Skip to main content

Pathogenetic Mechanisms in Diabetic Retinopathy: From Molecules to Cells to Tissues

  • Chapter
  • First Online:
Mechanisms of Vascular Defects in Diabetes Mellitus

Abstract

Diabetic retinopathy is a debilitating ocular condition that occurs as a chronic microvascular complication of diabetes. The presence of distinct clinical features categorizes diabetic retinopathy into different severity stages (mild to very severe), where vision loss is eminent in the advanced stages of diabetic retinopathy. Further, each stage of diabetic retinopathy is associated with unique pathological features at the cellular level such as basement membrane thickening, pericyte and endothelial cell dysfunction/loss, breakdown of the blood-retinal barrier, retinal capillary non-perfusion, and retinal neovascularization. These cellular alterations are the end products of various biochemical and molecular pathway abnormalities: polyol pathway, protein kinase C activation, hexosamine pathway, advanced glycation end-products formation, retinal renin-angiotensin system, and neural-and-immuno-inflammatory mechanisms. Although there are several metabolic pathway alterations in a hyperglycemic environment, the heightened production of reactive oxygen species may interconnect the foregoing pathways. Nevertheless, recent advances in genetic technology have identified that a significant number of epigenetic alterations participate in the development and progression of diabetic retinopathy: DNA methylation, histone modifications, and non-coding RNAs. This chapter will first provide the reader with sufficient background on the clinical and pathological features of diabetic retinopathy and then provide significant insight into the current known pathogenic mechanisms implicated in the progression of diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-MSH:

Alpha-melanocyte-stimulating hormone

ACE:

Angiotensin-converting enzyme

AGE:

Advanced glycation end-product

ANRIL:

Antisense non-coding RNA in the INK4 locus

AP-1:

Activator protein-1

Ang-2:

Angiopoietin-2

ATP:

Adenosine triphosphate

BRB:

Blood-retinal barrier

BM:

Basement membrane

–CH3 :

Methyl group

CH3CO:

Acetyl group

CNP:

Capillary non-perfusion

COX-2:

Cyclooxygenase-2

DAG:

Diacylglycerol

DCCT-EDIC:

Diabetes Control and Complications-Epidemiology of Diabetes Interventions and Complications Trial

DGCR8:

DiGeorge syndrome critical region 8

Dll4:

Delta-like ligand 4

DM:

Diabetes mellitus

DME:

Diabetic macular edema

DMNTs-:

DNA methyltransferases

DNA:

Deoxyribonucleic acid

DR:

Diabetic retinopathy

EndMT:

Endothelial-to-mesenchymal transition

eNOS:

Endothelial nitric oxide synthase

ET-1:

Endothelin-1

ETC:

Electron transport chain

EZH2:

Enhancer of zeste homolog 2

FADH2 :

Fully reduced form of flavin adenine dinucleotide

FasL:

Fas Ligand

FN:

Fibronectin

FOXO1:

Forkhead box protein O1

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GFAT:

Glutamine:fructose-6-phosphate amidotransferase

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

HDMCs:

Histone demethylases

HIF-1α:

Hypoxia-inducible factor-1α

HMGB1:

High-mobility group box-1

HMTs:

Histone methyltransferases

HSP:

Hexosamine pathway

IL-6:

Interleukin-6

IL-1β:

Interleukin-1β

iNOS:

Inducible nitric oxide synthase

JAK-STAT:

Janus kinase/signal transducers and activators of transcription

LSD1:

Lysine-specific demethylase 1

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

MCP-1:

Monocyte chemoattractant protein-1

MIF:

Macrophage migration inhibitory factor

NPDR:

Non-proliferative diabetic retinopathy

PEDF:

Pigment epithelium derived factor

PDR:

Proliferative diabetic retinopathy

PDGF-BB-PDGFRß-:

platelet-derived growth factor-BB-platelet-derived growth factor receptor subunit B pathway

PDGF-BB:

platelet-derived growth factor-BB

PI3K:

Phosphatidylinositol-3 kinase

MAPK:

Mitogen-activated protein kinase

miRNAs:

micro RNAs

MMP-9:

Matrix metalloproteinase-9

mRNA:

messenger RNA

NADH:

Reduced form of nicotinamide adenine dinucleotide

NAPDH:

Reduced form of nicotinamide adenine dinucleotide phosphate

NAD+ :

Oxidized form of nicotinamide adenine dinucleotide

ncRNAs:

Non-coding RNAs

sncRNAs:

Small non-coding RNAs

lncRNAs:

Long non-coding RNAs

NF-κB:

Nuclear factor-kappa B

NO:

Nitric oxide

NV:

Neovascularization

PAI-1:

Plasminogen activator inhibitor-1

PARP:

Poly (ADP-ribose) polymerase

PGE2:

Prostaglandin E2

PKC:

Protein kinase C

PLGF:

Placental growth factor

PRC2:

Polycomb repressive complex 2

RAGE:

Receptor for AGEs

RAS:

Renin-angiotensin system

RISC:

RNA-induced silencing complex

RNA:

Ribonucleic acid

RNA pol II:

RNA polymerase II

ROS:

Reactive oxygen species

SAA3:

Serum amyloid antigen three

SDF-1:

Stromal derived growth factor

SHP-1:

Src homology-2-domain-containing phosphatase-1

SIRT1:

Sirtuin (silent mating type information regulation 2 homolog) 1

SOD2:

Manganese superoxide dismutase gene

TCA:

Tricarboxylic acid

TET:

Ten-eleven translocase

TGF-β1:

Transforming growth factor-beta1

TNF-α:

Tumor necrosis factor- alpha

UKPDS:

United Kingdom Prospective Diabetes Study

VEGF:

Vascular endothelial growth factor

VHL:

von Hippel-Lindau

VIP:

Vasoactive intestinal peptide

3′ UTR:

3′ untranslated regions

References

  1. International Diabetes Federation (2015) IDF diabetes atlas: seventh edition (Seventh.). International Diabetes Federation. Retrieved from www.diabetesatlas.org

  2. Campos C (2012) Chronic hyperglycemia and glucose toxicity: pathology and clinical sequelae. Postgrad Med 124(6):90–97. http://doi.org/10.3810/pgm.2012.11.2615

    Article  PubMed  Google Scholar 

  3. Deshpande AD, Harris-Hayes M, Schootman M (2008) Epidemiology of diabetes and diabetes-related complications. Phys Ther 88(11):1254–1264. http://doi.org/10.2522/ptj.20080020

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fowler MJ (2011) Microvascular and macrovascular complications of diabetes. Clin Diabetes 29(3):116–122. http://doi.org/10.2337/diaclin.29.3.116

    Article  Google Scholar 

  5. Forouhi NG, Wareham NJ (2010) Epidemiology of diabetes. Medicine. http://doi.org/10.1016/j.mpmed.2010.08.007

  6. Galetovic D, Olujic I, Znaor L, Bucan K, Karlica D, Lesin M, Susac T (2014) The role of diabetic retinopathy in blindness and poor sight in Split-Dalmatia County 2000-2010. Acta Clin Croat 52(4):448–452

    Google Scholar 

  7. Nentwich MM, Ulbig MW (2015) Diabetic retinopathy – ocular complications of diabetes mellitus. World J Diabetes 6(3):489–499. http://doi.org/10.4239/wjd.v6.i3.489

    Article  PubMed  PubMed Central  Google Scholar 

  8. Prokofyeva E, Zrenner E (2012) Epidemiology of major eye diseases leading to blindness in Europe: a literature review. Ophthalmic Res. http://doi.org/10.1159/000329603

  9. Keenan HA, Costacou T, Sun JK, Doria A, Cavellerano J, Coney J, King GL (2007) Clinical factors associated with resistance to microvascular complications in diabetic patients of extreme disease duration. Diabetes Care 30(8):1995–1997. Retrieved from http://care.diabetesjournals.org/content/30/8/1995.abstract

    Article  CAS  PubMed  Google Scholar 

  10. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Klein R (2004) Retinopathy in diabetes. Diabetes Care http://doi.org/10.2337/diacare.27.2007.S84

    Google Scholar 

  11. Aiello LP, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris RL, Klein R (1998) Diabetic retinopathy. Diabetes Care 21(Suppl 1). http://doi.org/10.2337/diacare.21.1.143

  12. Kristinsson JK (1997) Diabetic retinopathy. Screening and prevention of blindness. A doctoral thesis. Acta Ophthalmol Scand Suppl 1997(223):1–76. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9559048

    Google Scholar 

  13. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL (1984) The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol (Chicago, Ill: 1960) 102(4):527–532. http://doi.org/10.1016/S0161-6420(95)31052-4

    Article  CAS  Google Scholar 

  14. Stefánsson E, Bek T, Porta M, Larsen N, Kristinsson JK, Agardh E (2000) Screening and prevention of diabetic blindness. Acta Ophthalmol Scand 78(4):374–385. http://doi.org/10.1034/j.1600-0420.2000.078004374.x

    Article  PubMed  Google Scholar 

  15. Cunha-Vaz J, Ribeiro L, Lobo C (2014) Phenotypes and biomarkers of diabetic retinopathy. Prog Retin Eye Res. http://doi.org/10.1016/j.preteyeres.2014.03.00310

  16. Frank RN (2004) Diabetic retinopathy. N Engl J Med 350:48–58. http://doi.org/10.1056/NEJMra021678

    Article  CAS  PubMed  Google Scholar 

  17. Watkins P (2003) ABC of diabetes: retinopathy. BMJ 326:924–926. http://doi.org/10.1136/bmj.326.7395.924

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fante RJ, Durairaj VD, Oliver SCN (2010) Diabetic retinopathy: an update on treatment. Am J Med 123(3):213–216. http://doi.org/10.1016/j.amjmed.2009.09.020

    Article  PubMed  Google Scholar 

  19. Poretsky L (2010) Principles of diabetes mellitus. http://doi.org/10.1007/978-0-387-09841-8

  20. Emptage NP, Kealey S, Lum FC, Garratt S (2014) Preferred practice pattern: diabetic retinopathy. Am J Ophthalmol Updated Ja. http://www.aao.org/preferred–practice–pattern/diab. http://doi.org/10.1016/S0140-6736(09)62124-3

  21. Klein R, Klein BE, Moss SE (1992) Epidemiology of proliferative diabetic retinopathy. Diabetes Care 15(12):1875–1891. http://doi.org/10.2337/diacare.15.12.1875

  22. Early Treatment Diabetic Retinopathy Study Research Group (1991) Early photocoagulation for diabetic retinopathy: ETDRS report number 9. Ophthalmology 98(5):766–785. http://doi.org/10.1016/S0161-6420(13)38011-7

  23. Early Treatment Diabetic Retinopathy Study Research Group (1991) Fundus photographic risk factors for progression of diabetic retinopathy: ETDRS report number 12. Ophthalmology 98(5):823–833. http://doi.org/10.1016/S0161-6420(13)38014-2

  24. Kollias AN, Ulbig MW (2010) Diabetic retinopathy: early diagnosis and effective treatment. Dtsch Arztebl Int 107:75–83; quiz 84. http://doi.org/10.3238/arztebl.2010.0075

    PubMed  PubMed Central  Google Scholar 

  25. Singh R, Ramasamy K, Abraham C, Gupta V, Gupta A (2008) Diabetic retinopathy: an update. Indian J Ophthalmol 56(3):179–188

    Article  PubMed Central  Google Scholar 

  26. Shi L, Huang YF (2012) Postvitrectomy diabetic vitreous hemorrhage in proliferative diabetic retinopathy. J Res Med Sci 17(9):865–871

    PubMed  PubMed Central  Google Scholar 

  27. Feltgen N, Walter P (2014) Rhegmatogenous retinal detachment – an ophthalmologic emergency. Dtsch Arztebl Int 111:12–21; quiz 22. http://doi.org/10.3238/arztebl.2014.0012

    PubMed  PubMed Central  Google Scholar 

  28. Ghazi NG, Green WR (2002) Pathology and pathogenesis of retinal detachment. Eye 16(4):411–421. http://doi.org/10.1038/sj.eye.6700197

    Article  CAS  PubMed  Google Scholar 

  29. Viswanath K, McGavin M (2003) Diabetic retinopathy: clinical findings and management diabetic retinopathy. Community Eye Health 16(46):21–24. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1705856/

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Olmos LC, Lee RK (2011) Medical and surgical treatment of neovascular glaucoma. Int Ophthalmol Clin 51(3):27–36. http://doi.org/10.1097/IIO.0b013e31821e5960

  31. Ciulla TA, Amador AG, Zinman B (2003) Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies. Diabetes Care 26(9):2653–2664. doi:10.2337/diacare.26.9.2653

    Google Scholar 

  32. Das A, McGuire PG, Rangasamy S (2015) Diabetic macular edema: pathophysiology and novel therapeutic targets. Ophthalmology 122(7):1375–1394. http://doi.org/10.1016/j.ophtha.2015.03.024

  33. Ferris FL, Patz A (1984) Macular edema. A complication of diabetic retinopathy. Surv Ophthalmol 28(Suppl. 2):452–461. http://doi.org/10.1016/0039- 6257(84)90227-3

  34. Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, Lum F (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9):1677–1682. http://doi.org/10.1016/S0161-6420(03)00475-5

  35. Garner A (1993) Histopathology of diabetic retinopathy in man. Eye (Lond) 7(Pt 2):250–253. doi:10.1038/eye.1993.58

    Article  Google Scholar 

  36. Chou J, Rollins S, Fawzi AA (2014) Role of endothelial cell and pericyte dysfunction in diabetic retinopathy: review of techniques in rodent models. Adv Exp Med Biol 801:669–675. doi:10.1007/978-1-4614-3209-8_84

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bharadwaj AS, Appukuttan B, Wilmarth PA et al (2013) Role of the retinal vascular endothelial cell in ocular disease. Prog Retin Eye Res 32(1):102–180. doi:10.1016/j.preteyeres.2012.08.004

    Article  PubMed  Google Scholar 

  38. Cao Y, Feng B, Chen S, Chu Y, Chakrabarti S (2014) Mechanisms of endothelial to mesenchymal transition in the retina in diabetes. Investig Ophthalmol Vis Sci 55(11):7321–7331. doi:10.1167/iovs.14-15167

    Article  CAS  Google Scholar 

  39. Wallez Y, Huber P (2008) Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta Biomembr 1778(3):794–809. doi:10.1016/j.bbamem.2007.09.003

    Article  CAS  Google Scholar 

  40. Sukriti S, Tauseef M, Yazbeck P, Mehta D (2014) Mechanisms regulating endothelial permeability. Pulm Circ 4(4):535–551. doi:10.1086/677356

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5(4):261–270. doi:10.1038/nrm1357

    Article  CAS  PubMed  Google Scholar 

  42. Wilson CW, Ye W (2014) Regulation of vascular endothelial junction stability and remodeling through Rap1-Rasip1 signaling. Cell Adhes Migr 8(2):76–83. doi:10.4161/cam.28115

    Article  Google Scholar 

  43. Trost A, Lange S, Schroedl F et al (2016) Brain and retinal pericytes: origin, function and role. Front Cell Neurosci 10:20. doi:10.3389/fncel.2016.00020

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hirschi KK, D'Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32(4):687–698. doi:10.1016/0008-6363(96)00063-6

    Article  CAS  PubMed  Google Scholar 

  45. Stark K, Eckart A, Haidari S et al (2013) Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and “instruct” them with pattern-recognition and motility programs. Nat Immunol 14(1):41–51. doi:10.1038/ni.2477

    Article  CAS  PubMed  Google Scholar 

  46. Stapor PC, Sweat RS, Dashti DC, Betancourt AM, Murfee WL (2014) Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res 51(3):163–174. doi:10.1159/000362276

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mills SJ, Cowin AJ, Kaur P (2013) Pericytes, mesenchymal stem cells and the wound healing process. Cell 2(3):621–634. doi:10.3390/cells2030621

    Article  CAS  Google Scholar 

  48. Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenerg 2(May):1–14. doi:10.3389/fnene.2010.00005

    Google Scholar 

  49. Yao Q, Renault M-A, Chapouly C et al (2014) Sonic hedgehog mediates a novel pathway of PDGF-BB-dependent vessel maturation. Blood 123(15):2429–2437. doi:10.1182/blood-2013-06-508689

    Article  CAS  PubMed  Google Scholar 

  50. Nilsson I, Shibuya M, Wennström S (2004) Differential activation of vascular genes by hypoxia in primary endothelial cells. Exp Cell Res 299(2):476–485. doi:10.1016/j.yexcr.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  51. Schmidt NO, Koeder D, Messing M et al (2009) Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche. Brain Res 1268:24–37. doi:10.1016/j.brainres.2009.02.065

    Article  CAS  PubMed  Google Scholar 

  52. Betsholtz C (2004) Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 15(4):215–228. doi:10.1016/j.cytogfr.2004.03.005

    Article  CAS  PubMed  Google Scholar 

  53. Sweeney MD, Ayyadurai S, Zlokovic BV (2016) Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 19(6):771–783. doi:10.1038/nn.4288

    Article  CAS  PubMed  Google Scholar 

  54. Geraldes P, Hiraoka-yamamoto J, Matsumoto M, Clermont A (2012) Activation of PKCδ and SHP1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 15(11):1298–1306. doi:10.1038/nm.2052

    Article  CAS  Google Scholar 

  55. Alikhani M, Roy S, Graves DT (2010) FOXO1 plays an essential role in apoptosis of retinal pericytes. Mol Vis 16(March):408–415. doi:46 [pii]

    Google Scholar 

  56. Lindahl P (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245. doi:10.1126/science.277.5323.242

    Article  CAS  PubMed  Google Scholar 

  57. Hellström M, Gerhardt H, Kalén M et al (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 152(3):543–553. doi:10.1083/jcb.153.3.543

    Article  Google Scholar 

  58. Cai J, Boulton M (2002) The pathogenesis of diabetic retinopathy: old concepts and new questions. Eye (Lond) 16(3):242–260. doi:10.1038/sj/eye/6700133

    Article  CAS  Google Scholar 

  59. Roy S, Maiello M, Lorenzi M (1994) Increased expression of basement membrane collagen in human diabetic retinopathy. J Clin Invest 93(1):438–442. doi:10.1172/JCI116979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ljubimov AV, Burgeson RE, Butkowski RJ et al (1996) Basement membrane abnormalities in human eyes with diabetic retinopathy. J Histochem Cytochem 44(12):1469–1479. http://www.ncbi.nlm.nih.gov/pubmed/8985139

  61. Chakrabarti S, Ma N, Sima AAF (1991) Anionic sites in diabetic basement membranes and their possible role in diffusion barrier abnormalities in the BB-rat. Diabetologia 34(5):301–306. doi:10.1007/BF00405000

    Article  CAS  PubMed  Google Scholar 

  62. Roy S, Ha J, Trudeau K, Beglova E (2010) Vascular basement membrane thickening in diabetic retinopathy. Curr Eye Res 35(12):1045–1056. doi:10.3109/02713683.2010.514659

    Article  PubMed  Google Scholar 

  63. Stitt AW, Gardiner TA, Archer DB (1995) Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients. Br J Ophthalmol 79(4):362–367. doi:10.1136/bjo.79.4.362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nishikawa T, Giardino I, Edelstein D, Brownlee M (2000) Changes in diabetic retinal matrix protein mRNA levels in a common transgenic mouse strain. Curr Eye Res 21(1):581–587. doi:10.1076/0271-3683(200007)21

    Article  CAS  PubMed  Google Scholar 

  65. Roy S, Lorenzi M (1996) Early biosynthetic changes in the diabetic-like retinopathy of galactose-fed rats. Diabetologia 39(6):735–738. doi:10.1007/s001250050503

    Article  CAS  PubMed  Google Scholar 

  66. Roy S, Cagliero E, Lorenzi M (1996) Fibronectin overexpression in retinal microvessels of patients with diabetes. Investig Ophthalmol Vis Sci 37(2):258–266

    CAS  Google Scholar 

  67. Chronopoulos A, Trudeau K, Roy S, Huang H, Vinores S, Roy S (2011) High glucose-induced altered basement membrane composition and structure increases trans-endothelial permeability: implications for diabetic retinopathy. Curr Eye Res 36(8):747–753. doi:10.3109/02713683.2011.585735

    Article  CAS  PubMed  Google Scholar 

  68. Oshitari T, Polewski P, Chadda M, Li AF, Sato T, Roy S (2006) Effect of combined antisense oligonucleotides against high-glucose- and diabetes-induced overexpression of extracellular matrix components and increased vascular permeability. Diabetes 55(1):86–92. doi:10.2337/diabetes.55.1.86

    Article  CAS  PubMed  Google Scholar 

  69. Lorenzi M (2007) The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabesity Res. doi:10.1155/2007/61038

  70. Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL (1997) Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest 100(1):115–126. doi:10.1172/JCI119503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kalfa TA, Gerritsen ME, Carlson EC, Binstock AJ, Tsilibary EC (1995) Altered proliferation of retinal microvascular cells on glycated matrix. Investig Ophthalmol Vis Sci 36(12):2358–2367

    CAS  Google Scholar 

  72. Mott JD, Khalifah RG, Nagase H, Shield CF, Hudson JK, Hudson BG (1997) Nonenzymatic glycation of type IV collagen and matrix metalloproteinase susceptibility. Kidney Int 52:1302–1312. doi:10.1038/ki.1997.455

    Article  CAS  PubMed  Google Scholar 

  73. Kuiper EJ, van Zijderveld R, Roestenberg P et al (2008) Connective tissue growth factor is necessary for retinal capillary basal lamina thickening in diabetic mice, vol 56. doi:10.1369/jhc.2008.950980

    Google Scholar 

  74. Evans T, Deng DX, Chen S, Chakrabarti S (2000) Endothelin receptor blockade prevents augmented extracellular matrix component mRNA expression and capillary basement membrane thickening in the retina of diabetic and galactose-fed rats. Diabetes 49(4):662–666. doi:10.2337/diabetes.49.4.662

    Article  CAS  PubMed  Google Scholar 

  75. Engerman RL, Kern TS, Garment MB (1993) Capillary basement membrane in retina, kidney, and muscle of diabetic dogs and galactosemic dogs and its response to 5 years aldose reductase inhibition. J Diabetes Complicat 7(4):241–245. doi:10.1016/S0002-9610(05)80251-X

    Article  CAS  PubMed  Google Scholar 

  76. Gardiner TA, Anderson HR, Degenhardt T et al (2003) Prevention of retinal capillary basement membrane thickening in diabetic dogs by a non-steroidal anti-inflammatory drug. Diabetologia 46(9):1269–1275. doi:10.1007/s00125-003-1147-z

    Article  CAS  PubMed  Google Scholar 

  77. Campbell M, Humphries P (2012) The blood-retina barrier tight junctions and barrier modulation. Adv Exp Med Biol 763:70–84. doi:10.1007/978-1-4614-4711-5-3

    CAS  PubMed  Google Scholar 

  78. Zhang C, Wang H, Nie J, Wang F (2014) Protective factors in diabetic retinopathy: focus on blood-retinal barrier. Discov Med 18(98):105–112

    CAS  PubMed  Google Scholar 

  79. Hosoya K, Tachikawa M (2012) The inner blood-retinal barrier molecular structure and transport biology. Adv Exp Med Biol 763:85–104. doi:10.1007/978-1-4614-4711-5-4

    CAS  PubMed  Google Scholar 

  80. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53. doi:10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  81. Cunha-Vaz J, Bernardes R, Lobo C (2011) Blood-retinal barrier. Eur J Ophthalmol 21(SUPPL.6):3–9. doi:10.5301/EJO.2010.6049

    Article  Google Scholar 

  82. Zhang X, Zeng H, Bao S, Wang N, Gillies MC (2014) Diabetic macular edema: new concepts in patho-physiology and treatment. Cell Biosci 4(1):27. doi:10.1186/2045-3701-4-27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Bhagat N, Grigorian RA, Tutela A, Zarbin MA (2009) Diabetic macular edema: pathogenesis and treatment. Surv Ophthalmol 54(1):1–32. doi:10.1016/j.survophthal.2008.10.001

    Article  PubMed  Google Scholar 

  84. Rasta SH, Nikfarjam S, Javadzadeh A (2015) Detection of retinal capillary nonperfusion in fundus fluorescein angiogram of diabetic retinopathy. Bio Impacts 5(4):183–190. doi:10.15171/bi.2015.27

    Google Scholar 

  85. Agarwal A, Sivaswamy J, Rani A, Das T (2008) Automatic segmentation of capillary non-perfusion in retinal angiograms. Biosignals 1:170–177

    Google Scholar 

  86. Semeraro F, Cancarini A, Dell’Omo R, Rezzola S, Romano MR, Costagliola C (2015) Diabetic retinopathy: vascular and inflammatory disease. J Diabetes Res. doi:10.1155/2015/582060

  87. Michiels C, Arnould T, Remacle J (2000) Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions. Biochim Biophys Acta 1497(1):1–10. doi:10.1016/S0167-4889(00)00041-0

    Article  CAS  PubMed  Google Scholar 

  88. Joussena M, Murata T, Tsujikawa A, Kirchhof B, Bursell SE, Adamis P (2001) Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am J Pathol 158(1):147–152. doi:10.1016/S0002-9440(10)63952-1

    Article  Google Scholar 

  89. Chakrabarti S, Cukiernik M, Hileeto D, Evans T, Chen S (2000) Role of vasoactive factors in the pathogenesis of early changes in diabetic retinopathy. Diabetes Metab Res Rev 16(6):393–407. doi:10.1002/1520-7560(0000)9999:9999<::AID-DMRR157>3.0.CO;2-G

    Article  CAS  PubMed  Google Scholar 

  90. Kern TS (2007) Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 95103. doi:10.1155/2007/95103

  91. Kiechl S, Wittmann J, Giaccari A et al (2013) Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med 19(3):358–363. doi:10.1038/nm.3084

    Article  CAS  PubMed  Google Scholar 

  92. Xu B, Chiu J, Feng B, Chen S, Chakrabarti S (2008) PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes. Diabetes Metab Res Rev 24(5):404–412. doi:10.1002/dmrr.842

    Article  CAS  PubMed  Google Scholar 

  93. Wu Y, Chakrabarti S (2015) ERK5 mediated signalling in diabetic retinopathy. Med Hypothesis Discov Innov Ophthalmol 4(1):17–26

    PubMed  PubMed Central  Google Scholar 

  94. Abu El-Asrar AM, Missotten L, Geboes K (2007) Expression of hypoxia-inducible factor-1alpha and the protein products of its target genes in diabetic fibrovascular epiretinal membranes. Br J Ophthalmol 91(6):822–826. doi:10.1136/bjo.2006.109876

    Article  PubMed  Google Scholar 

  95. Baird TD, Wek RC (2012) Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr 3(3):307–321. doi:10.3945/an.112.002113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 9:47–71. doi:10.1146/annurev-pathol-012513-104720

    Article  CAS  PubMed  Google Scholar 

  97. Ashton N (1970) Retinal angiogenesis in the human embryo. Br Med Bull 26:103–106

    Article  CAS  PubMed  Google Scholar 

  98. Michaelson I (1948) The mode of development of the vascular system of the retina with some observations on its significance for certain retinal diseases. Trans Ophthalmol Soc UK 68:137–180

    Google Scholar 

  99. Ashton N (1957) Retinal vascularization in health and disease. Am J Ophthalmol 44:7–17

    Article  CAS  PubMed  Google Scholar 

  100. Lin M, Chen Y, Jin J et al (2011) Ischaemia-induced retinal neovascularisation and diabetic retinopathy in mice with conditional knockout of hypoxia-inducible factor-1 in retinal Müller cells. Diabetologia 54(6):1554–1566. doi:10.1007/s00125-011-2081-0

    Article  CAS  PubMed  Google Scholar 

  101. Arjamaa O, Nikinmaa M (2006) Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res 83(3):473–483. doi:10.1016/j.exer.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  102. Ivan M, Kondo K, Yang H et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468. doi:10.1126/science.1059817

    Article  CAS  PubMed  Google Scholar 

  103. Zheng X, Ruas JL, Cao R et al (2006) Cell-type-specific regulation of degradation of hypoxia-inducible factor 1 alpha: role of subcellular compartmentalization. Mol Cell Biol 26(12):4628–4641. doi:10.1128/MCB.02236-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Metzen E, Stiehl DP, Doege K, Marxsen JH, Hellwig-Bürgel T, Jelkmann W (2005) Regulation of the prolyl hydroxylase domain protein 2 (phd2/egln-1) gene: identification of a functional hypoxia-responsive element. Biochem J 387(Pt 3):711–717. doi:10.1042/BJ20041736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE. 2007(407):cm8. doi:10.1126/stke.4072007cm8.

  106. Campochiaro PA (2008) Ocular neovascularization. In: Angiogenesis: an integrative approach from science to medicine, pp 517–531. doi:10.1007/978-0-387-71518-6_44.

  107. Abcouwer SF (2013) Angiogenic factors and cytokines in diabetic retinopathy. J Clin Cell Immunol 1(11):10–11. doi:10.4172/2155-9899

    Google Scholar 

  108. Hammes H-P, Feng Y, Pfister F et al (2011) Diabetic retinopathy: targeting vasoregression. Diabetes 60(1):9–16. doi:10.2337/db10-0454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Benedito R, Roca C, Sörensen I et al (2009) The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137(6):1124–1135. doi:10.1016/j.cell.2009.03.025

    Article  CAS  PubMed  Google Scholar 

  110. Hofmann JJ, Luisa Iruela-Arispe M (2006) Notch expression patterns in the retina: an eye on receptor-ligand distribution during angiogenesis. Gene Expr Patterns 7(4):461–470. doi:10.1016/j.modgep. 11.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Hellström M, Phng L-K, Hofmann JJ et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780. doi:10.1038/nature05571

    Article  PubMed  CAS  Google Scholar 

  112. Liu Z-J, Shirakawa T, Li Y et al (2003) Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 23(1):14–25. doi:10.1128/MCB.23.1.14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177. doi:10.1083/jcb.200302047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10(3):165–177. doi:10.1038/nrm2639

    Article  CAS  PubMed  Google Scholar 

  115. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(December):813–820. doi:10.1038/414813a

    Article  CAS  PubMed  Google Scholar 

  116. Watve M (2013). Doves, diplomats, and diabetes: a darwinian interpretation of type 2 diabetes and related disorders. doi:10.1007/978-1-4614-4409-1.

  117. Gabbay KH (1975) Hyperglycemia, polyol metabolism, and complications of diabetes mellitus. Annu Rev Med 26:521–536. doi:10.1146/annurev.me.26.020175.002513

    Article  CAS  PubMed  Google Scholar 

  118. Obrosova IG (2005) Increased sorbitol pathway activity generates oxidative stress in tissue sites for diabetic complications. Antioxid Redox Signal 7(c):1543–1552. doi:10.1089/ars.2005.7.1543

    Article  CAS  PubMed  Google Scholar 

  119. Szwergold BS, Kappler F, Brown TR (1990) Identification of fructose 3-phosphate in the lens of diabetic rats. Science 247(4941):451–454. doi:10.1126/science.2300805

    Article  CAS  PubMed  Google Scholar 

  120. Barnett PA, Gonzalez RG, Chylack LT, Cheng HM (1986) The effect of oxidation on sorbitol pathway kinetics. Diabetes 35(4):426–432. doi:10.2337/diab.35.4.426

    Article  CAS  PubMed  Google Scholar 

  121. Luo X, Wu J, Jing S, Yan L-J (2016) Hyperglycemic stress and carbon stress in diabetic glucotoxicity. Aging Dis 7(1):90–110. doi:10.14336/AD.2015.0702

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lassègue B, Clempus RE, Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. AJP – Regul Integr Comp Physiol 285(2):R277–R297. doi:10.1152/ajpregu.00758.2002

    Article  Google Scholar 

  123. Dagher Z, Park YS, Asnaghi V, Hoehn T, Gerhardinger C, Lorenzi M (2004) Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes 53(9):2404–2411. doi:10.2337/diabetes.53.9.2404

    Article  CAS  PubMed  Google Scholar 

  124. Anusha Chauhan H, Geetha K, Vijay R, Chidrawar UMRV (2014) Polyol pathway: a review on a potential target for the prevention of diabetic complications. Int J Invent Pharm Sci 2(2):696–711

    Google Scholar 

  125. Lorenzi M (2007) The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res 2007:61038. http://doi.org/10.1155/2007/61038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Harhaj NS, Felinski EA, Wolpert EB, Sundstrom JM, Gardner TW, Antonetti DA (2006) VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Investig Ophthalmol Vis Sci 47(11):5106–5115. doi:10.1167/iovs.06-0322

    Article  Google Scholar 

  127. Murakami T, Frey T, Lin C, Antonetti DA (2012) Protein kinase C?? Phosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor – induced permeability in vivo. Diabetes 61(6):1573–1583. doi:10.2337/db11-1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Way KJ, Katai N, King GL (2001) Protein kinase C and the development of diabetic vascular complications. Diabet Med 18(12):945–959

    Article  CAS  PubMed  Google Scholar 

  129. Geraldes P, King GL (2010) Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 106(8):1319–1331. doi:10.1161/CIRCRESAHA.110.217117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Geraldes P, Hiraoka-Yamamoto J, Matsumoto M et al (2009) Activation of PKC-and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 15(11). doi:10.1038/nm.2052

  131. Fu D, Wu M, Zhang J et al (2012) Mechanisms of modified LDL-induced pericyte loss and retinal injury in diabetic retinopathy. Diabetologia 55(11):3128–3140. doi:10.1007/s00125-012-2692-0

    Article  CAS  PubMed  Google Scholar 

  132. Rosse C, Linch M, Kermorgant S, Cameron AJM, Boeckeler K, Parker PJ (2010) PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol 11(2):103–112. doi:10.1038/nrm2847

    Article  CAS  PubMed  Google Scholar 

  133. Nakamura M, Barber AJ, Antonetti DA et al (2001) Excessive hexosamines block the neuroprotective effect of insulin and induce apoptosis in retinal neurons. J Biol Chem 276(47):43748–43755. doi:10.1074/jbc.M108594200

    Article  CAS  PubMed  Google Scholar 

  134. Wells L (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291(5512):2376–2378. doi:10.1126/science.1058714

    Article  CAS  PubMed  Google Scholar 

  135. Kolm-Litty V, Sauer U, Nerlich A, Lehmann R, Schleicher ED (1998) High glucose-induced transforming growth factor 1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Invest 101(1):160–169. doi:10.1172/JCI119875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kowluru RA, Chan P-S (2007) Oxidative stress and diabetic retinopathy. Exp Diabetes Res:43603. doi:10.1155/2007/43603

  137. Buse MG (2006) Hexosamines, insulin resistance and the complications of diabetes: current status. Am J Physiol Endocrinol Metab 290(1):E1–E8. doi:10.1152/ajpendo.00329.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Safi SZ, Qvist R, Kumar S, Batumalaie K, ISB I (2014) Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. Biomed Res Int. doi:10.1155/2014/801269

  139. Zachara NE, Hart GW (2004) O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim Biophys Acta – Gen Subj 1673(1–2):13–28. doi:10.1016/j.bbagen.2004.03.016

    Article  CAS  Google Scholar 

  140. Zachara NE, Molina H, Wong KY, Pandey A, Hart GW (2011) The dynamic stress-induced “o-GlcNAc-ome” highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways. Amino Acids 40(3):793–808. doi:10.1007/s00726-010-0695-z

    Article  CAS  PubMed  Google Scholar 

  141. Comer FI, Hart GW (2001) Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II. Biochemistry 40(26):7845–7852. doi:10.1021/bi0027480

    Article  CAS  PubMed  Google Scholar 

  142. Ruan HB, Singh JP, Li MD, Wu J, Yang X (2013) Cracking the O-GlcNAc code in metabolism. Trends Endocrinol Metab 24(6):301–309. doi:10.1016/j.tem.2013.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Musicki B, Kramer MF, Becker RE, Burnett AL (2005) Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O-GlcNAc in diabetes-associated erectile dysfunction. Proc Natl Acad Sci U S A 102(33):11870–11875. doi:10.1073/pnas.0502488102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Du XL, Edelstein D, Rossetti L et al (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A 97(22):12222–12226. doi:10.1073/pnas.97.22.12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen YQ, Su M, Walia RR, Hao Q, Covington JW, Vaughan DE (1998) Sp1 sites mediate activation of the plasminogen activator inhibitor-1 promoter by glucose in vascular smooth muscle cells. J Biol Chem 273(14):8225–8231. doi:10.1074/jbc.273.14.8225

    Article  CAS  PubMed  Google Scholar 

  146. Kaji Y, Usui T, Ishida S et al (2007) Inhibition of diabetic leukostasis and blood-retinal barrier breakdown with a soluble form of a receptor for advanced glycation end products. Invest Ophthalmol Vis Sci 48(2):858–865. doi:10.1167/iovs.06-0495

    Article  PubMed  Google Scholar 

  147. Sun C, Liang C, Ren Y et al (2009) Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res Cardiol 104(1):42–49. doi:10.1007/s00395-008-0738-8

    Article  CAS  PubMed  Google Scholar 

  148. Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 18(1):1–14. doi:10.4196/kjpp.2014.18.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jakuš V, Rietbrock N (2004) Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res 53(2):131–142

    PubMed  Google Scholar 

  150. Schmidt AM, Hori O, Brett J, Yan S Du, Wautier JL, Stern D (1994) Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb 14(10):1521–1528. doi:10.1161/01.ATV.14.10.1521.

  151. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070. doi:10.1161/CIRCRESAHA.110.223545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Brownlee M (2005) The Pathobiology of diabetic complications. Diabetes 54(6):1615–1625. doi:10.2337/diabetes.54.6.1615.

  153. Hasan NA (2009) Effects of trace elements on albumin and lipoprotein glycation in diabetic retinopathy. Saudi Med J 30(10):1263–1271. doi:0’[pii]

    Google Scholar 

  154. Kemeny SF, Figueroa DS, Andrews AM, Barbee KA, Clyne AM (2011) Glycated collagen alters endothelial cell actin alignment and nitric oxide release in response to fluid shear stress. J Biomech 44(10):1927–1935. doi:10.1016/j.jbiomech.2011.04.026

    Article  PubMed  Google Scholar 

  155. Moore TCB, Moore JE, Kaji Y et al (2003) The role of advanced glycation end products in retinal microvascular leukostasis. Invest Ophthalmol Vis Sci 44(10):4457–4464. doi:10.1167/iovs.02-1063

    Article  PubMed  Google Scholar 

  156. Zong H, Ward M, Stitt AW (2011) AGEs, RAGE, and diabetic retinopathy. Curr Diab Rep 11(4):244–252. doi:10.1007/s11892-011-0198-7

    Article  PubMed  Google Scholar 

  157. Mokini Z, Marcovecchio ML, Chiarelli F (2010) Molecular pathology of oxidative stress in diabetic angiopathy: role of mitochondrial and cellular pathways. Diabetes Res Clin Pract 87(3):313–321. doi:10.1016/j.diabres.2009.11.018

    Article  CAS  PubMed  Google Scholar 

  158. Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114(6):597–605. doi:10.1161/CIRCULATIONAHA.106.621854

  159. Knels L, Worm M, Wendel M, Roehlecke C, Kniep E, Funk RHW (2008) Effects of advanced glycation end products-inductor glyoxal and hydrogen peroxide as oxidative stress factors on rat retinal organ cultures and neuroprotection by UK-14,304. J Neurochem 106(4):1876–1887. doi:10.1111/j.1471-4159.2008.05540.x

    CAS  PubMed  Google Scholar 

  160. Kowluru RA, Engerman RL, Case GL, Kern TS (2001) Retinal glutamate in diabetes and effect of antioxidants. Neurochem Int 38(5):385–390. doi:10.1016/S0197-0186(00)00112-1

    Article  CAS  PubMed  Google Scholar 

  161. Kowluru RA (2003) Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes 52(3):818–823. doi:10.2337/diabetes.52.3.818

    Article  CAS  PubMed  Google Scholar 

  162. Wagner J, Jan Danser AH, Derkx FH et al (1996) Demonstration of renin mRNA, angiotensinogen mRNA, and angiotensin converting enzyme mRNA expression in the human eye: evidence for an intraocular renin-angiotensin system. Br J Ophthalmol 80:159–163. doi:10.1136/bjo.80.2.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wilkinson-Berka JL, Agrotis A, Deliyanti D (2012) The retinal renin-angiotensin system: roles of angiotensin II and aldosterone. Peptides 36(1):142–150. doi:10.1016/j.peptides.2012.04.008

    Article  CAS  PubMed  Google Scholar 

  164. Danser AHJ, Derkx FHM, Admiraal PJJ, Deinum J, De Jong PTVM, Schalekamp MADH (1994) Angiotensin levels in the eye. Investig Ophthalmol Vis Sci 35(3):1008–1018

    CAS  Google Scholar 

  165. Strain WD, Chaturvedi N (2002) The renin-angiotensin-aldosterone system and the eye in diabetes. J Renin-Angiotensin-Aldosterone Syst 3(4):243–246. doi:10.3317/jraas.2002.045

    Article  CAS  PubMed  Google Scholar 

  166. Danser AHJ, Van Den Dorpel MA, Deinum J et al (1989) Renin, prorenin, and immunoreactive renin in vitreous fluid from eyes with and without diabetic retinopathy. J Clin Endocrinol Metab 68(1):160–167. doi:10.1210/jcem-68-1-160

    Article  CAS  PubMed  Google Scholar 

  167. Yokota H, Nagaoka T, Tani T et al (2011) Higher levels of prorenin predict development of diabetic retinopathy in patients with type 2 diabetes. J Renin-Angiotensin-Aldosterone Syst 12(3):290–294. doi:1470320310391327 [pii]\r10.1177/1470320310391327

    Google Scholar 

  168. Verma A, Shan Z, Lei B et al (2012) ACE2 and Ang-(1-7) confer protection against development of diabetic retinopathy. Mol Ther 20(1):28–36. doi:10.1038/mt.2011.155

    Article  CAS  PubMed  Google Scholar 

  169. Otani A, Takagi H, Oh H, Koyama S, Honda Y (2001) Angiotensin II induces expression of the Tie2 receptor ligand, angiopoietin-2, in bovine retinal endothelial cells. Diabetes 50(4):867–875. doi:10.2337/diabetes.50.4.867

    Article  CAS  PubMed  Google Scholar 

  170. Nakamura S, Tsuruma K, Shimazawa M, Hara H (2012) Candesartan, an angiotensin II type 1 receptor antagonist, inhibits pathological retinal neovascularization by downregulating VEGF receptor-2 expression. Eur J Pharmacol 685(1–3):8–14. doi:10.1016/j.ejphar.2012.04.017

    Article  CAS  PubMed  Google Scholar 

  171. Kim JH, Kim JH, Yu YS, Cho CS, Kim K-W (2009) Blockade of angiotensin II attenuates VEGF-mediated blood-retinal barrier breakdown in diabetic retinopathy. J Cereb Blood Flow Metab 29(3):621–628. doi:10.1038/jcbfm.2008.154

    Article  CAS  PubMed  Google Scholar 

  172. Zhou R, Caspi RR (2010) Ocular immune privilege. F1000 Biol Rep 2(10):1885–1889. doi:10.3410/B2-3

    Google Scholar 

  173. Taylor AW (2016) Ocular immune privilege and transplantation. Front Immunol 7:37. doi:10.3389/fimmu.2016.00037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Apte RS, Sinha D, Mayhew E, Wistow GJ, Niederkorn JY (1998) Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege. J Immunol 160(12):5693–5696. http://www.ncbi.nlm.nih.gov/pubmed/9637476

    CAS  PubMed  Google Scholar 

  175. Stein-Streilein J (2008) Immune regulation and the eye. Trends Immunol 29(11):548–554. doi:10.1016/j.it.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  176. Niederkorn JY, Stein-Streilein J (2010) History and physiology of immune privilege. Ocul Immunol Inflamm 18(1):19–23. doi:10.3109/09273940903564766

    Article  PubMed  Google Scholar 

  177. Tang J, Kern TS (2011) Inflammation in diabetic retinopathy. Prog Retin Eye Res 30(5):343–358. doi:10.1016/j.preteyeres.2011.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. McVicar CM, Ward M, Colhoun LM et al (2015) Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice. Diabetologia 58(5):1129–1137. doi:10.1007/s00125-015-3523-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Bierhaus A, Humpert PM, Stern DM, Arnold B, Nawroth PP (2005) Advanced glycation end product receptor-mediated cellular dysfunction. In: Annals of the New York Academy of Sciences, vol 1043, pp 676–680. doi:10.1196/annals.1333.077

  180. Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK (1996) During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med 2(9):992–997

    Article  CAS  PubMed  Google Scholar 

  181. Joussen AM, Poulaki V, Le ML et al (2004) A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 18(12):1450–1452. doi:10.1096/fj.03-1476fje

    CAS  PubMed  Google Scholar 

  182. Adamis AP, Berman AJ (2008) Immunological mechanisms in the pathogenesis of diabetic retinopathy. Semin Immunopathol 30(2):65–84. doi:10.1007/s00281-008-0111-x

    Article  CAS  PubMed  Google Scholar 

  183. Tombran-Tink J, Barnstable CJ (2008) Ocular Transporters in Ophthalmic Diseases and Drug Delivery. doi:10.1007/978-1-59745-375-2.

  184. De Hoz R, Rojas B, Ramírez AI et al (2016) Retinal macroglial responses in health and disease. Biomed Res Int. doi:10.1155/2016/2954721

  185. Karlstetter M, Ebert S, Langmann T (2010) Microglia in the healthy and degenerating retina: insights from novel mouse models. Immunobiology 215(9–10):685–691. doi:10.1016/j.imbio.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  186. Abcouwer SF (2011) Neural inflammation and the microglial response in diabetic retinopathy. J Ocul Biol Dis Inform 4(1–2):25–33. doi:10.1007/s12177-012-9086-x

    Article  Google Scholar 

  187. Badea TC, Cahill H, Ecker J, Hattar S, Nathans J (2009) Distinct roles of transcription factors Brn3a and Brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 61(6):852–864. doi:10.1016/j.neuron.2009.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Liu X, Ye F, Xiong H et al (2015) IL-1Beta induces IL-6 production in retinal Muller cells predominantly through the activation of P38 MAPK/NF-KappaB signaling pathway. Exp Cell Res 331(1):223–231. doi:10.1016/j.yexcr.2014.08.040

    Article  CAS  PubMed  Google Scholar 

  189. Wang J-J, Zhu M, Le Y-Z (2015) Functions of Müller cell-derived vascular endothelial growthfactor in diabetic retinopathy. World J Diabetes 6(5):726–733. doi:10.4239/wjd.v6.i5.726

    Article  PubMed  PubMed Central  Google Scholar 

  190. Du Y, Sarthy VP, Kern TS (2004) Interaction between NO and COX pathways in retinal cells exposed to elevated glucose and retina of diabetic rats. Am J Physiol Regul Integr Comp Physiol 287(4):R735–R741. doi:10.1152/ajpregu.00080.2003

    Article  CAS  PubMed  Google Scholar 

  191. He T, Xing YQ, Zhao XH, Ai M (2007) Interaction between iNOS and COX-2 in hypoxia-induced retinal neovascularization in mice. Arch Med Res 38(8):807–815. doi:10.1016/j.arcmed.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  192. Zong H, Ward M, Madden A et al (2010) Hyperglycaemia-induced pro-inflammatory responses by retinal Müller glia are regulated by the receptor for advanced glycation end-products (RAGE). Diabetologia 53(12):2656–2666. doi:10.1007/s00125-010-1900-z

    Article  CAS  PubMed  Google Scholar 

  193. Rungger-Brändle E, Dosso AA, Leuenberger PM (2000) Glial reactivity, an early feature of diabetic retinopathy. Investig Ophthalmol Vis Sci 41(7):1971–1980

    Google Scholar 

  194. Panenka W, Jijon H, Herx LM et al (2001) P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J Neurosci 21(18):7135–7142. doi:21/18/7135 [pii]

    Google Scholar 

  195. Ayalasomayajula SP, Amrite AC, Kompella UB (2004) Inhibition of cyclooxygenase-2, but not cyclooxygenase-1, reduces prostaglandin E 2 secretion from diabetic rat retinas. Eur J Pharmacol 498(1–3):275–278. doi:10.1016/j.ejphar.2004.07.046

    Article  CAS  PubMed  Google Scholar 

  196. Liu Y, Biarnes Costa M, Gerhardinger C (2012) IL-1beta is upregulated in the diabetic retina and retinal vessels: cell-specific effect of high glucose and IL-1beta autostimulation. PLoS One 7(5):e36949. doi:10.1371/journal.pone.0036949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ly A, Yee P, Vessey KA, Phipps JA, Jobling AI, Fletcher EL (2011) Early inner retinal astrocyte dysfunction during diabetes and development of hypoxia, retinal stress,and neuronal functional loss. Investig Ophthalmol Vis Sci 52(13):9316–9326. doi:10.1167/iovs.11-7879

    Article  CAS  Google Scholar 

  198. Zeng H, Green WR, Tso MOM (2008) Microglial activation in human diabetic retinopathy. Arch Ophthalmol (Chicago, Ill 1960) 126(2):227–232. doi:10.1001/archophthalmol.2007.65

  199. Ibrahim AS, El-Remessy AB, Matragoon S et al (2011) Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes. Diabetes 60(4):1122–1133. doi:10.2337/db10-1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Grigsby JG, Cardona SM, Pouw CE et al (2014) The role of microglia in diabetic retinopathy. J OphthalmolArticle ID: 705783. doi:10.1155/2014/705783

  201. Ola MS, Nawaz MI, Khan HA, Alhomida AS (2013) Neurodegeneration and neuroprotection in diabetic retinopathy. Int J Mol Sci 14(2):2559–2572. doi:10.3390/ijms14022559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80(5):780–787. doi:10.1046/j.0022-3042.2002.00744.x

    Article  CAS  PubMed  Google Scholar 

  203. Muller F (2000) The nature and mechanism of superoxide production by the electron transport chain: its relevance to aging. J Am Aging Assoc 23(4):227–253. doi:10.1007/s11357-000-0022-9

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. doi:10.1017/CBO9781107415324.004.

  205. Hunte C, Palsdottir H, Trumpower BL (2003) Protonmotive pathways and mechanisms in the cytochrome bc1 complex. FEBS Lett 545(1):39–46. doi:10.1016/S0014-5793(03)00391-0

    Article  CAS  PubMed  Google Scholar 

  206. Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91(5):807–819. doi:10.1113/expphysiol.2006.033506

    Article  CAS  PubMed  Google Scholar 

  207. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13. doi:10.1042/BJ20081386

    Article  CAS  PubMed  Google Scholar 

  208. Pacher P, Szabó C (2005) Role of poly(ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: endothelial dysfunction, as a common underlying theme. Antioxid Redox Signal 7(11–12):1568–1580. doi:10.1089/ars.2005.7.1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Du X, Matsumura T, Edelstein D et al (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112(7):1049–1057. doi:10.1172/JCI200318127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Nakajima H, Amano W, Kubo T et al (2009) Glyceraldehyde-3-phosphate dehydrogenase aggregate formation participates in oxidative stress-induced cell death. J Biol Chem 284(49):34331–34341. doi:10.1074/jbc.M109.027698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Sawa A, Khan AA, Hester LD, Snyder SH (1997) Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci U S A 94(21):11669–11674. doi:10.1073/pnas.94.21.11669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kwak SH, Park KS (2015) Genetic studies on diabetic microvascular complications: focusing on genome-wide association studies. Endocrinol Metab (Seoul, Korea) 30(2):147–158. doi:10.3803/EnM.2015.30.2.147

    Article  Google Scholar 

  213. Shamoon H, Cleary P, Barnie A et al (1999) Epidemiology of diabetes interventions and complications (edic): design, implementation, and preliminary results of a long-term follow-up of the diabetes control and complications trial cohort. Diabetes Care 22(1):99–111. doi:10.2337/diacare.22.1.99

    Article  Google Scholar 

  214. U.K. Prospective Diabetes Study Group (1995) U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. U.K. Prospective Diabetes Study Group. Diabetes 44(11):1249–1258. doi:10.1017/CBO9781107415324.004

    Article  Google Scholar 

  215. Keen H (1994) The diabetes control and complications trial (DCCT). Health Trends 26(2):41–43

    CAS  PubMed  Google Scholar 

  216. Kowluru RA, Mishra M, Kumar B (2016) Diabetic retinopathy and transcriptional regulation of a small molecular weight G-Protein, Rac1. Exp Eye Res 147:72–77. doi:10.1016/j.exer.2016.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398. doi:10.1038/nature05913

    Article  CAS  PubMed  Google Scholar 

  218. Pirola L, Balcerczyk A, Okabe J, El-Osta A (2010) Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 6(12):665–675. doi:10.1038/nrendo.2010.188

    Article  CAS  PubMed  Google Scholar 

  219. Reddy MA, Zhang E, Natarajan R (2014) Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58(3):443–455. doi:10.1007/s00125-014-3462-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Zhou B, Margariti A, Xu Q (2012) Epigenetics in human disease. In: The role of epigenetics in cardiovascular disease. Elsevier, Heidelberg, pp 395–414. doi:10.1016/B978-0-12-388415-2.00020-2

    Google Scholar 

  221. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. doi:10.1016/j.cell.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  222. Wang Z, Yao H, Lin S et al (2013) Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett 331(1):1–10. doi:10.1016/j.canlet.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  223. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304. doi:10.1038/nrg2540

    Article  CAS  PubMed  Google Scholar 

  224. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022. doi:10.1101/gad.2037511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Kowluru RA, Santos JM, Mishra M (2013) Epigenetic modifications and diabetic retinopathy. Biomed Res Int:1–9. doi:10.1155/2013/635284

  226. Kowluru RA, Shan Y, Mishra M (2016) Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy. Lab Investig:1–10. doi:10.1038/labinvest.2016.78

  227. Mishra M, Kowluru RA (2015) Epigenetic modification of mitochondrial DNA in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci 56(9):5133–5142. doi:10.1167/iovs.15-16937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Manish Mishra, Renu A, Kowluru (2016) The role of DNA methylation in the metabolic memory phenomenon associated with the continued progression of diabetic retinopathy. Invest Ophthalmol Vis Sci 57(13):5748–5757. doi: 10.1167/iovs.16-19759.

  229. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447(7143):407–412. doi:10.1038/nature05915

    Article  CAS  PubMed  Google Scholar 

  230. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260. doi:10.1038/38444

    Article  CAS  PubMed  Google Scholar 

  231. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Chromosomal DNA and its packaging in the chromatin fiber. Mol Biol Cell, 4th edn. Garland Science, New York, pp 1–14

    Google Scholar 

  232. Natsume-Kitatani Y, Shiga M, Mamitsuka H (2011) Genome-wide integration on transcription factors, histone acetylation and gene expression reveals genes co-regulated by histone modification patterns. PLoS One 6(7). doi:10.1371/journal.pone.0022281

  233. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719. doi:10.1016/j.cell.2007.01.015

    Article  CAS  PubMed  Google Scholar 

  234. Turner BM (2002) Cellular memory and the histone code. Cell 111(3):285–291. doi:10.1016/S0092-8674(02)01080-2

    Article  CAS  PubMed  Google Scholar 

  235. Agger K, Christensen J, Cloos PA, Helin K (2008) The emerging functions of histone demethylases. Curr Opin Genet Dev 18(2):159–168. doi:10.1016/j.gde.2007.12.003

    Article  CAS  PubMed  Google Scholar 

  236. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705. doi:10.1016/j.cell.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  237. Gelato KA, Fischle W (2008) Role of histone modifications in defining chromatin structure and function. Biol Chem 389(4):353–363. doi:10.1515/BC.2008.048

    Article  CAS  PubMed  Google Scholar 

  238. Zhong Q, Kowluru RA (2013) Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy. Diabetes 62(7):2559–2568. doi:db12-1141 [pii]\r10.2337/db12-1141

    Google Scholar 

  239. Zhong Q, Kowluru RA (2011) Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy. Diabetes 60(4):1304–1313. doi:10.2337/db10-0133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Zhong Q, Kowluru RA (2013) Epigenetic modification of Sod2 in the development of diabetic retinopathy and in the metabolic memory: role of histone methylation. Invest Ophthalmol Vis Sci 54(1):244–250. doi:10.1167/iovs.12-10854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Di Croce L, Helin K (2013) Transcriptional regulation by polycomb group proteins. Nat Struct Mol Biol 20(10):1147–1155. doi:10.1038/nsmb.2669

    Article  PubMed  CAS  Google Scholar 

  242. Tan JZ, Yan Y, Wang XX, Jiang Y, Xu HE (2014) EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacol Sin 35(2):161–174. doi:10.1038/aps.2013.161

    Article  CAS  PubMed  Google Scholar 

  243. Hassig CA, Schreiber SL (1997) Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr Opin Chem Biol 1(3):300–308. doi:10.1016/S1367-5931(97)80066-X

    Article  CAS  PubMed  Google Scholar 

  244. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. doi:10.1038/cr.2011.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Gray SG, De Meyts P (2005) Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev 21(5):416–433. doi:10.1002/dmrr.559

    Article  CAS  PubMed  Google Scholar 

  246. Kaur H, Chen S, Xin X, Chiu J, Khan ZA, Chakrabarti S (2006) Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300. Diabetes 55(11):3104–3111. doi:10.2337/db06-0519

    Article  CAS  PubMed  Google Scholar 

  247. Chen S, Feng B, George B, Chakrabarti R, Chen M, Chakrabarti S (2010) Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am J Physiol Endocrinol Metab 298(1):E127–E137. doi:10.1152/ajpendo.00432.2009

    Article  CAS  PubMed  Google Scholar 

  248. Rahman S, Islam R (2011) Mammalian Sirt1: insights on its biological functions. Cell Commun Signal 9(1):11. doi:10.1186/1478-811X-9-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Sauve AA, Wolberger C, Schramm VL, Boeke JD (2006) The biochemistry of sirtuins. Annu Rev Biochem 75:435–465. doi:10.1146/annurev.biochem.74.082803.133500

    Article  CAS  PubMed  Google Scholar 

  250. Feng B, Ruiz MA, Chakrabarti S (2013) Oxidative-stress-induced epigenetic changes in chronic diabetic complications1. Can J Physiol Pharmacol 91(3):213–220

    Article  CAS  PubMed  Google Scholar 

  251. Mortuza R, Chen S, Feng B, Sen S, Chakrabarti S (2013) High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS One 8(1). doi:10.1371/journal.pone.0054514

  252. Schuler GD, Boguski MS, Stewart EA et al (1996) A gene map of the human genome. Science 274(5287):540–546. doi:10.1126/science.274.5287.540

    Article  CAS  PubMed  Google Scholar 

  253. Pertea M, Salzberg SL (2010) Between a chicken and a grape: estimating the number of human genes. Genome Biol 11(5):206. doi:10.1186/gb-2010-11-5-206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Ezkurdia I, Juan D, Rodriguez JM et al (2014) Multiple evidence strands suggest that theremay be as few as 19 000 human protein-coding genes. Hum Mol Genet 23(22):5866–5878. doi:10.1093/hmg/ddu309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long litergenic noncoding RNAs. PLoS Genet 9(6). doi:10.1371/journal.pgen.1003569

  256. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. doi:10.1016/S0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  257. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531. doi:10.1038/nrg1415

    Article  CAS  PubMed  Google Scholar 

  258. Wahid F, Shehzad A, Khan T, Kim YY (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta, Mol Cell Res 1803(11):1231–1243. doi:10.1016/j.bbamcr.2010.06.013

    Article  CAS  PubMed  Google Scholar 

  259. Ambros V, Bartel B, Bartel DP et al (2003) A uniform system for microRNA annotation. RNA 9(3):277–279. doi:10.1261/rna.2183803.One

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61(5 Part 2 Suppl). doi:10.1203/pdr.0b013e3180457684

  261. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7(7):719–723. doi:10.1038/ncb1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385. doi:10.1038/nrm1644

    Article  CAS  PubMed  Google Scholar 

  263. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139. doi:10.1038/nrm2632

    Article  CAS  PubMed  Google Scholar 

  264. Feng B, Cao Y, Chen S, Ruiz M, Chakrabarti S (2014) MiRNA-1 regulates endothelin-1 in diabetes. Life Sci 98(1):18–23. doi:10.1016/j.lfs.2013.12.199

    Article  CAS  PubMed  Google Scholar 

  265. Chen S, Puthanveetil P, Feng B, Matkovich SJ, Dorn GW, Chakrabarti S (2014) Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med 18(3):415–421. doi:10.1111/jcmm.12218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Feng B, Chen S, McArthur K et al (2011) miR-146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 60(11):2975–2984. doi:10.2337/db11-0478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Mortuza R, Feng B, Chakrabarti S (2014) MiR-195 regulates SIRT1-mediated changes in diabetic retinopathy. Diabetologia 57(5):1037–1046. doi:10.1007/s00125-014-3197-9

    Article  CAS  PubMed  Google Scholar 

  268. McArthur K, Feng B, Wu Y, Chen S, Chakrabarti S (2011) MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes 60(4):1314–1323. doi:10.2337/db10-1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Ruiz MA, Feng B, Chakrabarti S (2015) Polycomb repressive complex 2 regulates MiR-200b in retinal endothelial cells: potential relevance in diabetic retinopathy. PLoS One 10(4). doi:10.1371/journal.pone.0123987

  270. Feng B, Chakrabarti S (2012) miR-320 regulates glucose-induced gene expression in diabetes. ISRN Endocrinol 2012:549875. doi:10.5402/2012/549875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. doi:10.1146/annurev-biochem-051410-092902

    Article  CAS  PubMed  Google Scholar 

  272. Devaux Y, Zangrando J, Schroen B et al (2015) Long noncoding RNAs in cardiac development and ageing. Nat Rev Cardiol 12(7):415–425. doi:10.1038/nrcardio.2015.55

    Article  CAS  PubMed  Google Scholar 

  273. Kapranov P, Cheng J, Dike S et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1486. doi:10.1126/science.1138341

    Article  CAS  Google Scholar 

  274. Sun X, Wong D (2016) Long noncoding RNAmediated regulation of glucose homeostasis and diabetes. Am J Cardiovasc Dis 6(2):17–25

    PubMed  PubMed Central  Google Scholar 

  275. Quinn JJ, Chang HY (2015) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47–62. doi:10.1038/nrg.2015.10

    Article  CAS  Google Scholar 

  276. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159. doi:10.1038/nrg2521

    Article  CAS  PubMed  Google Scholar 

  277. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361. doi:10.1016/j.tcb.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  278. Kung JTY, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193(3):651–669. doi:10.1534/genetics.112.146704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Yan B, Tao ZF, Li XM, Zhang H, Yao J, Jiang Q (2014) Aberrant expression of long noncoding RNAs in early diabetic retinopathy. Invest Ophthalmol Vis Sci 55(2):941–951. doi:10.1167/iovs.13-13221

    Article  CAS  PubMed  Google Scholar 

  280. Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S (2015) Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med 19(6):1418–1425. doi:10.1111/jcmm.12576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Thomas AA, Feng B, Chakrabarti S (2017) ANRIL: a regulator of VEGF in diabetic retinopathy. Invest Ophthalmol Vis Sci 58(1):470–480

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research presented in this chapter was supported by the Canadian Diabetes Association and the Heart and Stroke Foundation of Ontario. The authors would also like to acknowledge Shali Chen, Biao Feng, Andrew Gordon, and Anu Thomas, in the Chakrabarti lab for their ongoing support in the advancement of diabetic research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Chakrabarti MBBS, PhD, FRCP(C) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Biswas, S., Chakrabarti, S. (2017). Pathogenetic Mechanisms in Diabetic Retinopathy: From Molecules to Cells to Tissues. In: Kartha, C., Ramachandran, S., Pillai, R. (eds) Mechanisms of Vascular Defects in Diabetes Mellitus. Advances in Biochemistry in Health and Disease, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-60324-7_9

Download citation

Publish with us

Policies and ethics