Skip to main content

Advances in Natural Fibre Reinforced Thermoplastic Composite Manufacturing: Effect of Interface and Hybrid Yarn Structure on Composite Properties

  • Conference paper
  • First Online:
Advances in Natural Fibre Composites

Abstract

Natural fibre reinforced thermoplastic composite materials are becoming very popular in the material community due to several advantages of natural fibre and thermoplastic polymer. The demand of stronger and better composite than the existing ones is also increasing simultaneously with their growing popularity. However, natural fibre reinforced thermoplastics have some disadvantages associate with the poor fibre-matrix interaction, short length of the natural fibres and high melt viscosity of thermoplastic resins. All these factors decrease the ultimate mechanical properties of the natural fibre composites. However, the surface treatment of natural fibres, use of low twisted yarn and hybrid yarn during composite manufacturing significantly improve the mechanical properties of the natural fibre composites. The scope of all three approaches in determining composites mechanical properties have been reviewed here. Finally, the combined effects of interface and DREF spun hybrid yarn structure on the tensile and flexural properties of flax-PP based unidirectional composite specimen have been discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A, 83, 98–112.

    Article  Google Scholar 

  2. Netravali, A. N., & Chabba, S. (2003). Composites get greener. Materials Today, 6(4), 22–29.

    Article  Google Scholar 

  3. Pandey, J. K., Nagarajan, V., Mohanty, A. K., et al. (2015). Commercial potential and competitiveness of natural fiber composites. In M. Misra, J. K. Pandey, & A. K. Mohanty (Eds.), Biocomposites: Design and mechanical performance (pp. 1–15). Cambridge, England: Woodhead Publishing.

    Google Scholar 

  4. Joshi, S. V., Drzal, L. T., Mohanty, A. K., et al. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A, 35, 371–376.

    Article  Google Scholar 

  5. Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: Can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63, 1259–1264.

    Article  Google Scholar 

  6. John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71, 343–364.

    Article  Google Scholar 

  7. Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A, 77, 1–25.

    Article  Google Scholar 

  8. Bar, M., Alagirusamy, R., & Das, A. (2015). Flame retardant polymer composite. Fibres and Polymers, 16(4), 705–715.

    Article  Google Scholar 

  9. Faruk, O., Bledzki, A. K., Fink, H. P., et al. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37, 1552–1596.

    Article  Google Scholar 

  10. Dittenber, D. B., & GangaRao, H. V. S. (2012). Critical review of recent publications on use of natural composites in infrastructure. Composites Part A, 43, 1419–1429.

    Article  Google Scholar 

  11. Pickering, K., Beckermann, G., Alam, S., et al. (2007). Optimizing industrial hemp fibre for composites. Composites Part A, 38, 461–468.

    Article  Google Scholar 

  12. Pandey, J. K., Ahn, S. H., Lee, C. S., et al. (2010). Recent advances in the application of natural fiber based composites. Macromolecular Materials and Engineering, 295(11), 975–989.

    Article  Google Scholar 

  13. Alves, C., Ferrao, P. M. C., Silva, A. J., et al. (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 18, 313–327.

    Article  Google Scholar 

  14. Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Composites Part B, 44, 120–127.

    Article  Google Scholar 

  15. Davoodi, M. M., Sapuan, S. M., Ahmad, D., et al. (2010). Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Materials and Design, 31(10), 4927–4932.

    Article  Google Scholar 

  16. Ali, A., Shaker, K., Nawab, Y., et al. (2016). Hydrophobic treatment of natural fibers and their composites—A review. Journal of Industrial Textiles, 1–33 doi:10.1177/1528083716654468.

  17. Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10, 19–26.

    Article  Google Scholar 

  18. Alagirusamy, R., Fangueiro, R., & Ogale, V. (2006). Hybrid yarns and textile preforming for thermoplastic composites. Textile Progress, 38(4), 1–71.

    Article  Google Scholar 

  19. Torres, F. G., & Cubillas, M. L. (2005). Study of the interfacial properties of natural fibre reinforced polyethylene. Polymer Testing, 24, 694–698.

    Article  Google Scholar 

  20. Zafeiropoulos, N. E., Baillie, C. A., & Hodgkinson, J. M. (2002). Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part II. The effect of surface treatments on the interface. Composites: Part A, 33, 1185–1190.

    Article  Google Scholar 

  21. Lu, J. Z., Wu, Q., & McNabb, H. S. (2000). Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments. Wood and Fiber Science, 32(1), 88–104.

    Google Scholar 

  22. Chen, P., Lu, C., & Yu, Q. (2006). Influence of fiber wettability on the interfacial adhesion of continuous fiber-reinforced PPESK composite. Journal of Applied Polymer Science, 102(3), 2544–2551.

    Article  Google Scholar 

  23. Matthews, F. L., & Rawlings, R. D. (1999). Composite materials: Engineering and science. Cambridge, England: Woodhead Publishing.

    Google Scholar 

  24. de Farias, J. G. G., Cavalcante, R. C., & Canabarro, B. R. (2017). Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites. Carbohydrate Polymers, 165, 429–436.

    Article  Google Scholar 

  25. Yanjun, X., Callum, A. S. H., Zefang, X., et al. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A, 41, 806–819.

    Article  Google Scholar 

  26. Mohanty, A. K., Khan, M. A., & Hinrichsen, G. (2000). Surface modification of jute and its influence on performance of biodegradable jute-fabric/biopol composites. Composites Science and Technology, 60(11), 15–24.

    Google Scholar 

  27. Bera, M., Alagirusamy, R., & Das, A. (2010). A study on interfacial properties of jute-PP composites. Journal of Reinforced Plastics and Composites, 29, 3155–3161.

    Article  Google Scholar 

  28. Kabir, M. M., Wang, H., & Lau, K. T. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B, 43(7), 2883–2892.

    Article  Google Scholar 

  29. Beckermann, G. W., & Pickering, K. L. (2008). Engineering and evaluation of hemp fibre reinforced polypropylene composites: Fibre treatment and matrix modification. Composites Part A, 39(6), 979–988.

    Article  Google Scholar 

  30. Gomes, A., Matsuo, T., Goda, K., et al. (2007). Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Composites Part A, 38(8), 1811–1820.

    Article  Google Scholar 

  31. Mukhopadhyay, S., & Fangueiro, R. (2009). Physical modification of natural fibers and thermoplastic films for composites—A review. Journal of Thermoplastic Composite Materials, 22, 135–163.

    Article  Google Scholar 

  32. Yuan, X., Jayaraman, K., & Bhattacharyya, D. (2004). Effect of plasma treatment in enhancing the performance of woodfibre-Polypropylene composite. Composites Part A, 35, 1363–1374.

    Article  Google Scholar 

  33. Belgacem, M. N., Bataille, P., & Sapieha, S. (1994). Effect of corona modification on cellulose/PP composites. Journal of Applied Polymer Science, 53, 379–385.

    Article  Google Scholar 

  34. Huber, T., Biedermann, U., & Muessig, J. (2010). Enhancing the fibre matrix adhesion of natural fibre reinforced polypropylene by electron radiation analyzed with the single fibre fragmentation test. Composite Interfaces, 17(4), 371–381.

    Article  Google Scholar 

  35. Laine, J. E., & Goring, D. A. I. (1977). Influence of ultrasonic irradiation on the properties of cellulosic fibers. Cellulose Chemistry and Technology, 11(5), 561–567.

    Google Scholar 

  36. Bledzki, A. K., Mamun, A. A., & Jaszkiewicz, A. (2010). Polypropylene composites with enzyme modified abaca fibre. Composites Science and Technology, 70, 854–860.

    Article  Google Scholar 

  37. Goutianos, S., Peijs, T., & Nystrom, B. (2006). Development of flax fibre based textile reinforcements for composite applications. Applied Composite Materials, 13(4), 199–215.

    Article  Google Scholar 

  38. Shah, D. U. (2016). Damage in biocomposites: Stiffness evolution of aligned plant fibre composites during monotonic and cyclic fatigue loading. Composites Part A, 83, 160–168.

    Article  Google Scholar 

  39. Amor, I. B., Rekik, H., & Kaddami, H. (2010). Effect of Palm tree fiber orientation on electrical properties of palm tree fiber-reinforced polyester composites. Journal of Composite Materials, 44(13), 1553–1568.

    Article  Google Scholar 

  40. Norman, D. A., & Robertson, R. E. (2003). The effect of fiber orientation on the toughening of short fiber-reinforced polymers. Journal of Applied Polymer Science, 90(10), 2740–2751.

    Article  Google Scholar 

  41. Santamala, H., Livingston, R., Sixta, H., et al. (2016). Advantages of regenerated cellulose fibres as compared to flax fibres in the processability and mechanical performance of thermoset composites. Composites Part A, 84, 377–385.

    Article  Google Scholar 

  42. Kobayashi, S., & Takada, K. (2013). Processing of unidirectional hemp fiber reinforced composites with micro-braiding technique. Composites Part A, 46, 173–179.

    Article  Google Scholar 

  43. Ma, H., Li, Y., & Luo, Y. (2011). The effect of fiber twist on the mechanical properties natural fiber reinforced composites. In 18th International Conference on Composite Materials.

    Google Scholar 

  44. Omrani, F., Wang, P., Soulat, D., et al. (2017). Mechanical properties of flax-fibre-reinforced preforms and composites: Influence of the type of yarns on multi-scale characterization. Composites Part A, 93, 72–81.

    Article  Google Scholar 

  45. Bar, M., Das, A., & Alagirusamy, R. (2017). Studies on flax-polypropylene based low-twist hybrid yarns for thermoplastic composite reinforcement. Journal of Reinforced Plastics and Composites. doi:10.1177/0731684417693428.

    Google Scholar 

  46. Ye, L., Friedrich, K., Kastel, J., et al. (1995). Consolidation of unidirectional CF/PEEK composites from commingled yarn prepreg. Composites Science and Technology, 54(4), 349–358.

    Article  Google Scholar 

  47. George, G., Jose, E. T., Jayanarayanan, K., et al. (2012). Novel bio-commingled composites based on jute/polypropylene yarns: Effect of chemical treatments on the mechanical properties. Composites Part A, 43, 219–230.

    Article  Google Scholar 

  48. Khondker, O. A., Ishiaku, U. S., Nakai, A., et al. (2006). A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns. Composites Part A, 37, 2274–2284.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahadev Bar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Bar, M., Alagirusamy, R., Das, A. (2018). Advances in Natural Fibre Reinforced Thermoplastic Composite Manufacturing: Effect of Interface and Hybrid Yarn Structure on Composite Properties. In: Fangueiro, R., Rana, S. (eds) Advances in Natural Fibre Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-64641-1_10

Download citation

Publish with us

Policies and ethics