Skip to main content

Role of Ethylene and Bacterial ACC-Deaminase in Nodulation of Legumes

  • Chapter
  • First Online:
Microbes for Legume Improvement

Abstract

Rhizobia-legume symbiosis is a complex process involving a number of plant and bacterial genes that lead to the formation and development of root nodules. Plant hormone ethylene plays an important role in nodule development and nodule signaling networks in response to a wide range of biotic and abiotic stresses. Ethylene is known as a negative regulator of nodulation. Inoculation of rhizobia leads to a temporal stimulation of ethylene production that suppresses nodule formation. In contrast, inhibitors of ethylene synthesis or its physiological action promote nodule formation in legumes. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase is a biological inhibitor of ethylene synthesis. The rhizosphere bacteria containing ACC-deaminase can increase nodulation in legumes by degrading ACC (an immediate precursor of ethylene) and, thus, by lowering ethylene concentration in the plant. Similarly, some rhizobia also have shown ACC-deaminase activity and improvement in nodulation by regulating the concentration of ethylene in plant tissues. In this chapter, the role of ethylene and bacterial ACC-deaminase in nodulation of legumes is reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  PubMed  Google Scholar 

  • Andrea JF, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Poll 147:540–545

    Article  CAS  Google Scholar 

  • Arshad M, Frakenberger WT Jr (2002) Ethylene: agricultural sources and applications. Kluwer/Academic Publishers, New York

    Book  Google Scholar 

  • Baig KS, Arshad M, Khalid A, Hussain S, Abbas MN, Imran M (2014) Improving growth and yield of maize through bioinoculants carrying auxin production and phosphate solubilizing activity. Soil Environ 33:159–168

    Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171(11):884–894

    Article  CAS  PubMed  Google Scholar 

  • Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504–513

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Anca A (2009) Plants mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  PubMed  Google Scholar 

  • Caba JM, Recalde L, Ligero F (1998) Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa. Plant Cell Environ 21:87–93

    Article  CAS  Google Scholar 

  • Caba JM, Poveda JL, Gresshoff PM, Ligero F (1999) Differential sensitivity of nodulation to ethylene in soybean cv. Bragg and a super-nodulating mutant. New Phytol 142:233–242

    Article  CAS  Google Scholar 

  • Chan PK, Biswas B, Gresshoff PM (2013) Classical ethylene insensitive mutants of the Arabidopsis EIN2 orthologue lack the expected ‘hypernodulation’ response in lotus japonicas. J Integr Plant Biol 55:395–408

    Article  CAS  PubMed  Google Scholar 

  • Charon C, Sousa C, Crespi M, Kondorosi A (1999) Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. Plant J 11:1953–1965

    CAS  Google Scholar 

  • Chaudhary D, Sindhu SS (2015) Inducing salinity tolerance in chickpea (Cicer arietinum L.) by inoculation of 1-aminocyclopropane-1-carboxylic acid deaminase-containing Mesorhizobium strains. Afr J Microbiol Res 9:117–124

    Article  CAS  Google Scholar 

  • Csukasi F, Merchante D, Valpuesta V (2009) Modification of plant hormone levels and signaling as a tool in plant biotechnology. Biotechnol J 4:1293–1304

    Article  CAS  PubMed  Google Scholar 

  • D’Haeze W, Rycke RD, Mathis R, Goormachtig S, Pagnotta S, Verplancke C, Capoen W, Holsters M (2003) Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semi aquatic legume. PNAS 100:11789–11794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Oldroyd GED (2009) Positioning the nodule, the hormone dictum. Plant Signal Behav 4:89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drennan DSH, Norton C (1972) The effect of ethrel on nodulation in Pisum sativum L. Plant and Soil 36:53–57

    Article  CAS  Google Scholar 

  • Duan J, Müller K, Charles T, Vesely S, Glick BR (2009) 1Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436

    Article  CAS  PubMed  Google Scholar 

  • Duodu S, Bhuvaneswari TV, Stokkermans TJ, Peters NK (1999) A positive role for rhizobitoxine in Rhizobium-legume symbiosis. Mol Plant Microbe Interact 12:1082–1089

    Article  CAS  Google Scholar 

  • Dupont L, Alloing G, Pierre O, El Msehli S, Hopkins J, Hérouart D, Frendo P (2012) The legume root nodule: from symbiotic nitrogen fixation to senescence. In: Nagata T (ed) Senescence. InTech, pp 137–168

    Google Scholar 

  • El Yahyaoui F, Kuster F, Ben Amor H, Hohnjec B, Puhler N, Becker A, Gouzy A, Vernie J, Gough T, Niebel C, Godiard A, Gamas PL (2004) Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136:3159–3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, Balzergue S, Baudouin E, Bailly C (2015) Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ 38:364–374

    Article  CAS  PubMed  Google Scholar 

  • Farajzadeh D, Aliasgharzad N, Bashir NS, Yakhchali B (2010) Cloning and characterization of a plasmid encoded ACC deaminase from an indigenous Pseudomonas fluorescens FY32. Curr Microbiol 61:37–43

    Article  CAS  PubMed  Google Scholar 

  • Fearn JC, LaRue TA (1991) Ethylene inhibitors restore nodulation of sim-5 mutants of Pisum sativum L. cv. Sparkle. Plant Physiol 96:239–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin M, Lin Y, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76

    Article  CAS  PubMed  Google Scholar 

  • Ferguson BJ, Foo E, Ross JJ, Reid JB (2011) Relationship between gibberellin, ethylene and nodulation in Pisum sativum. New Phytol 189:829–842

    Article  CAS  PubMed  Google Scholar 

  • Ferguson BJ, Mathesius U (2014) Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 40:770–790

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Lopez M, Goormachtig S, Gao M, D’Haeze W, Van Montagu M, Holsters M (1998) Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata. Proc Natl Acad Sci 95:12724–12728

    Google Scholar 

  • Foo E, McAdam EL, Weller JL, Reid JB (2016) Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea. J Exp Bot 67:2413–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gontia-Mishra I, Sasidharan S, Tiwari S (2014) Recent developments in use of 1-aminocyclopropane-1carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnol Lett 36:889–898

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Rizzo S, Crespi M, Frugler F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goormachtig S, Capoen W, James EK, Holsters M (2004) Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. PNAS 101:6303–6308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5:355–377

    Google Scholar 

  • Gour K, Patel BS, Mehta RS (2012) Yield and nodulation of fenugreek (Trigonella foenumgraecum) as influenced by growth regulators and vermi-wash. Indian J Agr Res 46:91–93

    Google Scholar 

  • Gresshoff PM, Lohar D, Chan PK, Biswas B, Jiang Q, Reid D, Ferguson B, Stacey G (2009) Genetic analysis of ethylene regulation of legume nodulation. Plant Signal Behav 4:818–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grichko VP, Glick BR (2000) Identification of DNA sequences that regulate the expression of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylic acid deaminase gene. Can J Microbiol 46:1159–1165

    CAS  PubMed  Google Scholar 

  • Guinel FC, Sloetjes LL (2000) Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym16), a pleiotropicmutant that nodulates poorly and has pale green leaves. J Exp Bot 51:885–894

    CAS  PubMed  Google Scholar 

  • Guinel FC, Geil RD (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can J Bot 80(7):695–720

    Article  CAS  Google Scholar 

  • Heckmann AB, Sandal N, Bek AS, Madsen LH, Jurkiewicz A, Nielsen MW, Stougaard J (2011) Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex. Mol Plant Microbe Interact 24:1385–1395

    Article  CAS  PubMed  Google Scholar 

  • Heidstra RW, Yang WC, Yalcin Y, Peck S, Emons AM, van Kammen A, Bisseling T (1997) Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development 124:1781–1787

    CAS  PubMed  Google Scholar 

  • Imin N, Mohd-Radzman NA, Ogilvie HA, Djordjevic MA (2013) The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J Exp Bot 64:5395–5409

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Trivellini A, Masood A, Ferrante A, Khan NA (2013) Current understanding on ethylene signaling in plants: the influence of nutrient availability. Plant Physiol Biochem 73:128–138

    Article  CAS  PubMed  Google Scholar 

  • Jones JM, Clairmont L, Macdonald ES, Weiner CA, Emery RN, Guinel FC (2015) E151 (sym15), a pleiotropic mutant of pea (Pisum sativum L.), displays low nodule number, enhanced mycorrhizae, delayed lateral root emergence, and high root cytokinin levels. J Exp Bot 66:4047–4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Kawaharada Y, James EK, Kelly S, Sandal N, Stougaard J (2017) The ethylene responsive factor required for nodulation 1 (ERN1) transcription factor is required for infection-thread formation in Lotus japonicus. Mol Plant Microbe Interact 30:194–204

    Google Scholar 

  • Khalid A, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria and sustainable agriculture. In: Khan MS, Zaidi A, Musarat J (eds) Microbial strategies for crop improvement. Springer-Verleg, Berlin, pp 133–160

    Chapter  Google Scholar 

  • Khan MS, Zaidi A, Musarrat J (2009) Microbial strategies for crop improvement. Springer-Verleg, Berlin

    Book  Google Scholar 

  • Kong Z, Glick BR, Duan J et al (2015) Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-over producing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant Soil 391:383–398

    Article  CAS  Google Scholar 

  • Kuhn S, Stiens M, Puhler A, Schluter A (2008) Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S. meliloti strains. FEMS Microbiol Ecol 63:118–131

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Giridhar P, Ravishankar GA (2009) AgNO3-a potential regulator of ethylene activity and plant growth modulator. Electron J Biotechnol 12:1–15

    Article  CAS  Google Scholar 

  • Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505

    Article  CAS  Google Scholar 

  • Lee KH, LaRue TA (1992a) Inhibition of nodulation of pea by ethylene. Plant Physiol 99:108

    Article  Google Scholar 

  • Lee KH, LaRue TA (1992b) Exogenous ethylene inhibits nodulation of Pisum sativum L. cv Sparkle. Plant Physiol 100:11759–11763

    Google Scholar 

  • Lee KH, LaRue TA (1992c) Ethylene as a possible mediator of light and nitrate induced inhibition of nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol 100:1334–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Lei M, Yan Z, Wang Q, Chen A, Sun J, Luo D, Wang Y (2014) The REL3-mediated TAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus. New Phytol 201:531–544

    Article  CAS  PubMed  Google Scholar 

  • Ligero F, Lluch C, Olivares J (1987) Evolution of ethylene from roots and nodulation rate of alfalfa (Medicago sativa L.) plants inoculated with Rhizobium meliloti as affected by the presence of nitrate. J Plant Physiol 129:461–467

    Article  CAS  Google Scholar 

  • Ligero F, Caba JM, Lluch C, Olivares J (1991) Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 97:1221–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ligero F, Poveda JL, Gresshoff PM, Caba JM (1999) Nitrate inoculation in enhanced ethylene biosynthesis in soybean roots as a possible mediator of nodulation control. J Plant Physiol 154:482–488

    Article  CAS  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohar D, Stiller J, Kam J, Stacey G, Gresshoff PM (2009) Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus. Ann Bot 104:277–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorteau MA, Ferguson BJ, Guinel FC (2001) Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv. Sparkle. Physiol Planta 112:421–428

    Google Scholar 

  • Lucas S, Han J, Lapidus A et al (2011) Complete sequence of plasmid 1 of Sinorhizobium meliloti BL225C. Submitted (09MAY-2011) to the EMBL/GenBank/DDBJ databases

    Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kalo P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, Bosch KV, Long SR, Cook DR, Kiss GB, Oldroyda GED (2007) An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell 19:1221–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musarrat J, Al Khedhairy AA, Al-Arifi S, Khan MS (2009) Role of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium-legume symbiosis. In: Khan MS, Zaidi A, Musarat J (eds) Microbial strategies for crop improvement. Springer-Verleg, Berlin, pp 63–83

    Chapter  Google Scholar 

  • Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE (2016) Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Arch Microbiol 198:379–387

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Imran M, Naveed M, Khan MY, Ahmad M, Zahir ZA, Crowley DE (2017) Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. J Sci Food Agric. doi:10.1002/jsfa.8393

  • Nagata M, Suzuki A (2014) Effects of phytohormones on nodulation and nitrogen fixation in leguminous plants. In: Ohyama T (ed) Agricultural and biological sciences: advances in biology and ecology of nitrogen fixation. InTech, pp 111–128

    Google Scholar 

  • Nascimento FX, Brigido C, Glick BR, Oliveira S (2012) ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant. FEMS Microbiol Lett 336:26–37

    Article  CAS  PubMed  Google Scholar 

  • Nascimento FX, Rossi MJ, Soares CRFS, McConkey BJ, Glick BR (2014) New insights into 1-aminocyclopropane 1carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 9:99168

    Article  CAS  Google Scholar 

  • Nascimento FX, Brígido C, Glick BR, Rossi MJ (2016) The role of rhizobial ACC deaminase in the nodulation process of leguminous plants. Int J Agron 2016:1369472. 9p

    Article  Google Scholar 

  • Nukui N, Ezura H, Yohsshi K, Yasuta T, Minamisawa K (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41:893–897

    Google Scholar 

  • Nukui N, Ezura H, Minamisawa K (2004) Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection threads and nodule primordia. Plant Cell Physiol 45:427–435

    Article  CAS  PubMed  Google Scholar 

  • Nukui N, Minamisawa K, Ayabe SI, Aoki T (2006) Expression of the 1-aminocyclopropane-1-carboxylate deaminase gene requires symbiotic nitrogen fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl Environ Microbiol 72:4964–4969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto S, Ohnishi E, Sato S, Takahashi H, Nakazono M, Tabata S, Kawaguchi M (2009) Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant Cell Physiol 50:67–77

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GED, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ooki Y, Banba M, Yano K, Maruya J, Sato S, Tabata S, Hata S (2005) Characterization of the Lotus japonicus symbiotic mutant lot1 that shows a reduced nodule number and distorted trichomes. Plant Physiol 137:1261–1271

    Google Scholar 

  • Owens LD, Thompson JF, Fennessy PV (1972) Dihydrorhizobitoxine, a new ether amino acid from Rhizobium japonicum. J Chem Soc Chem Commun 1972:715

    Article  Google Scholar 

  • Parker MA, Peters NK (2001) Rhizobitoxine production and symbiotic compatibility of Bradyrhizobium from Asian and North American lineages of Amphicarpaea. Can J Microbiol 47:1–6

    Article  Google Scholar 

  • Patrick A, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster GTS, Genschik P (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 19:1188–1193

    Article  CAS  Google Scholar 

  • Penmetsa RV, Frugoli JA, Smith LS, Long SR (2003) Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol 131:998–1008

    Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC-deaminase containing plant growth promoting bacteria. Can J Microbiol 47:368–372

    Article  CAS  PubMed  Google Scholar 

  • Peters NK, Crist-Esters DK (1989) Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 91:690–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakamhang J, Tittabutr P, Boonkerd N, Teamtisong K, Uchiumi T, Abe M, Teaumroong N (2015) Proposed some interactions at molecular level of PGPR coinoculated with Bradyrhizobium diazoefficiens USDA110 and B. japonicum THA6 on soybean symbiosis and its potential of field application. Appl Soil Ecol 85:38–49

    Article  Google Scholar 

  • Prayitno J, Mathesius U (2010) Differential regulation of the nodulation zone by silver ions, L-α-(2-amino-ethoxyvinyl)-glycine, and the skl mutation in Medicago truncatula. HAYATI J Biosci 17:15–20

    Article  Google Scholar 

  • Prayitno J, Rolfe BG, Mathesius U (2006) The ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol 142:168–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prigent-Combaret C, Blaha D, Pothier JF, Vial L, Poirier M-A et al (2008) Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria. FEMS Microbiol Ecol 65:202–219

    Article  CAS  PubMed  Google Scholar 

  • Reid DE, Ferguson BJ, Gresshoff PM (2011) Inoculation-and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Mol Plant Microb Interact 24:606–618

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti A (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC-deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JS, Harper JE, Hoffman TK, Bent AF (1999) Regulation of soybean nodulation independent of ethylene signalling. Plant Physiol 119:951–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.) Lett Appl Microbiol 42:155–159

    Article  CAS  PubMed  Google Scholar 

  • Shaharoona B, Arshad M, Khalid A (2007) Differential response of etiolated pea seedling to 1-aminocyclopropane-1-carboxylate and/or l-methionine utilizing rhizobacteria. J Micrbiol 45:15–20

    Google Scholar 

  • Shaharoona B, Imran M, Arshad M, Khalid A (2011) Manipulation of ethylene synthesis in roots through bacterial ACC deaminase for improving nodulation in legumes. Crit Rev Plant Sci 30(3):279–291

    Article  CAS  Google Scholar 

  • Shahzad MS, Khalid A, Arshad M, Khalid M, Mehboob I (2008) Integrated use of plant growth promoting bacteria and P-enriched compost for improving growth, yield and nodulation of chickpea. Pak J Bot 40:1735–1144

    Google Scholar 

  • Shahzad SM, Khalid A, Arshad M, Tahir J, Mahmood T (2010) Improving nodulation, growth and yield of Cicer arietinum L. through bacterial ACC-deaminase induced changes in root architecture. Eur J Soil Biol 46:342–347

    Article  CAS  Google Scholar 

  • Shahzad SM, Arif MS, Riaz M, Iqbal Z, Ashraf M (2013) PGPR with varied ACC-deaminase activity induced different growth and yield response in maize (Zea mays L.) under fertilized conditions. Eur J Soil Biol 57:27–34

    Article  CAS  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Patel DB (2016) Performance of fenugreek bioinoculated with Rhizobium meliloti strains under semi-arid condition. J Environ Biol 37:31

    CAS  PubMed  Google Scholar 

  • Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, Burr TJ, Banta L, Dickerman AW, Paulsen I, Otten L (2009) Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191:2501–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol 12:548–555

    Article  CAS  PubMed  Google Scholar 

  • Subramanian P, Kim K, Krishnamoorthy R, Sundaram S, Sa T (2015) Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regul 76:327–332

    Article  CAS  Google Scholar 

  • Suganuma N, Yamauchi H, Yamamoto K (1995) Enhanced production of ethylene by soybean roots after inoculation with Bradyrhizobium japonicum. Plant Sci 111:163–168

    Article  CAS  Google Scholar 

  • Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K (2006) Rhizobitoxine modulates plant microbe interactions by ethylene inhibition. Biotechnol Adv 24:382–388

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J 46:961–970

    Article  CAS  PubMed  Google Scholar 

  • Tamimi SM, Timko MP (2003) Effects of ethylene and inhibitors of ethylene synthesis and action on nodulation in common bean (Phaseolus vulgaris L.) Plant Soil 257:125–131

    Article  CAS  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2006) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Sci Mag 315:104–107

    Google Scholar 

  • Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31:141–150

    Article  CAS  PubMed  Google Scholar 

  • Tittabutr P, Sripakdi S, Boonkerd N, Tanthanuch W, Minamisawa K, Teaumroong N (2015) Possible role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Sinorhizobium sp. BL3 on symbiosis with mung bean and determinate nodule senescence. Microbes Environ 30:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Truchet G, Roche P, Lerouge P, Vasse J, Camut S, De Billy F, Prome JC, Dénarié J (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351:670–673

    Article  CAS  Google Scholar 

  • Uchiumi T, Oowada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima T, Saeki K, Oomori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda S, Sioya K, Abe M, Minamisawa K (2004) Expression islands clustered on symbiosis island of Mesorhizobium loti genome. J Bacteriol 186:2439–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah S, Raza MS, Imran M, Azeem M, Awais M, Bilal MS, Arshad M (2016a) Plant growth promoting rhizobacteria amended with mesorhizobium ciceri inoculation effect on nodulation and growth of chickpea (Cicer arietinum L.) Am Res Thoughts 3:3408–3420

    Google Scholar 

  • Ullah U, Ashraf M, Shehzad SM, Siddiqui AR, Piracha MA, Suleman M (2016b) Growth behavior of tomato (Solanum lycopersicum) under drought stress in the presence of silicon and plant growth promoting rhizobacteria. Soil Environ 35:65–75

    Google Scholar 

  • Valverde C, Wall LG (2005) Ethylene modulates the susceptibility of the root for nodulation in actinorhizal Discaria trinervis. Physiol Planta 124:121–131

    Article  CAS  Google Scholar 

  • Van Spronsen PC, Van Brussel AA, Kijne JW (1995) Nod factors produced by Rhizobium leguminosarum biovar viciae induce ethylene-related changes in root cortical cells of Vicia sativa ssp. nigra. Eur J Cell Biol 68:463–469

    PubMed  Google Scholar 

  • van Workum WAT, Van Brussel AAN, Tak T, Wijffelman CA, Kijne WJ (1995) Ethylene prevents nodulation of Vicia sativa ssp. nigra by exopolysaccharides deficient mutants of Rhizobium leguminosarum bv viciae. Mol Plant Microbe Interact 8:278–285

    Article  Google Scholar 

  • Vernie T, Moreau S, de Billy F, Plet J, Combier J-P, Rogers C, Vernie GO (2008) Factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell 20:2696–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayan R, Palaniappan P, Tongmin SA, Padmanaban E, Natesan M (2013) Rhizobitoxine enhances nodulation by inhibiting ethylene synthesis of Bradyrhizobium elkanii from Lespedeza species: validation by homology modeling and molecular docking study. World. J Pharm Pharm Sci 2:4079–4094

    Google Scholar 

  • Xie ZP, Staehelin C, Wiemken A, Bolle T (1996) Ethylene responsiveness of soybean cultivars characterized by leaf senescence, chitinase induction and nodulation. J Plant Physiol 149:690–694

    Article  CAS  Google Scholar 

  • Xiong K, Fuhrmann JJ (1996) Comparison of rhizobitoxine-induced inhibition of β-cystathionase from different bradyrhizobia and soybean genotypes. Plant Soil 186:53–61

    Article  CAS  Google Scholar 

  • Yoong FY, O’Brien LK, Truco MJ, Huo H, Sideman R, Hayes R, Michelmore RW, Bradford KJ (2016) Genetic variation for thermotolerance in lettuce seed germination is associated with temperature-sensitive regulation of ethylene response factor1 (ERF1). Plant Physiol 170:472–488

    Article  CAS  PubMed  Google Scholar 

  • Young JPW, Crossman LC, Johnston AWB et al (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuhashi KI, Ichikawa N, Ezuura H, Akao S, Minakawa Y, Nukui N, Yasuta T, Minamisawa K (2000) Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl Environ Microbiol 66:2658–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaat SA, Van Brussel AA, Tak T, Lugtenberg BJ, Kijne JW (1989) The ethylene inhibitor aminoethoxyvinylglycine restores normal nodulation by Rhizobium leguminosarum biovar Viciaeon Vicia sativa ssp. nigra by suppressing the thick and short roots phenotype. Planta 177:141–150

    Article  CAS  PubMed  Google Scholar 

  • Zafar-ul-Hye M, Ahmad M, Shahzad SM (2013) Synergistic effect of rhizobia and plant growth promoting rhizobacteria on the growth and nodulation of lentil seedlings under axenic conditions. Soil Environ 32:79–86

    CAS  Google Scholar 

Download references

Acknowledgment

The authors greatly acknowledge the contributions of Professor Muhammad Arshad (Late) in the field of plant hormones and bacterial ACC-deaminase biotechnology. Professor Arshad, a leading scientist and highly respected academician world over, laid the foundation of this chapter when he and his team of eminent teachers contributed to the first edition of the book Microbes for Legume Improvement, published in 2010. As editor of this book, I (MSK) pay a great tribute to Prof. Arshad for his timely and outstanding contribution to the first edition of this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azeem Khalid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khalid, A., Ahmad, Z., Mahmood, S., Mahmood, T., Imran, M. (2017). Role of Ethylene and Bacterial ACC-Deaminase in Nodulation of Legumes. In: Zaidi, A., Khan, M., Musarrat, J. (eds) Microbes for Legume Improvement. Springer, Cham. https://doi.org/10.1007/978-3-319-59174-2_4

Download citation

Publish with us

Policies and ethics