Skip to main content
Log in

Late-magmatic immiscibility during batholith formation: assessment of B isotopes and trace elements in tourmaline from the Land’s End granite, SW England

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Quartz–tourmaline orbicules are unevenly distributed in the roof segment of the Land's End granite, SW England. This study shows that the orbicules formed from an immiscible hydrous borosilicate melt produced during the late stages of crystallization, and differentiates tourmaline formed by dominantly magmatic and dominantly hydrothermal processes. Trace elements and boron isotope fractionation can be tracked in tourmaline, and create a timeline for crystallization. Tourmaline from the granite matrix has higher V, Cr and Mg content and is isotopically heavier than the later crystallizing inner orbicule tourmaline. Overgrowths of blue tourmaline, occurring together with quartz showing hydrothermal cathodoluminescence textures, crystallized from an aqueous fluid during the very last crystallization, and are significantly higher in Sr and Sn, and isotopically heavier. Tourmaline associated with Sn mineralization is also high in Sr and Sn, but has boron isotopic compositions close to that of the magmatic tourmaline, and is not formed by the same fluids responsible for the blue overgrowths. The ore-forming fluids precipitating tourmaline and cassiterite are likely derived from the same magma source as the granite, but exsolved deeper in the magma chamber, and at a later stage than orbicule formation. Tourmaline from massive quartz–tourmaline rocks is concentrically zoned, with major and trace element compositions indicating crystallization from a similar melt as for the orbicules, but shows a more evolved signature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acosta-Vigil A, London D, Morgan GVI, Dewers T (2003) Solubility of excess alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700–800 °C and 200 MPa, and applications of the aluminum saturation index. Contrib Mineral Petrol 146:100–119. doi:10.1007/s00410-003-0486-6

    Article  Google Scholar 

  • Bai TB, Koster van Groos AF (1999) The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids. Geochim Cosmochim Acta 63:1117–1131. doi:10.1016/S0016-7037(98)00284-1

    Article  Google Scholar 

  • Balen D, Broska I (2011) Tourmaline nodules: products of devolatilization within the final evolutionary stage of granitic melt? Geol Soc Lond Spec Publ 350:53–68. doi:10.1144/sp350.4

    Article  Google Scholar 

  • Brammal A, Harwood HF (1925) Tourmalinization in the Dartmoor granite. Mineral Mag 20:319–330

    Article  Google Scholar 

  • Breiter K, Ackerman L, Svojtka M, Müller A (2013) Behavior of trace elements in quartz from plutons of different geochemical signature: a case study from the Bohemian Massif, Czech Republic. Lithos 175–176:54–67. doi:10.1016/j.lithos.2013.04.023

    Article  Google Scholar 

  • Cempirek J, Houzar S, Novak M, Groat LA, Selway JB, Srein V (2013) Crystal structure and compositional evolution of vanadium-rich oxy dravite from graphite quartzite at Bitovanky, Czech Republic. J Geosci 58:149–162

    Article  Google Scholar 

  • Chappell BW, Hine R (2006) The Cornubian Batholith: an example of magmatic fractionation on a crustal scale. Resour Geol 56:203–244. doi:10.1111/j.1751-3928.2006.tb00281.x

    Article  Google Scholar 

  • Charoy B (1982) Tourmalinization in Cornwall, England. In: Evans AM (ed) Mineralization associated with acid magmatism. Wiley, Chichester, pp 63–70

    Google Scholar 

  • Charoy B (1986) The genesis of the Cornubian Batholith (South-West England): the example of the Carnmenellis pluton. J Petrol 27:571–604. doi:10.1093/petrology/27.3.571

    Article  Google Scholar 

  • Chen Y, Clark AH, Farrar E, Wasteneys HAHP, Hodgson MJ, Bromley AV (1993) Diachronous and independent histories of plutonism and mineralization in the Cornubian Batholith, southwest England. J Geol Soc 150:1183–1191. doi:10.1144/gsjgs.150.6.1183

    Article  Google Scholar 

  • Chesley JT, Halliday AN, Snee LW, Mezger K, Shepherd TJ, Scrivener RC (1993) Thermochronology of the Cornubian Batholith in southwest England: implications for pluton emplacement and protracted hydrothermal mineralization. Geochim Cosmochim Acta 57:1817–1835. doi:10.1016/0016-7037(93)90115-D

    Article  Google Scholar 

  • Darbyshire DPF, Shepherd TJ (1985) Chronology of granite magmatism and associated mineralization, SW England. J Geol Soc 142:1159–1177. doi:10.1144/gsjgs.142.6.1159

    Article  Google Scholar 

  • Darbyshire DPF, Shepherd TJ (1994) Nd and Sr isotope constraints on the origin of the Cornubian Batholith, SW England. J Geol Soc 151:795–802. doi:10.1144/gsjgs.151.5.0795

    Article  Google Scholar 

  • Dines HG (1934) The lateral extent of the oreshoots in the primary depth zones of Cornwall. Trans R Geol Soc Corn 16:279–296

    Google Scholar 

  • Dingwell DB, Pichavant M, Holtz F (1996) Experimental studies of boron in granitic melts. Rev Mineral Geochem 33:330–385

    Google Scholar 

  • Drivenes K, Larsen RB, Müller A, Sørensen BE (2015) Crystallization and uplift paht of late Variscan granites evidenced by quartz chemistry and fluid inclusions: example from the Land’s End granite, SW England (in review)

  • Dyar MD et al (2001) Reference minerals for microanalysis of light elements. Geostand Newsl 25:441–463

    Article  Google Scholar 

  • Ertl A et al (2006) Tetrahedrally coordinated boron in tourmalines from the liddicoatite-elbaite series from Madagascar: structure, chemistry, and infrared spectroscopic studies. Am Mineral 91:1847–1856. doi:10.2138/am.2006.2245

    Article  Google Scholar 

  • Exley CS, Stone M (1982) Hercynian intrusive rocks: petrogenesis. In: Sutherland DS (ed) Igneous Rocks of the British Isles. Wiley, Chichester, pp 311–320

    Google Scholar 

  • Floyd PA, Exley CS, Styles MT (1993) Igneous Rocks of South-West England. Geological Conseration Review Series, vol 5. Chapman and Hall, London

    Book  Google Scholar 

  • Galbraith CG, Clarke DB, Trumbull RB, Wiedenbeck M (2009) Assessment of tourmaline compositions as an indicator of emerald mineralization at the Tsa da Glisza Prospect, Yukon Territory, Canada. Econ Geol 104:713–731. doi:10.2113/gsecongeo.104.5.713

    Article  Google Scholar 

  • Ghosh PK (1934) The Carnmenellis granite: its petrology, metamorphism and tectonics. Q J Geol Soc 90:240–276. doi:10.1144/gsl.jgs.1934.090.01-04.09

    Article  Google Scholar 

  • Gonfiantini R et al (2003) Intercomparison of boron isotope and concentration measurements. Part II: evaluation of results. Geostand Newsl 27:41–57

    Article  Google Scholar 

  • Griffin WL, Slack JF, Ramsden AR, Win TT, Ryan CG (1996) Trace elements in tourmalines from massive sulfides deposits and tourmalinites; geochemical controls and exploration applications. Econ Geol 91:657–675. doi:10.2113/gsecongeo.91.4.657

    Article  Google Scholar 

  • Gurenko AA, Veksler IV, Meixner A, Thomas R, Dorfman AM, Dingwell DB (2005) Matrix effect and partitioning of boron isotopes between immiscible Si-rich and B-rich liquids in the Si–Al–B–Ca–Na–O system: a SIMS study of glasses quenched from centrifuge experiments. Chem Geol 222:268–280. doi:10.1016/j.chemgeo.2005.07.004

    Article  Google Scholar 

  • Halls C, Jinchu Z, Yucheng L (2002) Field evidence for discrete episodes of intrusion during the emplacement of the Land’s End pluton. Results from detailed mapping oand abservation of the Porth Ledden caostal section. Proc Ussher Soc 10:221–222

    Google Scholar 

  • Halls C, Armstrong R, Howe J (2013) Miarolitic textures in boron-rich fraction of the St. Austell Granite and other evolved fractions of Cornish granites relating to the dynamic separation of a transitional ‘vapour’ phase. In: The Ussher Society Geoscience in South-West England 52nd Annual Conference St Ives

  • Harris NBW, Gravestock P, Inger S (1992) Ion-microprobe determinations of trace-element concentrations in garnets from anatectic assemblages. Chem Geol 100:41–49. doi:10.1016/0009-2541(92)90101-A

    Article  Google Scholar 

  • Hawkes JR, Dangerfield J (1978) The Variscan granites of SW England: a progress report. Proc Ussher Soc 4:158–171

    Google Scholar 

  • Heinrich CA (1990) The chemistry of hydrothermal tin(-tungsten) ore deposition. Econ Geol 85:457–481. doi:10.2113/gsecongeo.85.3.457

    Article  Google Scholar 

  • Henry DJ, Dutrow BL, Guidotti CV (1997) Mg–Fe2+ partitioning involving tourmaline in metapelitic rocks: bringing disorder from chaos. In: Geological society of America meeting

  • Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96:895–913. doi:10.2138/am.2011.3636

    Article  Google Scholar 

  • Hervig RL, Moore GM, Williams LB, Peacock SM, Holloway JR, Roggensack K (2002) Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt. Am Mineral 87:769–774

    Google Scholar 

  • Jiang S-Y, Han F, Shen J-Z, Palmer MR (1999) Chemical and Rb–Sr, Sm–Nd isotopic systematics of tourmaline from the Dachang Sn-polymetallic ore deposit, Guangxi Province, P.R. China. Chem Geol 157:49–67. doi:10.1016/S0009-2541(98)00200-9

    Article  Google Scholar 

  • Jiang S-Y, Palmer MR, Yeats CJ (2002) Chemical and boron isotopic compositions of tourmaline from the Archean Big Bell and Mount Gibson gold deposits, Murchison Province, Yilgarn Craton, Western Australia. Chem Geol 188:229–247. doi:10.1016/S0009-2541(02)00107-9

    Article  Google Scholar 

  • Jiang S-Y, Yang J-H, Novák M, Selway J (2003) Chemical and boron isotopic compositions of tourmaline from the Lavicky leucogranite, Czech Republic. Geochem J Jpn 37:545–556

    Article  Google Scholar 

  • Jiang S-Y, Yu J-M, Lu J-J (2004) Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: implication for migmatitic–hydrothermal fluid evolution and ore genesis. Chem Geol 209:193–213. doi:10.1016/j.chemgeo.2004.04.021

    Article  Google Scholar 

  • Jochum KP et al (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429. doi:10.1111/j.1751-908X.2011.00120.x

    Article  Google Scholar 

  • Kaliwoda M, Marschall HR, Marks MAW, Ludwig T, Altherr R, Markl G (2011) Boron and boron isotope systematics in the peralkaline Ilímaussaq intrusion (South Greenland) and its granitic country rocks: a record of magmatic and hydrothermal processes. Lithos 125:51–64. doi:10.1016/j.lithos.2011.01.006

    Article  Google Scholar 

  • Klemme S, Marschall HR, Jacob DE, Prowatke S, Ludwig T (2011) Trace-element partitioning and boron isotope fractionation between white mica and tourmaline. Can Mineral 49:165–176. doi:10.3749/canmin.49.1.165

    Article  Google Scholar 

  • Knoche R, Webb SL, Dingwell DB (1992) A partial molar volume for B2O3 in haplogranitic melt. Can Mineral 30(3):561–569

  • Lange RA (1994) The effect of H2O, CO2 and F on the density and viscosity of silicate melts. Rev Mineral Geochem 30:331–369

    Google Scholar 

  • Lister CJ (1978) Luxullianite in situ within the St. Austell granite, Cornwall. Mineral Mag 42:295–297

    Article  Google Scholar 

  • London D (2011) Experimental synthesis and stability of tourmaline: a historical overview. Can Mineral 49:117–136. doi:10.3749/canmin.49.1.117

    Article  Google Scholar 

  • London D, Manning DAC (1995) Chemical variation and significance of tourmaline from Southwest England. Econ Geol 90:495–519. doi:10.2113/gsecongeo.90.3.495

    Article  Google Scholar 

  • London D, Hervig R, Morgan GVI (1988) Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa. Contrib Mineral Petrol 99:360–373. doi:10.1007/BF00375368

    Article  Google Scholar 

  • Manning DAC, Hill PI, Howe JH (1996) Primary lithological variation in the kaolinized St Austell Granite, Cornwall, England. J Geol Soc 153:827–838. doi:10.1144/gsjgs.153.6.0827

    Article  Google Scholar 

  • Marks MAW et al (2013) Trace element systematics of tourmaline in pegmatitic and hydrothermal systems from the Variscan Schwarzwald (Germany): the importance of major element composition, sector zoning, and fluid or melt composition. Chem Geol 344:73–90. doi:10.1016/j.chemgeo.2013.02.025

    Article  Google Scholar 

  • Marschall HR, Jiang SY (2011) Tourmaline isotopes: no element left behind. Elements 7:313–319. doi:10.2113/gselements.7.5.313

    Article  Google Scholar 

  • Marschall HR, Meyer C, Wunder B, Ludwig T, Heinrich W (2009) Experimental boron isotope fractionation between tourmaline and fluid: confirmation from in situ analyses by secondary ion mass spectrometry and from Rayleigh fractionation modelling. Contrib Mineral Petrol 158:675–681. doi:10.1007/s00410-009-0403-8

    Article  Google Scholar 

  • Meyer C, Wunder B, Meixner A, Romer R, Heinrich W (2008) Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation. Contrib Mineral Petrol 156:259–267. doi:10.1007/s00410-008-0285-1

    Article  Google Scholar 

  • Mitchell AHG (1974) Southwest England granites: magmatism and tin mineralization in a post-collisional tectonic setting. Trans Inst Min Metall 83:B95–B97

    Google Scholar 

  • Müller A, Halls C (2005) Rutile—the tin-tungsten host in the intrusive tourmaline breccia at Wheal Remfry, SW England. In: Mao J, Bierlein F (eds) Mineral deposit research: meeting the global challenge. Springer, Berlin, pp 441–444. doi:10.1007/3-540-27946-6_115

    Chapter  Google Scholar 

  • Müller A, Williamson BJ, Smith M (2005) Origin of quartz cores in tourmaline from Roche Rock, SW England. Mineral Mag 69:381–401. doi:10.1180/0026461056940258

    Article  Google Scholar 

  • Müller A et al (2006a) The magmatic evolution of the Land’s End pluton, Cornwall, and associated pre-enrichment of metals. Ore Geol Rev 28:329–367. doi:10.1016/j.oregeorev.2005.05.002

    Article  Google Scholar 

  • Müller A, Thomas R, Wiedenbeck M, Seltmann R, Breiter K (2006b) Water content of granitic melts from Cornwall and Erzgebirge: a Raman spectroscopy study of melt inclusions. Eur J Mineral 18:429–440. doi:10.1127/0935-1221/2006/0018-0429

    Article  Google Scholar 

  • Müller A, Seltmann R, Kober B, Eklund O, Jeffries T, Kronz A (2008) Compositional zoning of rapakivi feldspars and coexisting quartz phenocrysts. Can Mineral 46:1417–1442. doi:10.3749/canmin.46.6.1417

    Article  Google Scholar 

  • Neiva AMR, Silva MMVG, Gomes MEP, Campos TFC (2002) Geochemistry of coexisting biotite and muscovite of Portuguese peraluminous granitic differentiation series. Chem Erde 62:197–215. doi:10.1078/0009-2819-00007

    Article  Google Scholar 

  • Novák M, Škoda R, Filip J, Macek I, Vaculovič T (2011) Compositional trends in tourmaline from intragranitic NYF pegmatites of the Třebíč pluton, Czech Republic: an electron microprobe, Mössbauer and LA–ICP–MS study. Can Mineral 49:359–380. doi:10.3749/canmin.49.1.359

    Article  Google Scholar 

  • Palmer MR, Swihart GH (1996) Boron isotope geochemistry; an overview. Rev Mineral Geochem 33:709–744

    Google Scholar 

  • Perugini D, Poli G (2007) Tourmaline nodules from Capo Bianco aplite (Elba Island, Italy): an example of diffusion limited aggregation growth in a magmatic system. Contrib Mineral Petrol 153:493–508. doi:10.1007/s00410-006-0167-3

    Article  Google Scholar 

  • Pesquera A, Torres-Ruiz J, García-Casco A, Gil-Crespo PP (2013) Evaluating the controls on tourmaline formation in granitic systems: a case study on peraluminous granites from the Central Iberian Zone (CIZ), Western Spain. J Petrol 54:609–634. doi:10.1093/petrology/egs080

    Article  Google Scholar 

  • Pichavant M (1981) An experimental study of the effect of boron on a water saturated haplogranite at 1 Kbar vapour pressure. Contrib Mineral Petrol 76:430–439. doi:10.1007/BF00371485

    Article  Google Scholar 

  • Pownall JM, Waters DJ, Searle MP, Shail RK, Robb LJ (2012) Shallow laccolithic emplacement of the Land’s End and Tregonning granites, Cornwall, UK: evidence from aureole field relations and P–T modeling of cordierite-anthophyllite hornfels. Geosphere 8:1467–1504. doi:10.1130/ges00802.1

    Article  Google Scholar 

  • Roda-Robles E, Pesquera A, Gil-Crespo P, Torres-Ruiz J (2012) From granite to highly evolved pegmatite: a case study of the Pinilla de Fermoselle granite–pegmatite system (Zamora, Spain). Lithos 153:192–207. doi:10.1016/j.lithos.2012.04.027

    Article  Google Scholar 

  • Roedder E (1992) Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochim Cosmochim Acta 56:5–20. doi:10.1016/0016-7037(92)90113-W

    Article  Google Scholar 

  • Rozendaal A, Bruwer L (1995) Tourmaline nodules: indicators of hydrothermal alteration and Sn–Zn–(W) mineralization in the Cape Granite Suite, South Africa. J Afr Earth Sci 21:141–155

    Article  Google Scholar 

  • Rusk B (2012) Cathodoluminescent textures and trace elements in hydrothermal quartz. In: Götze J, Möckel R (eds) Quartz: deposits, mineralogy and analytics. Springer Geology. Springer, Berlin, pp 307–329. doi:10.1007/978-3-642-22161-3_14

    Chapter  Google Scholar 

  • Schatz OJ, Dolejš D, Stix J, Williams-Jones AE, Layne GD (2004) Partitioning of boron among melt, brine and vapor in the system haplogranite–H2O–NaCl at 800 °C and 100 MPa. Chem Geol 210:135–147. doi:10.1016/j.chemgeo.2004.06.007

    Article  Google Scholar 

  • Schmidt C, Thomas R, Heinrich W (2005) Boron speciation in aqueous fluids at 22 to 600 °C and 0.1 MPa to 2 GPa. Geochim Cosmochim Acta 69:275–281. doi:10.1016/j.gca.2004.06.018

    Article  Google Scholar 

  • Selway JB, Xiong J (2014) http://www.open.ac.uk/earth-research/tindle/AGTWebData/Tourmaline.xls

  • Shackleton RM, Ries AC, Coward MP (1982) An interpretation of the Variscan structures in SW England. J Geol Soc 139:533–541. doi:10.1144/gsjgs.139.4.0533

    Article  Google Scholar 

  • Shail RK, Stuart FM, Wilkinson JJ, Boyce AJ (2003) The role of post-Variscan extensional tectonics and mantle melting in the generation of lower Permian granites and the giant W–As–Sn–Cu–Zn–Pb orefield of SW England. Trans Inst Min Metallog 112:B127–B129

    Google Scholar 

  • Shewfelt D, Ansdell K, Shepperd S (2005) The origin of tourmaline nodules in granites; preliminary findings from the Paleoproterozoic Scrubber Granite. Geol Surv West Aust Annu Rev 2004–2005:59–63

    Google Scholar 

  • Sinclair WD, Richardson JM (1992) Quartz–tourmaline orbicules in the Seagull Batholith, Yukon Territory. Can Mineral 30:923–935

    Google Scholar 

  • Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. Rev Mineral Geochem 33:559–643

    Google Scholar 

  • Smith MP, Yardley BWD (1996) The boron isotopic composition of tourmaline as a guide to fluid processes in the southwestern England orefield: an ion microprobe study. Geochim Cosmochim Acta 60:1415–1427. doi:10.1016/0016-7037(96)00007-5

    Article  Google Scholar 

  • Stimac JA, Clark AH, Chen Y, Garcia S (1995) Enclaves and their bearing on the origin of the Cornubian Batholith, southwest England. Mineral Mag 59:273–296

    Article  Google Scholar 

  • Survey BG (1984) Penzanze. Sheet 351/358. Geological Maps of England and Wales, 1:50,000 Series

  • Taylor JR, Wall VJ (1993) Cassiterite solubility, tin speciation, and transport in a magmatic aqueous phase. Econ Geol 88:437–460

    Article  Google Scholar 

  • Taylor R, Ikingura J, Fallick A, Huang Y, Watkinson D (1992) Stable isotope compositions of tourmalines from granites and related hydrothermal rocks of the Karagwe-Ankolean belt, northwest Tanzania. Chem Geol 94:215–227

    Article  Google Scholar 

  • Thomas R, Förster H-J, Heinrich W (2003) The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study. Contrib Mineral Petrol 144:457–472. doi:10.1007/s00410-002-0410-5

    Article  Google Scholar 

  • Tischendorf G, Förster H-J, Gottesmann B (2001) Minor- and trace-element composition of trioctahedral micas: a review. Mineral Mag 65:249–276

    Article  Google Scholar 

  • Tonarini S, Forte C, Petrini R, Ferrara G (2003a) Melt/biotite 11B/10B isotopic fractionation and the boron local environment in the structure of volcanic glasses. Geochim Cosmochim Acta 67:1863–1873. doi:10.1016/S0016-7037(02)00987-0

    Article  Google Scholar 

  • Tonarini S et al (2003b) Intercomparison of boron isotope concentration measurements. Part I: selection, preparation and homogeneity tests of the intercomparison materials. Geostand Newsl 27:21–39

    Article  Google Scholar 

  • Trumbull RB, Krienitz MS, Gottesmann B, Wiedenbeck M (2008) Chemical and boron-isotope variations in tourmalines from an S-type granite and its source rocks: the Erongo granite and tourmalinites in the Damara Belt, Namibia. Contrib Mineral Petrol 155:1–18. doi:10.1007/s00410-007-0227-3

    Article  Google Scholar 

  • Trumbull R, Krienitz M-S, Grundmann G, Wiedenbeck M (2009) Tourmaline geochemistry and δ11B variations as a guide to fluid–rock interaction in the Habachtal emerald deposit, Tauern Window, Austria. Contrib Mineral Petrol 157:411–427. doi:10.1007/s00410-008-0342-9

    Article  Google Scholar 

  • Trumbull RB, Beurlen H, Wiedenbeck M, Soares DR (2013) The diversity of B-isotope variations in tourmaline from rare-element pegmatites in the Borborema Province of Brazil. Chem Geol 352:47–62. doi:10.1016/j.chemgeo.2013.05.021

    Article  Google Scholar 

  • van Hinsberg VJ (2011) Preliminary experimental data on trace-element partitioning between tourmaline and silicate melt. Can Mineral 49:153–163. doi:10.3749/canmin.49.1.153

    Article  Google Scholar 

  • van Hinsberg VJ, Marschall H (2007) Boron isotope and light element sector zoning in tourmaline: implications for the formation of B-isotopic signatures. Chem Geol 238:141–148. doi:10.1016/j.chemgeo.2006.11.002

    Article  Google Scholar 

  • van Hinsberg VJ, Henry DJ, Marschall HR (2011) Tourmaline: an ideal indicator of its host environment. Can Mineral 49:1–16. doi:10.3749/canmin.49.1.1

    Article  Google Scholar 

  • Veksler IV (2004) Liquid immiscibility and its role at the magmatic–hydrothermal transition: a summary of experimental studies. Chem Geol 210:7–31. doi:10.1016/j.chemgeo.2004.06.002

    Article  Google Scholar 

  • Veksler IV, Thomas R (2002) An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contrib Mineral Petrol 143:673–683. doi:10.1007/s00410-002-0368-3

    Article  Google Scholar 

  • Veksler IV, Dorfman AM, Dingwell DB, Zotov N (2002a) Element partitioning between immiscible borosilicate liquids: a high-temperature centrifuge study. Geochim Cosmochim Acta 66:2603–2614. doi:10.1016/S0016-7037(02)00860-8

    Article  Google Scholar 

  • Veksler IV, Thomas R, Schmidt C (2002b) Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite. Am Mineral 87:775–779

    Google Scholar 

  • von Goerne G, Franz G, van Hinsberg VJ (2011) Experimental determination of Na–Ca distribution between tourmaline and fluid in the system CaO–Na2O–MgO–Al2O3–SiO2–B2O3–H2O. Can Mineral 49:137–152. doi:10.3749/canmin.49.1.137

    Article  Google Scholar 

  • Wilke M, Nabelek PI, Glascock MD (2002) B and Li in Proterozoic metapelites from the Black Hills, USA: implications for the origin of leucogranitic magmas. Am Mineral 87:491–500

    Google Scholar 

  • Williamson BJ, Spratt J, Adams JT, Tindle AG, Stanley CJ (2000) Geochemical constraints from zoned hydrothermal tourmalines on fluid evolution and Sn mineralization: an example from fault breccias at Roche, SW England. J Petrol 41:1439–1453

    Article  Google Scholar 

  • Williamson BJ, Müller A, Shail RK (2010) Source and partitioning of B and Sn in the Cornubian Batholith of southwest England. Ore Geol Rev 38:1–8. doi:10.1016/j.oregeorev.2010.05.002

    Article  Google Scholar 

  • Willis-Richards J, Jackson NJ (1989) Evolution of the Cornubian ore field, Southwest England, Part I, Batholith modeling and ore distribution. Econ Geol 84:1078–1100. doi:10.2113/gsecongeo.84.5.1078

    Article  Google Scholar 

  • Wolf MB, London D (1997) Boron in granitic magmas: stability of tourmaline in equilibrium with biotite and cordierite. Contrib Mineral Petrol 130:12–30

    Article  Google Scholar 

  • Yang S-Y, Jiang S-Y (2012) Chemical and boron isotopic composition of tourmaline in the Xiangshan volcanic–intrusive complex, Southeast China: evidence for boron mobilization and infiltration during magmatic–hydrothermal processes. Chem Geol 312–313:177–189. doi:10.1016/j.chemgeo.2012.04.026

    Article  Google Scholar 

  • Yang Q-C et al (2012) BAM-S005 type A and B: new silicate reference glasses for microanalysis. Geostand Geoanal Res 36:301–313. doi:10.1111/j.1751-908X.2012.00171.x

    Article  Google Scholar 

  • Yavuz F, Iskenderoglu A, Jiang SY (1999) Tourmaline compostitions from the Salikvan porphyry Cu–Mo deposit and vicinity, Northeastern Turkey. Can Mineral 37:1007–1023

    Google Scholar 

  • Yavuz F, Jiang S-Y, Karakaya N, Karakaya MÇ, Yavuz R (2011) Trace-element, rare-earth element and boron isotopic compositions of tourmaline from a vein-type Pb–Zn–Cu ± U deposit, NE Turkey. Int Geol Rev 53:1–24. doi:10.1080/00206810902867401

    Article  Google Scholar 

Download references

Acknowledgments

This paper is a part of the Ph.D. thesis of KD. Frédéric Couffignal was very helpful in his support of SIMS data collection. Detailed and constructive reviews by Rebecca Bast, Horst Marschall and Robert Trumbull greatly improved the manuscript. The LA–ICP–MS analyses were financially supported by the Geological Survey of Norway in Trondheim, Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Drivenes.

Additional information

Communicated by Jochen Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drivenes, K., Larsen, R.B., Müller, A. et al. Late-magmatic immiscibility during batholith formation: assessment of B isotopes and trace elements in tourmaline from the Land’s End granite, SW England. Contrib Mineral Petrol 169, 56 (2015). https://doi.org/10.1007/s00410-015-1151-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1151-6

Keywords

Navigation