol Lett 349:46–53

    PubMed  Google Scholar 

  • Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    Google Scholar 

  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Article  CAS  PubMed  Google Scholar 

  • Curatti L, Rubio LM (2014) Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer. Plant Sci 225:130–137

    Article  CAS  PubMed  Google Scholar 

  • Dardanelli MS, de Cordoba FJ, Espuny MR, Carvajal MA, Díaz ME, Serrano AM, Okon Y, Megías M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  CAS  PubMed  Google Scholar 

  • Defez R, Senatore B, Camerini D (2000) Genetically modified rhizobia as a tool to improve legume growth in semi-arid conditions. In: Mediterranean Conference of rhizobiology workshop on symbiotic nitrogen fixation for Mediterranean area

    Google Scholar 

  • den Camp RO, Streng A, De Mita S, Cao QQ, Polone E, Liu W, Ammiraju JSS, Kudrna D, Wing R, Untergasser A et al (2011) LysM type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331:909–912

    Article  Google Scholar 

  • Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170

    Article  CAS  PubMed  Google Scholar 

  • Elsheikh EA, Ibrahim KA (1999) The effect of Bradyrhizobium inoculation on yield and seed quality of guar (Cyamopsis tetragonoloba L.). Food Chem 65:183–187

    Google Scholar 

  • Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the rhizobium–legume symbiosis. FEBS J 270:1365–1380

    CAS  Google Scholar 

  • Gianinazzi-Pearson V, Dénarié J (1997) Red carpet genetic programmes for root endosymbioses. Trends Plant Sci 2:371–372

    Article  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Gollotte A, Brechenmacher L, Weidmann S, Franken P, Gianinazzi-Pearson V (2002) Plant genes involved in arbuscular mycorrhiza formation and functioning. In: Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 87–102

    Chapter  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377

    Article  PubMed  Google Scholar 

  • Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium–legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20:186–194

    Article  CAS  PubMed  Google Scholar 

  • Gouws L, Botes E, Wiese AJ, Trenkamp S, Torres-Jerez I, Tang Y, Hills PN, Usadel B, Lloyd JR, Fernie A, Kossmann J (2012) The plant growth promoting substance, lumichrome, mimics starch and ethylene-associated symbiotic responses in lotus and tomato roots. Front Plant Sci 3:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63:3429–3444

    Article  CAS  PubMed  Google Scholar 

  • Hirsch AM, Fujishige NA (2012) Molecular signals and receptors: communication between nitrogen-fixing bacteria and their plant hosts. In: Biocommunication of plants. Springer, Berlin, pp 255–280

    Chapter  Google Scholar 

  • Hotter GS, Scott DB (1991) Exopolysaccharide mutants of Rhizobium loti are fully effective on a determinate nodulating host but are ineffective on an indeterminate nodulating host. J Bacteriol 173:851–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junior L, Nascimento LRSA, Fracetto GGM (2015) Legume-rhizobia signal exchange: promiscuity and environmental effects. Front Microbiol 6:945

    Google Scholar 

  • Karmakar K, Rana A, Rajwar A, Sahgal M, Johri BN (2015) Legume-rhizobia symbiosis under stress. In: Plant microbes symbiosis: applied facets. Springer, India, pp 241–258

    Google Scholar 

  • Khalid A, Arshad M, Ahmad Zahir Z (2006) Phytohormones. In: Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 207–220

    Chapter  Google Scholar 

  • Liu Y, Lam MC, Fang HHP (2001) Adsorption of heavy metals by EPS of activated sludge. Water Sci Technol 43:59–66

    CAS  PubMed  Google Scholar 

  • Mabrouk Y, Belhadj O (2012) Enhancing the biological nitrogen fixation of leguminous crops grown under stressed environments. Afr J Biotechnol 11:10809–10815

    Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A et al (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63

    Article  CAS  PubMed  Google Scholar 

  • Mishra RP, Singh RK, Jaiswal HK, Kumar V, Maurya S (2006) Rhizobium-mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Curr Microbiol 52:383–389

    Google Scholar 

  • Mondy S, Lenglet A, Beury-Cirou A, Libanga C, Ratet P, Faure D, Dessaux Y (2014) An increasing opine carbon bias in artificial exudation systems and genetically modified plant rhizospheres leads to an increasing reshaping of bacterial populations. Mol Ecol 23:4846–4861

    Article  PubMed  Google Scholar 

  • Mus F, Crook MB, Garcia K, Costas AG, Geddes BA, Kouri ED, Paramasivan P, Ryu MH, Oldroyd GE, Poole PS, Udvardi MK (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82:3698–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naamala J, Jaiswal SK, Dakora FD (2016) Microsymbiont diversity and phylogeny of native Bradyrhizobia associated with soybean (Glycine max L. Merr.) nodulation in South African soils. Syst Appl Microbiol 39:336–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Naveed M, Mehboob I, Hussain MB, Zahir ZA (2015) Perspectives of rhizobial inoculation for sustainable crop production. In: Plant microbes symbiosis: applied facets. Springer, India, pp 209–239

    Google Scholar 

  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15:369–372

    Article  CAS  PubMed  Google Scholar 

  • Özkoç İ, Deliveli MH (2001) In vitro inhibition of the mycelial growth of some root rot fungi by Rhizobium leguminosarum biovar phaseoli isolates. Turk J Biol 25:435–445

    Google Scholar 

  • Pajuelo E, Rodríguez-Llorente ID, Lafuente A, Caviedes MÁ (2011) Legume–rhizobium symbioses as a tool for bioremediation of heavy metal polluted soils. In: Biomanagement of metal-contaminated soils. Springer, Netherlands, pp 95–123

    Chapter  Google Scholar 

  • Panigrahi DP, Randhawa GS (2010) A novel method to alleviate arsenic toxicity in alfalfa plants using a deletion mutant strain of Sinorhizobium meliloti. Plant Soil 336:459–467

    Article  CAS  Google Scholar 

  • Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3:320–328

    Article  CAS  PubMed  Google Scholar 

  • Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant Soil 174:3–28

    Article  CAS  Google Scholar 

  • Perrine-Walker FM, Gartner E, Hocart CH, Becker A, Rolfe BG (2007) Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation. Mol Plant Microb Interact 20:283–292

    Article  CAS  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Reitz M, Oger P, Meyer A, Niehaus K, Farrand SK, Hallmann J, Sikora RA (2002) Importance of the O-antigen, core-region and lipid A of rhizobial lipopolysaccharides for the induction of systemic resistance in potato to Globodera pallida. Nematol 4:73–79

    Article  CAS  Google Scholar 

  • Remans R, Ramaekers L, Schelkens S, Hernandez G, Garcia A, Reyes JL, Mendez N, Toscano V, Mulling M, Galvez L, Vanderleyden J (2008) Effect of Rhizobium–Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    Article  CAS  Google Scholar 

  • Requena N, Perez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romdhane SB, Trabelsi M, Aouani ME, De Lajudie P, Mhamdi R (2009) The diversity of rhizobia nodulating chickpea (Cicer arietinum) under water deficiency as a source of more efficient inoculants. Soil Biol Biochem 41:2568–2572

    Article  Google Scholar 

  • Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Sandhya VZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soil 46:17–26

    Article  CAS  Google Scholar 

  • Savka MA, Farrand SK (1997) Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource. Nat Biotechnol 15:363–368

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S, Zaki MJ, Ghaffar A (2000) Effect of urea on the efficacy of Bradyrhizobium sp. and Trichoderma harzianum in the control of root infecting fungi in mungbean and sunflower. Sarhad J Agric 16:403–406

    Google Scholar 

  • Soliman AS, Shanan NT, Massoud ON, Swelim DM (2012) Improving salinity tolerance of Acacia saligna (Labill.) plant by arbuscular mycorrhizal fungi and Rhizobium inoculation. Afr J Biotechnol 11:1259–1266

    Article  CAS  Google Scholar 

  • Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99:279–293

    Article  CAS  PubMed  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutherland IW (2001) Exo-polysaccharides in biofilms, flocs and related structure. Water Sci Technol 43:77–86

    CAS  PubMed  Google Scholar 

  • Talaat El-Saidi M, Ali AM (1993) Growing different field crops under high salinity levels and utilization of genetically engineered Rhizobia and Azotobacter salt drought tolerant strains. Towards the rational use of high salinity tolerant plants. Part of the Tasks for vegetation science book series (TAVS), vol 28, pp 59–65

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J Plant Nutr Soil Sci 170:283–287

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra K. Choudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vaishnav, A., Hansen, A.P., Agrawal, P.K., Varma, A., Choudhary, D.K. (2017). Biotechnological Perspectives of Legume–Rhizobium Symbiosis. In: Hansen, A., Choudhary, D., Agrawal, P., Varma, A. (eds) Rhizobium Biology and Biotechnology. Soil Biology, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-64982-5_12

Download citation

Publish with us

Policies and ethics