Skip to main content

Epistemic Practices and Science Education

  • Chapter
  • First Online:
History, Philosophy and Science Teaching

Part of the book series: Science: Philosophy, History and Education ((SPHE))

Abstract

Epistemic practices are the socially organized and interactionally accomplished ways that members of a group propose, communicate, assess, and legitimize knowledge claims. Drawing from studies of science and education, this chapter argues that epistemic practices are interactional (constructed among people through concerted activity), contextual (situated in social practices and cultural norms), intertextual (communicated through a history of coherent discourses, signs, and symbols), and consequential (legitimized knowledge instantiates power and culture). Through a review of science studies, the argument for the relevance of a focus on epistemic practices is developed. This chapter draws from the empirical studies of scientific practice to derive implications for science teaching and learning. There has been considerable empirical work from multiple disciplinary perspectives (cognitive science, sociology, anthropology, and rhetoric) informing perspectives about science and the inner workings of scientific communities . These studies examine the practices, discourses, and cultures of scientists and scientific communities. These perspectives are applied to three types of educational approaches for science learning (through inquiry, engineering, and socioscientific issues ) to examine ways that engaging in epistemic practices supports goals of scientific literacy . The chapter shows how a focus on the knowledge construction processes in schools offers contributions to thinking about science education.

The authors would like to thank Richard Duschl and the members of the Penn State Education Discourse Group (Matthew Johnson, Yann Shiou Ong, Arzu Tanis Ozcelik, Jisun Park, Amy Ricketts, Lucia Sasseron, Carmen Vanderhoof) for comments on an earlier draft of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See: Collins 2007; Ford 2008; Heckler 2014; Kelly and Bazerman 2003; Kelly et al. 1993; Kelly and Crawford 1997; Roth et al. 1996; Stewart and Rudolph 2001.

References

  • Abd-El-Khalick, F. (2012). Examining the sources for our understandings about science: Enduring conflations and critical issues in research on nature of science in science education. International Journal of Science Education, 34, 353–374.

    Article  Google Scholar 

  • Aikenhead, G., Orpwood, G., & Fensham, P. (2011). Scientific literacy for a knowledge society. In C. Linder, L. Östman, D. A. Roberts, P. Wickman, G. Erikson, & A. McKinnon (Eds.), Exploring the landscape of scientific literacy (pp. 28–44). New York: Routledge.

    Google Scholar 

  • Akerson, V. L., Abd-El-Khalick, F., & Lederman, N. G. (2000). Influence of a reflective explicit activity-based approach on elementary teachers' conceptions of nature of science. Journal of Research in Science Teaching, 37, 295–317.

    Article  Google Scholar 

  • Allchin, D. (2004). Should the sociology of science be rated X? Science Education, 88, 1–13.

    Article  Google Scholar 

  • Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95, 518–542.

    Article  Google Scholar 

  • Ault, C. R. (1998). Criteria of excellence for geological inquiry: The necessity of ambiguity. Journal of Research in Science Teaching, 35, 189–212.

    Article  Google Scholar 

  • Bazerman, C. (1988). Shaping written knowledge: The genre and activity of the experimental article in science. Madison: University of Wisconsin Press.

    Google Scholar 

  • Bazerman, C. (2004). Intertextualities: Volosinov, Bakhtin, literary theory, and literacy studies. In A. F. Ball & S. Warshauer Freedman (Eds.), Bakhtinian perspectives on language, literacy, and learning (pp. 53–65). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Collins, H. M. (1985). Changing order: Replication and induction in scientific practice. London: Sage.

    Google Scholar 

  • Collins, H. M. (2007). The uses of sociology of science for scientists and educators. Science & Education, 16, 217–230.

    Article  Google Scholar 

  • Collins, H. M. (2014). Are we all scientific experts now? New York: John Wiley & Sons.

    Google Scholar 

  • Cunningham, C. M., & Carlsen, W. S. (2014). Precollege engineering education. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. 2, pp. 747–758). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582–601.

    Article  Google Scholar 

  • Duschl, R. A. (1990). Restructuring science education: The importance of theories and their development. New York: Teacher's College Press.

    Google Scholar 

  • Duschl, R. A. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32, 268–291.

    Article  Google Scholar 

  • Duschl, R., & Grandy, R. (2008). Consensus: Expanding the scientific method and school science. In R. Duschl & R. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 304–325). Rotterdam: Sense Publishers.

    Google Scholar 

  • Erduran, S. (2007). Breaking the law: Promoting domain-specificity in chemical education in the context of arguing about the periodic law. Foundations of Chemistry, 9(3), 247–263.

    Article  Google Scholar 

  • Erduran, S., & Duschl, R. A. (2004). Interdisciplinary characteristics of models and the nature of chemical knowledge in the classroom. Studies in Science Education, 40, 105–138.

    Article  Google Scholar 

  • Fleck, L. (1935/1979). Genesis and development of a scientific fact. (F. Bradley & T. J. Trenn, Trans.). Chicago: University of Chicago Press.

    Google Scholar 

  • Ford, M. (2008). Disciplinary authority and accountability in scientific practice and learning. Science Education, 92, 404–423.

    Article  Google Scholar 

  • Garfinkel, H., Lynch, M., & Livingston, E. (1981). The work of discovering science construed with materials from the optically discovered pulsar. Philosophy of the Social Sciences, 11, 131–158.

    Google Scholar 

  • Giere, R. (1999). Science without laws. Chicago: University of Chicago Press.

    Google Scholar 

  • González, N., Moll, L. C., & Amanti, C. (Eds.). (2006). Funds of knowledge: Theorizing practices in households, communities, and classrooms. New York: Routledge.

    Google Scholar 

  • Goodwin, C. (2000). Action and embodiment within situated human interaction. Journal of Pragmatics, 32, 1489–1522.

    Article  Google Scholar 

  • Green, J., & Castanheira, M. L. (2012). Exploring classroom life and student learning: An interactional ethnographic approach. In B. Kaur (Ed.), Understanding teaching and learning: Classroom research revisited (pp. 53–65). Rotterdam: Sense.

    Chapter  Google Scholar 

  • Green, J. L., Weade, R., & Graham, K. (1988). Lesson construction and student participation: A sociolinguistic analysis. In J. L. Green & J. O. Harker (Eds.), Multiple perspective analyses of classroom discourse. Norwood: Ablex.

    Google Scholar 

  • Gross, A. (1989). The rhetoric of science. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gumperz, J. J. (2001). Interactional sociolinguistics: A personal perspective. In D. Schiffrin, D. Tannen, & H. E. Hamilton (Eds.), Handbook of discourse analysis (pp. 215–228). Malden: Blackwell.

    Google Scholar 

  • Heckler, W. S. (2014). Research on student learning in science: A Wittgensteinian perspective. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1381–1410). Dordrecht: Springer.

    Google Scholar 

  • Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Science & Education, 20, 591–607.

    Article  Google Scholar 

  • Jiménez-Aleixandre, M. P. (2014). Determinism and underdetermination in genetics: Implications for students’ engagement in argumentation and epistemic practices. Science & Education, 23, 465–484.

    Article  Google Scholar 

  • Kelly, G. J. (2005). Discourse, description, and science education. In R. Yerrick & W.-M. Roth (Eds.), Establishing scientific classroom discourse communities: Multiple voices of research on teaching and learning (pp. 79–108). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Kelly, G. J. (2008). Inquiry, activity, and epistemic practice. In R. Duschl & R. Grandy (Eds.) Teaching scientific inquiry: Recommendations for research and implementation (pp. 99–117; 288–291). Rotterdam: Sense Publishers.

    Google Scholar 

  • Kelly, G. J. (2011). Scientific literacy, discourse, and epistemic practices. In C. Linder, L. Östman, D. A. Roberts, P. Wickman, G. Erikson, & A. McKinnon (Eds.), Exploring the landscape of scientific literacy (pp. 61–73). New York: Routledge.

    Google Scholar 

  • Kelly, G. J. (2014a). Discourse practices in science learning and teaching. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education, volume 2 (pp. 321–336). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Kelly, G. J. (2014b). Inquiry teaching and learning: Philosophical considerations. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1363–1380). Dordrecht: Springer.

    Google Scholar 

  • Kelly, G. J. (2016). Methodological considerations for the study of epistemic cognition in practice. In J. A. Greene, W. A. Sandoval, & I. Braten (Eds.), Handbook of epistemic cognition (pp. 393–408). New York: Routledge.

    Google Scholar 

  • Kelly, G. J., & Bazerman, C. (2003). How students argue scientific claims: A rhetorical-semantic analysis. Applied Linguistics, 24(1), 28–55.

    Article  Google Scholar 

  • Kelly, G. J., & Brown, C. M. (2003). Communicative demands of learning science through technological design: Third grade students’ construction of solar energy devices. Linguistics & Education, 13(4), 483–532.

    Article  Google Scholar 

  • Kelly, G. J., & Crawford, T. (1997). An ethnographic investigation of the discourse processes of school science. Science Education, 81(5), 533–559.

    Article  Google Scholar 

  • Kelly, G. J., & Green, J. (1998). The social nature of knowing: Toward a sociocultural perspective on conceptual change and knowledge construction. In B. Guzzetti & C. Hynd (Eds.), Perspectives on conceptual change: Multiple ways to understand knowing and learning in a complex world (pp. 145–181). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Kelly, G. J., Carlsen, W. S., & Cunningham, C. M. (1993). Science education in sociocultural context: Perspectives from the sociology of science. Science Education, 77, 207–220.

    Article  Google Scholar 

  • Kelly, G. J., Chen, C., & Crawford, T. (1998). Methodological considerations for studying science-in-the-making in educational settings. Research in Science Education, 28(1), 23–49.

    Article  Google Scholar 

  • Kelly, G. J., Crawford, T., & Green, J. (2001). Common tasks and uncommon knowledge: Dissenting voices in the discursive construction of physics across small laboratory groups. Linguistics & Education, 12(2), 135–174.

    Article  Google Scholar 

  • Kelly, G. J., McDonald, S., & Wickman, P. O. (2012). Science learning and epistemology. In K. Tobin, B. Fraser, & C. McRobbie (Eds.), Second international handbook of science education (pp. 281–291). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Knorr-Cetina, K. (1995). Laboratory studies: The cultural approach to the study of science. In S. Jasanoff, G. E. Markle, J. C. Peterson, & T. Pinch (Eds.), Handbook of science and technology studies (pp. 140–166). Thousand Oaks: Sage.

    Google Scholar 

  • Knorr-Cetina, K. (1999). Epistemic cultures: How the sciences make knowledge. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Koertge, N. (1998). Postmodernisms and the problem of scientific literacy. In N. Koertge (Ed.), A house built on sand: Exposing postmodern myths about science (pp. 257–271). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Kuhn, T. S. (1962/1996). The structure of scientific revolutions (3rd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • Kuhn, D. (1992). Thinking as argument. Harvard Educational Review, 62(2), 155–178.

    Article  Google Scholar 

  • Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Leach, J., & Scott, P. (2003). Individual and sociocultural views of learning in science education. Science & Education, 12, 91–113.

    Article  Google Scholar 

  • Lead States, N. G. S. S. (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

    Google Scholar 

  • Lehrer, R., & Schauble, L. (2012). Seeding evolutionary thinking by engaging children in modeling its foundations. Science Education, 96, 701–724.

    Article  Google Scholar 

  • Lemke, J. L. (1990). Talking science: Language, learning and values. Norwood: Ablex.

    Google Scholar 

  • Lemke, J. L. (2000). Across the scales of time: Artifacts, activities, and meanings in ecosocial systems. Mind, Culture, and Activity, 7(4), 273–290.

    Article  Google Scholar 

  • Licona, P. & Kelly, G. J. (2015, April). Arguing from evidence in an English/Spanish dual language middle school science classroom. Paper presented at the annual meeting of the NARST. Chicago, IL.

    Google Scholar 

  • Lidar, M., Almqvist, J., & Ostman, L. (2010). A pragmatist approach to meaning making in children’s discussions about gravity and the shape of the earth. Science Education, 94, 689–709.

    Article  Google Scholar 

  • Longino, H. E. (1990). Science as social knowledge: Values and objectivity in science inquiry. Princeton: Princeton University Press.

    Google Scholar 

  • Longino, H. E. (1993). Subjects, power, and knowledge: Description and prescription in feminist philosophies of science. In L. Alcoff & E. Potter (Eds.), Feminist Epistemologies (pp. 101–120). New York: Routledge.

    Google Scholar 

  • Longino, H. E. (2002). The fate of knowledge. Princeton: Princeton University Press.

    Google Scholar 

  • Lynch, M. (1992). Extending Wittgenstein: The pivotal move from epistemology to the sociology of science. In A. Pickering (Ed.), Science as practice and culture (pp. 215–265). Chicago: University of Chicago Press.

    Google Scholar 

  • Manz, E. (2014). Representing student argumentation as functionally emergent from scientific activity. Review of Educational Research.

    Google Scholar 

  • Matthews, M. (Ed.). (2014). International handbook of research in history, philosophy and science teaching. Dordrecht: Springer.

    Google Scholar 

  • Matthews, M. (2015). Science teaching: The contribution of history and philosophy of science, 20 th anniversary revised and (expanded ed.). New York: Routledge.

    Google Scholar 

  • McDonald, S., & Songer, N. B. (2008). Enacting classroom inquiry: Theorizing teachers' conceptions of science teaching. Science Education, 92, 973–993.

    Article  Google Scholar 

  • Myers, G. (1989). The pragmatics of politeness in scientific articles. Applied Linguistics, 10, 1–35.

    Article  Google Scholar 

  • Myers, G. (1997). Texts as knowledge claims: The social construction of two biology articles. In R. A. Harris (Ed.), Landmark essay on the rhetoric of science: Case studies (pp. 187–215). Mahwah: Erlbaum.

    Google Scholar 

  • Norman, A. (1998). Seeing, semantics and social epistemic practice. Studies in the History and Philosophy of Science, 29, 501–513.

    Article  Google Scholar 

  • Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87, 224–240.

    Article  Google Scholar 

  • Norris, S., Phillips, L. M., & Burns, D. P. (2014). Conceptions of scientific literacy: Identifying and evaluating their programmatic elements. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1317–1344). Dordrecht: Springer.

    Google Scholar 

  • Oliveira, A. W., Akerson, V. L., Colak, H., Pongsanon, K., & Genel, A. (2012). The implicit communication of nature of science and epistemology during inquiry discussion. Science Education, 96, 652–684.

    Article  Google Scholar 

  • Ostman, L., & Wickman, P.-O. (2014). A pragmatic approach on epistemology, teaching, and learning. Science Education, 98, 375–382.

    Article  Google Scholar 

  • Pinch, T. (1986). Confronting nature. Dordrecht: R. Reidel.

    Book  Google Scholar 

  • Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners' epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48, 486–511.

    Article  Google Scholar 

  • Reveles, J. M., Cordova, R., & Kelly, G. J. (2004). Science literacy and academic identity formulation. Journal for Research in Science Teaching, 41, 1111–1144.

    Article  Google Scholar 

  • Rorty, R. (1991). Objectivity, relativism, and truth. New York: Cambridge University Press.

    Google Scholar 

  • Roth, W. M., McGinn, M. K., & Bowen, G. M. (1996). Applications of science and technology studies: Effecting change in science education. Science, Technology & Human Values, 21, 454–484.

    Article  Google Scholar 

  • Rudolph, J. L. (2000). Reconsidering the ‘nature of science’ as a curriculum component. Journal of Curriculum Studies, 32, 403–419.

    Article  Google Scholar 

  • Rudolph, J. L. (2002). Portraying epistemology: School science in historical context. Science Education, 87, 64–79.

    Article  Google Scholar 

  • Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41, 513–536.

    Article  Google Scholar 

  • Sadler, T. D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. Studies in Science Education, 45(1), 1–42.

    Article  Google Scholar 

  • Saljo, R. (2012). Literacy, digital literacy and epistemic practices: The co-evolution of hybrid minds and external memory systems. Nordic Journal of Digital Literacy, 7(1), 5–19.

    Google Scholar 

  • Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89, 634–656.

    Article  Google Scholar 

  • Slezak, P. (1994a). Sociology of science and science education: Part I. Science & Education, 3(3), 265–294.

    Article  Google Scholar 

  • Slezak, P. (1994b). Sociology of science and science education. Part 11: Laboratory life under the microscope. Science & Education, 3(4), 329–356.

    Article  Google Scholar 

  • Stewart, J., & Rudolph, J. L. (2001). Considering the nature of scientific problems when designing science curricula. Science Education, 85, 207–222.

    Article  Google Scholar 

  • Takao, A. Y., & Kelly, G. J. (2003). Assessment of evidence in university students' scientific writing. Science & Education, 12, 341–363.

    Article  Google Scholar 

  • Toulmin, S. (1972). Human understanding (Vol. 1: The collective use and evolution of concepts). Princeton: Princeton University Press.

    Google Scholar 

  • Traweek, S. (1988). Beamtimes and lifetimes: The world of high energy physicists. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Varelas, M., Pappas, C. C., Kane, J. M., Arsenault, A., Hankes, J., & Cowan, B. M. (2008). Urban primary-grade children think and talk science: Curricular and instructional practices that nurture participation and argumentation. Science Education, 92, 65–95.

    Article  Google Scholar 

  • Varelas, M., Kane, J. M., & Wylie, C. D. (2012). Young black children and science: Chronotopes of narratives around their science journals. Journal of Research in Science Teaching, 49, 568–596.

    Article  Google Scholar 

  • Vygotsky, L. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard.

    Google Scholar 

  • Watson-Verran, H., & Turnbull, D. (1995). Science and other indigenous knowledge systems. In S. Jasanoff, G. E. Markle, J. C. Peterson, & T. Pinch (Eds.), Handbook of science and technology studies (pp. 115–139). Sage: Thousand Oaks.

    Google Scholar 

  • Wickman, P.-O. (2004). The practical epistemologies of the classroom: A study of laboratory work. Science Education, 88, 325–344.

    Article  Google Scholar 

  • Wittgenstein, L. (1958). Philosophical investigations (3rd ed.). (G. E. M. Anscombe, Trans.). New York: Macmillan Publishing.

    Google Scholar 

  • Wortham, S. (2003). Curriculum as a resource for the development of social identity. Sociology of Education, 76, 229–247.

    Article  Google Scholar 

  • Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. 2, pp. 697–726). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kelly, G.J., Licona, P. (2018). Epistemic Practices and Science Education. In: Matthews, M. (eds) History, Philosophy and Science Teaching. Science: Philosophy, History and Education. Springer, Cham. https://doi.org/10.1007/978-3-319-62616-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62616-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62614-7

  • Online ISBN: 978-3-319-62616-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics