Skip to main content

Boron Isotope Analysis of Geological Materials

  • Chapter
  • First Online:
Boron Isotopes

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Over the last twenty years applications of the boron isotope system have expanded from the analysis of boron-rich phases (e.g., tourmaline, borates) to include other materials with low B concentrations (e.g., carbonates, basaltic glass). The accurate and precise determination of the boron isotopic composition of geological materials is however a difficult task, particularly for those where boron is present in low-concentration. For solution methods, this difficulty arises principally from the near ubiquitous level of boron contamination in most standard clean laboratories, the light mass of the element, the occurrence of only two stable isotopes, and the large mass difference between them. For in situ approaches, such as secondary-ion mass spectrometry, additional difficulties arise from the restricted availability of well-characterized reference materials, from surface contamination, from limited precision in low-concentration samples, and limitations in reproducibility in high-concentration samples that may partly arise from small-scale heterogeneities in the analyzed materials. Nevertheless, a variety of novel techniques, strategies and methodologies have been developed over the past two decades to meet these challenges. We describe here some of these developments and focus on those that we feel are going to play a major role in the growing use of the boron isotope system in the earth and planetary sciences in decades to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal JK, Palmer MR (1995) Boron isotope analysis a review. Analyst 120:1301–1307

    Article  Google Scholar 

  • Aggarwal SK, You C-F (2016) A review of the determination of isotope ratios of boron with mass spectrometry. Mass Spectrom Rev 9999:1–21

    Google Scholar 

  • Aggarwal JK, Sheppard D, Mezger K, Pernicka E (2003) Precise and accurate determination of boron isotope ratios by multi collector ICP-MS: origin of boron in the Ngawha geothermal system, New Zealand. Chem Geol 199:331–342

    Article  Google Scholar 

  • Al-Ammar A, Gupta RJ, Barnes RM (2000) Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by ammonia gas injection into the spray chamber during analysis. Spectrochim Acta B 55:629–635

    Article  Google Scholar 

  • Blamart D, Rollion-Bard C, Meibom A, Ciuf JP, Juillet-Leclerc A, Dauphin Y (2007) Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: implications for biomineralization and paleo pH. Geochem Geophys Geosyst 8:Q12001

    Article  Google Scholar 

  • Brand WA, Coplen TB, Vogl J, Rosner M, Prohaska T (2014) Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl Chem 86(3):425–467

    Article  Google Scholar 

  • Büttner SH, Kasemann S (2007) Deformation-controlled cation diffusion in tourmaline: a microanalytical study on trace elements and boron isotopes. Am Miner 92:1862–1874

    Article  Google Scholar 

  • Büttner SH, Reid W, Glodny J, Wiedenbeck M, Chuwa G, Moloto T, Gucsik A (2016) Fluid sources in the Twangiza-Namoya Gold Belt (Democratic Republic of Congo): Evidence from tourmaline and fluid compositions, and from boron and Rb–Sr isotope systematics. Precambr Res 280:161–178

    Article  Google Scholar 

  • Catanzaro EJ, Champion CE, Garner EL, Marinenko G, Sappenfield KM, Shields WR (1970) Boric assay; isotopic, and assay standard reference materials, p 70

    Google Scholar 

  • Chaussidon M, Robert F, Mangin D, Hanon P, Rose EF (1997) Analytical procedures for the measurement of boron isotope composition by ion microprobe in meteorites and mantle rocks. Geostand Newslett 21:7–17

    Article  Google Scholar 

  • Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ et al. (2015) Ocean acidification and the Permo-Triassic mass extinction. Science 348:229–232

    Google Scholar 

  • Devulder V, Gerdes A, Vanhaecke F, Degryse P (2015) Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry. Spectrochim Acta Part B 105:116–120

    Article  Google Scholar 

  • Deyhle A (2001) Improvemnts of boron isotope analysis by positive thermal ionization mass spectrometry using static multicollection of Cs2BO2 + ions. Int J Mass Spectrom 206:79–89

    Article  Google Scholar 

  • Drivenes K, Larsen RB, Müller A, Sørensen BE, Wiedenbeck M, Raanes MP (2015) Late-magmatic immiscibility during batholith formation: assessment of B isotopes and trace elements in tourmaline from the Land’s End granite, SW England. Contrib Miner Petrol 169:56

    Article  Google Scholar 

  • Farmer JR, Honisch B, Uchikawa J (2016) Single laboratory comparison of MC-ICP-MS and N-TIMS boron isotope analyses in marine carbonates. Chem Geol 447:173–182

    Google Scholar 

  • Fietzke J, Heinemann A, Taubner I, Bohm F, Erez J, Eisenhauer A (2010) Boron isotopic ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference materials. J Anal At Spectrom 25:1953–1957

    Article  Google Scholar 

  • Fitzsimons ICW, Harte B, Clark RM (2000) SIMS stable isotope measurement: counting statistics and analytical precision. Mineral Mag 64:59–83

    Article  Google Scholar 

  • Foster GL (2008) Seawater pH, pCO2 and [CO 2-3 ] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth Planet Sci Lett 271:254–266

    Article  Google Scholar 

  • Foster GL, Ni Y, Haley B, Elliott T (2006) Accurate and precise isotopic measurement of sub-nanogram sized samples of foraminiferal hosted boron by total evaporation NTIMS. Chem Geol 230:161–174

    Article  Google Scholar 

  • Foster GL, Pogge von Strandmann PAE, Rae JWB (2010) Boron and magnesium isotopic composition of seawater. Geochem Geophys Geosyst 11:Q08018. doi:10.1029/2010GC003201

  • Foster GL, Honisch B, Paris G, Dwyer GS, Rae JWB et al (2013) Interlaboratory comparison of boron isotope analysis of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS. Chem Geol 358:1–14

    Article  Google Scholar 

  • Gaillardet J, Lemarchand D, Gopel C, Manhes G (2001) Evaporation and sublimation of boric acid: application for boron purification from organic rich solutions. Geostand Newslett 25:67–75

    Article  Google Scholar 

  • Gregoire DC (1987) Determination of boron isotope ratios in geological materials by inductively coupled plasma mass spectrometry. Anal Chem 58:2478–2484

    Google Scholar 

  • Guerrot C, Millot R, Robert M, Negrel P (2011) Accurate and high-precision determination of boron isotopic ratios at low concentration by MC-ICP-MS (Neptune). Geostand Geoanal Res 35:275–284

    Article  Google Scholar 

  • Gurenko AA, Kamenetsky VS (2011) Boron isotopic composition of olivine-hosted melt inclusions from Gorgona komatiites, Colombia: New evidence supporting wet komatiite origin. Earth Planet Sci Lett 312:201–212

    Article  Google Scholar 

  • Halliday AN, Lee DC, Christensen JN, Rehkamper M, Yi W et al (1998) Applications of multiple collector-ICPMS to cosmochemistry, geochemistry, and paleoceanography. Geochim Cosmochim Acta 62:919–940

    Article  Google Scholar 

  • He M, Xiao Y, Jin Z, Ma Y, Xiao J et al (2013) Accurate and precise determination of boron isotopic ratios at low concentration by positive thermal ionization mass spectrometry using static multicollection of CS2BO2 +. Anal Chem 85:6248–6253

    Article  Google Scholar 

  • Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56:537–543

    Article  Google Scholar 

  • Hemming NG, Hanson GN (1994) A procedure for the isotopic analysis of boron by negative thermal ionization mass spectrometry. Chem Geol 114:147–156

    Article  Google Scholar 

  • Hemming NG, Hönisch B (2007) Boron isotopes in marine carbonate sediments and the pH of the ocean. Dev Mar Geol 1:717–734

    Article  Google Scholar 

  • Henehan MJ, Rae JWB, Foster GL, Erez J, Prentice KC et al (2013) Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth Planet Sci Lett 364:111–122

    Article  Google Scholar 

  • Hervig RL, Mazdad FK, Williams P, Guan Y, Huss GR, Leshin LA (2006) Useful ion yields for Cameca IMS 3f and 6f SIMS: limits on quantitative analysis. Chem Geol 227:83–99

    Article  Google Scholar 

  • Hou K-J, Li Y-H, Liu F, Tian Y-R (2010) In situ boron isotope measurements of natural geological materials by LA-MC-ICPMS. Chin Sci Bull 55:3305–3311

    Article  Google Scholar 

  • Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann A et al (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7

    Google Scholar 

  • John SG, Adkins JF (2010) Analysis of dissolved iron isotopes in seawater. Mar Chem 119:12

    Article  Google Scholar 

  • Kasemann S, Meixner A, Rocholl A, Vennemann T, Rosner M et al (2001) Boron and oxygen isotope composition of certified reference materials NIST SRM 610/612 and reference materials JB-2 and JR-2. Geostand Newslett 25:405–416

    Article  Google Scholar 

  • Kasemann S, Schmidt DN, Bijma J, Foster GL (2009) In situ boron isotope analysis of marine carbonates and its application for foraminifera and palaeo-pH. Chem Geol 260:138–147

    Article  Google Scholar 

  • Kiss E (1988) Ion-exchange separation and spectrophotometric determination of boron in geological materials. Anal Chim Acta 211:243–256

    Article  Google Scholar 

  • Kobayashi K, Tanaka R, Moriguti T, Shimizu K, Nakamura E (2004) Lithium, boron, and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: evidence for recycled components in the Hawaiian plume. Chem Geol 212:143–161

    Article  Google Scholar 

  • le Roux PJ, Shirley SB, Benton L, Hauri EH, Mock TD (2004) In situ, multiple-multiplier, laser ablation ICP-MS measurement of boron isotopic composition (δ11B) at the nanogram level. Chem Geol 203:123–138

    Article  Google Scholar 

  • Lecuyer C, Grandjean P, Reynard B, Albarede F, Telouk P (2002) 11B/10B analysis of geological materials by ICP-MS Plasma 54: Application to the boron fractionation between brachiopod calcite and seawater. Chem Geol 186:45–55

    Article  Google Scholar 

  • Leeman WP, Tonarini S (2001) Boron isotopic analysis of proposed borosilicate mineral reference samples. Geostand Geoanal Res 25:399–403

    Article  Google Scholar 

  • Lemarchand D, Gaillardet J, Gopel C, Manhes G (2002) An optimized procedure for boron separation and mass spectrometry analysis for river samples. Chem Geol 182:323–334

    Article  Google Scholar 

  • Liu MC, McKeegan KD, Goswami JN, Marhas KK, Sahijpal S et al (2009) Isotopic records in CM hibonites: implications for timescales of mixing of isotope reservoirs in the solar nebula. Geochim Cosmochim Acta 73:5051–5079

    Article  Google Scholar 

  • Liu MC, Nittler LR, Alexander CMO, Lee T (2010) Lithium-beryllium-boron isotopic compositions in meteoritic hibonite: implications for origin of 10Be and early solar system irradiation. Astrophys J Lett 719:L99–L103

    Article  Google Scholar 

  • Liu Y-W, Aciego SM, Wanamaker AD, Sell BK (2013) A high-throughput system for boron microsublimation and isotope analysis by total evaporation thermal ionization mass spectrometry. Rapid Commun Mass Spectrom 27:1705–1714

    Article  Google Scholar 

  • Louvat P, Bouchez J, Paris G (2011) MC-ICP-MS Isotope measurments with direct injection nebulisation (d-DIHEN): optimisation and application to boron in seawater and carbonate samples. Geostand Geoanal Res 35:75–88

    Article  Google Scholar 

  • Ludwig T, Marschall HR, Pogge von Strandmann PAE, Shabaga BM, Fayek M, Hawthorne FC (2011) A secondary ion mass spectrometry (SIMS) re-evaluation of B and Li isotopic compositions of Cu-bearing elbaite from three global localities. Mineral Mag 75:2485–2494

    Article  Google Scholar 

  • Lyon IC, Tizard JM, Henkel T (2007) Evidence for lithium and boron from star-forming regions implanted in presolar SiC grains. Meteorit Planet Sci 42

    Google Scholar 

  • MacGregor JR, Grew ES, de Hoog JCM, Harley SL, Kowalski PM et al (2013) Boron isotopic composition of tourmaline, prismatine, and grandidierite from granulite facies paragneisses in the Larsemann Hills, Prydz Bay, East Antarctica: evidence for a non-marine evaporite source. Geochim Cosmochim Acta 123:261–283

    Article  Google Scholar 

  • Marschall HR, Ludwig T (2004) The low-boron contest: minimising surface contamination and analysing boron concentration at the ng/g-level by secondary ion mass spectrometry. Mineral Petrol 81:265–278

    Article  Google Scholar 

  • Marschall HR, Monteleone BD (2015) Boron isotope analysis of silicate glass with very low boron concentrations by secondary ion mass spectrometry. Geostand Geoanal Res 39:31–46

    Article  Google Scholar 

  • Marschall HR, Foster GL (2017) Boron isotopes in the earth and planetary sciences—a short history and introduction. In: Marschall HR, Foster GL (eds) Boron isotopes—The fifth element, Advances in Isotope Geochemistry, vol 7, Springer, Heidelberg, p 1–11

    Google Scholar 

  • Martin C, Ponzevera E, Harlow G (2015) In situ lithium and boron isotope determinations in mica, pyroxene, and serpentine by LA-MC-ICP-MS. Chem Geol 412:107–116

    Article  Google Scholar 

  • McCulloch MT, Holcomb M, Rankenburg K, Trotter J (2014) Rapid, high-precision measurments of boron isotopic compositions in marine carbonates. Rapid Commun Mass Spectrom 28:2704–2712

    Article  Google Scholar 

  • McMullen CC, Gragg CB, Thode HG (1961) Absolute ratio B11/B10 in Searles Lake borax. Geochim Cosmochim Acta 23:147–149

    Google Scholar 

  • Mikova J, Kosler J, Wiedenbeck M (2014) Matrix effects during laser ablation MC ICP-MS analysis of boron isotopes in tourmaline. J Anal At Spectrom 29:903–914

    Article  Google Scholar 

  • Misra S, Owen R, Kerr J, Greaves M, Elderfield H (2014) Determination of δ11B by HR-ICP-MS from mass limited samples: application to natural carbonates and water samples. Geochim Cosmochim Acta 140:531–552

    Article  Google Scholar 

  • Nakamura E, Ishikawa T, Birck JL, Allègre CJ (1992) Precise boron isotopic analysis of natural rock samples using a boron-mannitol complex. Chem Geol 94:193–204

    Article  Google Scholar 

  • Nakano T, Nakamura E (1998) Static multi-collection of Cs2BO2 + ions for precise boron isotope analysis with positive thermal ionization mass spectrometry. Int J Mass Spectrom 176:13–21

    Article  Google Scholar 

  • Nakano T, Nakamura E (2001) Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Phys Earth Planet Inter 127:233–252

    Article  Google Scholar 

  • Ni Y, Foster GL, Elliott T (2010) The accuracy of δ11B measurements of foraminifers. Chem Geol 274:187–195

    Article  Google Scholar 

  • Pabst S, Zack T, Savov IP, Ludwig T, Rost D et al (2012) The fate of subducted oceanic slabs in the shallow mantle: insights from boron isotopes and light element composition of metasomatized blueschists from the Mariana forearc. Lithos 132–133:162–179

    Article  Google Scholar 

  • Palmer MR, Slack JF (1989) Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contrib Miner Petrol 103:434–451

    Article  Google Scholar 

  • Pi J, You CF, Chung CH (2014) Micro-sublimation separation of boron in rock samples for isotopic measurements by MC-ICPMS. J Anal At Spectrom 29:861–867

    Article  Google Scholar 

  • Ramakumar KL, Parab AR, Khodade PS, Almaula AI, Chitambar SA, Jain HC (1985) Determination of isotopic composition of boron. J Radioanal Nucl Chem 94:53–61

    Article  Google Scholar 

  • Ribeiro da Costa I, Mourao C, Recio C, Guimaraes F, Antunes IM et al (2014) Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (Central Portugal): genetic implications of crystal-chemical and isotopic features. Contrib Miner Petrol 167:993–1016

    Article  Google Scholar 

  • Rollion-Bard C, Chaussidon M, France-Lanord C (2003) pH control on oxygen isotopic composition of symbiotic corals. Earth Planet Sci Lett 215:275–288

    Article  Google Scholar 

  • Rollion-Bard C, Vigier N, Spezzaferri S (2007) In situ measurements of calcium isotopes by ion microprobe in carbonates and application to foraminifera. Chem Geol 244:679–690

    Article  Google Scholar 

  • Romer RL, Meixner A (2014) Lithium and boron isotopic fractionation in sedimentary rocks during metamorphism—the role of rock composition and protolith mineralogy. Geochem Cosmocimica Acta 128:158–177

    Article  Google Scholar 

  • Rose-Koga EF, Sheppard SMF, Chaussidon M, Carigan J (2006) Boron isotopic composition of atmospheric precipitations and liquid–vapour fractionations. Geochim Cosmochim Acta 70:1603–1615

    Article  Google Scholar 

  • Rosner M, Meixner A (2004) Boron isotopic composition and concentration of ten geological reference materials. Geostand Geoanal Res 28:431–441

    Article  Google Scholar 

  • Rosner M, Romer RL, Meixner A (2005) Air handling in clean laboratory environments: the reason for anomalously high boron background levels. Anal Bioanal Chem 382:120–124

    Article  Google Scholar 

  • Rosner M, Wiedenbeck M, Ludwig T (2008) Composition-induced variations in SIMS instrumental mass fractionation during boron isotope ratio measurements of silicate glasses. Geostand Geoanal Res 32:27–38

    Article  Google Scholar 

  • Schmitt AK, Kasemann S, Meixner A, Rhede D (2002) Boron in central Andean ignimbrites: implications for crustal boron cycles in an active continental margin. Chem Geol 183:333–347

    Article  Google Scholar 

  • Shaw DM, Higgins MD, Truscott MG, Middleton TA (1988) Boron contamination in polished thin sections of meteorites: implications for other trace-element studies by alpha-track image or ion microprobe. Am Miner 73:894–900

    Google Scholar 

  • Spivack AJ, Edmond JM (1986) Determination of boron isotope ratios by thermal ionisation mass spectrometry of the dicesium metaborate cation. Anal Chem 58:31–35

    Article  Google Scholar 

  • Straub SM, Layne GD (2002) The systematics of boron isotopes in Izu arc front volcanic rocks. Earth Planet Sci 198: 25–39

    Google Scholar 

  • Swihart GH (1996) Instrumental techniques for boron isotope analysis. In: Grew ES, Anovitz LM (eds) Boron mineralogy, petrology, and geochemistry. Mineralogical Society of America Reviews in Mineralogy, pp 845–862

    Google Scholar 

  • Swihart GH, Moore PB, Callis EL (1986) Boron isotopic composition of marine and nonmaine evaporite borates. Geochim Cosmochim Acta 50:1297–1301

    Article  Google Scholar 

  • Thil F, Blamart D, Assailly C, Lazareth CE, Leblanc T et al (2016) Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurements in marine biocarbonates: new improvements and application to a modern Porites coral. Rapid Commun Mass Spectrom 30:359–371

    Article  Google Scholar 

  • Tonarini S, Pennisi M, Leeman WP (1997) Precise boron isotopic analysis of complex silicate (rock) samples using alkali carbonate fusion and ion-exchange separation. Chem Geol 142:129–137

    Article  Google Scholar 

  • Trotter J, Montagna P, McCulloch MT, Silenzi S, Reynaud S et al (2011) Quantifying the pH “vital effect” in temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy. Earth Planet Sci Lett 303:163–173

    Article  Google Scholar 

  • Trumbull RB, Krienitz M-S, Gottesmann B, Wiedenbeck M (2008) Chemical and boron-isotope variations in tourmalines from an S-type granite and its source rocks: the Erongo granite and tourmalinites in the Damara Belt, Namibia. Contrib Miner Petrol 155:1–18

    Article  Google Scholar 

  • Vogl J, Rosner M (2011) Production and certification of a unique set of isotope and delta reference materials for boron isotope determination in geochemical, environmental and industrial materials. Geostand Geoanal Res 36:161–175

    Article  Google Scholar 

  • Walder AJ, Freedman PA (1992) Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source. J Anal Mass Spectrom 7:571–575

    Article  Google Scholar 

  • Wang B-S, You C-F, Huang K-F, Wu S-F, Aggarwal SK et al (2010) Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS. Talanta 82:1378–1384

    Article  Google Scholar 

  • Wei GJ, Wei JX, Liu Y, Ke T, Ren ZY et al (2013) Measurement of high-precision boron isotope of silicate materials by a single column purification method and MC-ICP-MS. J Anal At Spectrom 28:606–612

    Article  Google Scholar 

  • Williams LB, Hervig RL, Weiser ME, Hutcheon I (2001) The influence of organic matter on the boron isotope geochemistry of the gulf coast sedimentary basin, USA. Chem Geol 174

    Google Scholar 

  • Xiao Y-K, Beary ES, Fassett JD (1988) An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry. Int J Mass Spectrom Ion Processes 85:203–213

    Article  Google Scholar 

  • Yang S-Y, Jiang S-Y, Palmer MR (2015) Chemical and boron isotopic compositions of tourmaline from the Nyalam leucogranites, South Tibetan Himalaya: implications for their formation from B-rich melt to hydrothermal fluids. Chem Geol 419:102–113

    Article  Google Scholar 

  • Yoshimura K, Miyazaki Y, Ota F, Matsuoka S, Hirofumi S (1998) Complexation of boric acid with the N-methyl-D-glucamine group in solution and in crosslinked polymer. J Chem Soc, Faraday Trans 94:683–689

    Article  Google Scholar 

  • Zeininger H, Heumann KG (1983) Boron isotopic ratio measurement by negative thermal ionization mass spectrometry. Int J Mass Spectrom Ion Phys 48:377–380

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Martin Rosner and Simone Kasemann for their thorough reviews of this chapter that greatly improved it. James Rae is acknowledged for his efficient editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin L Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Foster, G.L., Marschall, H.R., Palmer, M.R. (2018). Boron Isotope Analysis of Geological Materials. In: Marschall, H., Foster, G. (eds) Boron Isotopes. Advances in Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-64666-4_2

Download citation

Publish with us

Policies and ethics