Skip to main content

The Use of Sedimentation for the Estimation of Aspect Ratios of Charged Cellulose Nanofibrils

  • Conference paper
  • First Online:
Advances in Natural Fibre Composites

Abstract

In this study, the aspect ratios of carboxymethylated and TEMPO-oxidised cellulose nanofibrils (CNF) were estimated by gel point analysis using a sedimentation approach. The flocculation and subsequent sedimentation of the CNF aqueous suspensions, which were stabilised by negative repulsive forces, were made possible after screening in concentrated salt media. The aspect ratios of the CNFs were then calculated from the linear fit (gel point) of the plot of concentration of the CNFs against the relative sediment height, using the crowding number theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scandinavian Pulp, Paper and Board Testing Committee. (2002). Total acidic group content.

    Google Scholar 

  2. Benhamou, K., Dufresne, A., Magnin, A., Mortha, G., & Kaddami, H. (2014). Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.Carbohydrate Polymers, 99, 74–83.

    Google Scholar 

  3. Dufresne, A. (2012). Nanocellulose: from nature to high performance tailored materials. Berlin; Boston: Walter de Gruyter GmbH.

    Google Scholar 

  4. Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., & Isogai, A. (2009). Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 10, 162–165.

    Article  Google Scholar 

  5. Fukuzumi, H., Tanaka, R., Saito, T., & Isogai, A. (2014). Dispersion stability and aggregation behavior of TEMPO-oxidized cellulose nanofibrils in water as a function of salt addition. Cellulose, 21, 1553–1559.

    Article  Google Scholar 

  6. Ishii, D., Saito, T., & Isogai, A. (2011). Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 12, 548–550.

    Article  Google Scholar 

  7. Isogai, A., Saito, T., & Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale, 3, 71–85.

    Article  Google Scholar 

  8. Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., et al. (2015). Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose, 22, 935–969.

    Article  Google Scholar 

  9. Kangas, H., Lahtinen, P., Sneck, A., Saariaho, A.-M., Laintinen, O., & Hellén, E. (2014). Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods. Nordic Pulp & Paper Research Journal, 29, 129–143.

    Article  Google Scholar 

  10. Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., et al. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition, 50, 5438–5466.

    Article  Google Scholar 

  11. Naderi, A., Lindström, T., Sundström, J., Fiberteknologi, Centrum för Biofibermaterial, B., Kth, Skolan För, K., Centra & Fiber- OCH, P. 2014. Carboxymethylated nanofibrillated cellulose: Rheological studies. Cellulose, 21, 1561–1571.

    Google Scholar 

  12. Nechyporchuk, O., Belgacem, M. N., & Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products.

    Google Scholar 

  13. Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., et al. (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8, 1934–1941.

    Article  Google Scholar 

  14. Phan-Xuan, T., Thuresson, A., Skepö, M., Labrador, A., Bordes, R., & Matic, A. (2016). Aggregation behavior of aqueous cellulose nanocrystals: The effect of inorganic salts. Cellulose, 23, 3653–3663.

    Article  Google Scholar 

  15. Raj, P., Mayahi, A., Lahtinen, P., Varanasi, S., Garnier, G., Martin, D., et al. (2016). Gel point as a measure of cellulose nanofibre quality and feedstock development with mechanical energy. Cellulose, 23, 3051–3064.

    Article  Google Scholar 

  16. Saito, T., & Isogai, A. (2004). TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules, 5, 1983–1989.

    Article  Google Scholar 

  17. Saito, T., Kimura, S., Nishiyama, Y., & Isogai, A. (2007). Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 8, 2485–2491.

    Article  Google Scholar 

  18. Siró, I., Plackett, D., Hedenqvist, M., Ankerfors, M., & Lindström, T. (2011). Highly transparent films from carboxymethylated microfibrillated cellulose: The effect of multiple homogenization steps on key properties. Journal of Applied Polymer Science, 119, 2652–2660.

    Article  Google Scholar 

  19. Taheri, H., & Samyn, P. (2016). Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties. Cellulose, 1–18.

    Google Scholar 

  20. Tanaka, R., Saito, T., Ishii, D., & Isogai, A. (2014). Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose, 21, 1581–1589.

    Article  Google Scholar 

  21. Varanasi, S., He, R., & Batchelor, W. (2013). Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose, 20, 1885–1896.

    Article  Google Scholar 

  22. Wågberg, L., Decher, G., Norgren, M., Lindström, T., Ankerfors, M., & Axnäs, K. (2008). The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir, 24, 784–795.

    Article  Google Scholar 

  23. Zhang, L., Batchelor, W., Varanasi, S., Tsuzuki, T., & Wang, X. (2012). Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose, 19, 561–574.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Edinburgh Napier University for the provision of the 25th Anniversary studentship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaka Joy Onyianta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Onyianta, A.J., Williams, R. (2018). The Use of Sedimentation for the Estimation of Aspect Ratios of Charged Cellulose Nanofibrils. In: Fangueiro, R., Rana, S. (eds) Advances in Natural Fibre Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-64641-1_17

Download citation

Publish with us

Policies and ethics