Skip to main content

Abstract

Among the 15 nepoviruses infecting grapevines, four are of American origin based on their dependence on host plants or nematode vectors that are indigenous to America. Three of these nepoviruses, e.g., Tobacco ringspot virus (TRSV), Tomato ringspot virus (ToRSV), and Peach rosette mosaic virus (PRMV), are transmitted by nematodes of the Xiphinema  americanum group, as well as by seed and manual inoculation. The fourth nepovirus, Blueberry leaf mottle virus (BLMoV), is transmitted through pollen and mechanically. Transmission by a nematode has not been observed. BLMoV and PRMV have a host range restricted to woody plants and are significant pathogens of Vitis labrusca in the Great Lakes region. TRSV and ToRSV have broad host ranges that include annuals and perennials, woody and herbaceous crops, as well as weed species. They induce systemic, symptomless infections or ringspots in herbaceous hosts. Asymptomatic infections have masked the presence of TRSV and ToRSV to facilitate their spread across agricultural sectors. Both virus species occur sporadically from coast to coast in the USA infecting a variety of host plants and occasionally found outside of North America. The four American nepoviruses may have spread initially from the Great Lakes region via own-rooted vines. Phylogenetic analysis based on coat protein gene sequence information separates American from Old World nepoviruses. Like their Old World counterparts, New World nepoviruses have a bipartite genome and require two genomic RNAs for infection in planta. American nepovirus infection in grapevine is controlled by the use of tolerant rootstocks, clean stock programs, as well as by regional, national, and international guidelines that regulate the dissemination of propagation material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al Rwahnih, M., S. Daubert, D. Golino, C. Islas, and A. Rowhani. 2015. Comparison of next-generation sequencing versus biological indexing for the optimal detection of viral pathogens in grapevine. Phytopathology 105: 758–763.

    Article  CAS  PubMed  Google Scholar 

  • Andret-Link, P., C. Schmitt-Keichinger, G. Demangeat, V. Komar, and M. Fuchs. 2004. The specific transmission of Grapevine fanleaf virus by its nematode vector Xiphinema index is solely determined by the viral coat protein. Virology 320: 12–22.

    Article  CAS  PubMed  Google Scholar 

  • Bitterlin, M.W., and D. Gonsalves. 1988. Serological grouping of Tomato ringspot virus isolates: Implications for diagnosis and cross-protection. Phytopathology 78: 278–285.

    Article  Google Scholar 

  • Bitterlin, M.W., D. Gonsalves, and J.G. Barrat. 1986. Distribution of Tomato ringspot virus in peach trees: Implications for viral detection. Plant Disease 72: 59–63.

    Article  Google Scholar 

  • Breece, J.R., and W.H. Hart. 1959. A possible association of nematodes with the spread of Peach yellow bud mosaic virus. Plant Disease Report 43: 989–990.

    Google Scholar 

  • Brown, D.J.F. 1989. Viruses transmitted by nematodes. Bulletin OEPP/EPPO Bulletin 19: 453–461.

    Article  Google Scholar 

  • Brown, D.J.F., J.M. Halbrendt, A.T. James, T.C. Vrain, and R.T. Robbins. 1994. Transmission of three North American nepoviruses by populations of four distinct species of the Xiphinema americanum group. Phytopathology 84: 646–649.

    Google Scholar 

  • Brown, D.J.F., D.L. Trudgill, and W.M. Robertson. 1996. Nepoviruses: Transmission by nematodes. In The plant viruses 5: Polyhedral virions and bipartite RNA genomes, ed. B.D. Harrison and A.F. Murant, 187–209. New York: Plenum Press.

    Chapter  Google Scholar 

  • Brunt, A.A., K. Crabtree, M.J. Dallwitz, A.J. Gibbs, L. Watson, and E.J. Zurcher. 1996. Plant Viruses Online: Descriptions and Lists from the VIDE Database.

    Google Scholar 

  • Carrier, K., Y. Xiang, and H. Sanfaçon. 2001. Genomic organization of Tomato ringspot virus: processing at a third cleavage site in the N-terminal region of the polyprotein in vitro. The Journal of General Virology 82: 1785–1790.

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekar, V., and J.E. Johnson. 1998. The structure of tobacco ringspot virus: A link in the evaluation of icosahedral capsids in the picornavirus superfamily. Current Biology 6: 157–171.

    CAS  Google Scholar 

  • Childress, A.M., and D.C. Ramsdell. 1986a. Lack of evidence for a nematode vector of blueberry leaf mottle virus. Acta Horticulturae 186: 87–94.

    Article  Google Scholar 

  • ———. 1986b. Detection of blueberry leaf mottle virus in highbush blueberry pollen and seed. Phytopathology 76: 1333–1337.

    Article  Google Scholar 

  • ———. 1987. Bee-mediated transmission of Blueberry leaf mottle virus via infected pollen in highbush blueberry. Phytopathology 77: 167–172.

    Article  Google Scholar 

  • DeYoung, M., A.M. Siwkowski, Y. Lian, and A. Hampel. 1995. Catalytic properties of hairpin ribozymes derived from Chicory yellow mottle virus and Arabis mosaic virus satellite RNAs. Biochemistry 34: 15785–15791.

    Article  CAS  PubMed  Google Scholar 

  • Dias, H.F., and W.R. Allan. 1980. Occurrence of peach rosette mosaic virus on grapevine in southern Ontario. Canadian Journal of Botany 58: 1747.

    Article  CAS  Google Scholar 

  • Dias, H.F., and D. Cation. 1976. The characterization of a virus responsible for peach rosette mosaic and grape decline in Michigan. Canadian Journal of Botany 54: 1228–1239.

    Article  Google Scholar 

  • EPPO. 2001. Diagnostic protocols for regulated pests. Tobacco ringspot nepovirus. EPPO Bulletin 31: 45–51.

    Article  Google Scholar 

  • ———. 2005. Diagnostic protocols for regulated pests. Tomato ringspot nepovirus. EPPO Bulletin 35: 313–318.

    Article  Google Scholar 

  • European Food Safety Authority. 2014. Scientific opinion on the pest categorization of Cherry leafroll virus. EFSA Journal 20: 3848–3871.

    Google Scholar 

  • Evans, T.A., L.C. Miller, B.L. Vasilas, R.W. Taylor, and R.P. Mulrooney. 2007. Management of Xiphinema americanum and soybean severe stunt in soybean using crop rotation. Plant Disease 91: 216–219.

    Google Scholar 

  • Frazier, N.W., C.E. Yarwood, and A.H. Gold. 1961. Yellow bud virus endemic along the California coast. Plant Disease Report 45: 649–651.

    Google Scholar 

  • Fromme, F.D., S.A. Wingard, and C.N. Priode. 1927. Ringspot of tobacco; an infectious disease of unknown cause. Phytopathology 17: 321–328.

    Google Scholar 

  • Fuchs, M., G.S. Abawi, P. Marsella-Herrick, R. Cox, K.D. Cox, J.E. Carroll, and R.R. Martin. 2010. Occurrence of Tomato ringspot virus and Tobacco ringspot virus in highbush blueberry in New York State. Journal of Plant Pathology 92: 451–459.

    CAS  Google Scholar 

  • Gergerich, R., R. Welliver, S. Gettys, N. Osterbauer, S. Kamenidou, R.R. Martin, D.A. Golino, K. Eastwell, M. Fuchs, G. Vidalakis, and I.E. Tzanetakis. 2015. Safeguarding fruit crops in the age of agriculture globalization. Plant Disease 99: 176–187.

    Article  Google Scholar 

  • Gilmer, R.M., and J.K. Uyemoto. 1972. Tomato ringspot virus in Baco noir grapevine in New York. Plant Disease Report 56: 133–135.

    Google Scholar 

  • Gilmer, R.M., J.K. Uyemoto, and L.J. Kelts. 1970. A new grapevine disease induced by Tobacco ringspot virus. Phytopathology 60: 619–627.

    Article  Google Scholar 

  • Gonsalves, D. 1988. Compendium of grape diseases, 49–51. St. Paul: APS Press.

    Google Scholar 

  • Gooding, G.V., and W.B. Hewitt. 1962. Grape yellow vein, symptomatology, identification, and the association of a mechanically transmissible virus with the disease. American Journal of Enology and Viticulture 13: 196–203.

    Google Scholar 

  • Griesbach, J.A. 1995. Detection of Tomato ringspot virus by polymerase chain reaction. Plant Disease 79: 1054–1056.

    Article  CAS  Google Scholar 

  • Herrera, M.G., and V.M. Madariaga. 2001. Presence and incidence of grapevine viruses in Central Chile. Agricultura Técnica 61: 393–340.

    Google Scholar 

  • Hibben, C.R., and J.T. Walker. 1971. Nematode transmission of the ash strain of Tobacco ringspot virus. Plant Disease Report 55: 475–478.

    Google Scholar 

  • Ho, T., and I.E. Tzanetakis. 2014. Development of a virus detection and discovery pipeline using next generation sequencing. Virology 471: 54–60.

    Article  PubMed  Google Scholar 

  • Hoy, J.W., and S.M. Mircetich. 1984. Prune brownline disease: Susceptibility of prune rootstocks and Tomato ringspot virus detection. Phytopathology 74: 272–276.

    Article  Google Scholar 

  • Izadpanah, K., M. Zaki-Aghl, Y.P. Zhang, S.D. Daubert, and A. Rowhani. 2003. Bermuda grass as a potential reservoir host for Grapevine fanleaf virus. Plant Disease 87: 1179–1182.

    Article  Google Scholar 

  • Jafarpour, B., and H. Sanfaçon. 2009. Insertion of large amino acid repeats and point mutations contribute to a high degree of sequence diversity in the X4 protein of tomato ringspot virus (genus Nepovirus). Archives of Virology 154: 1713–1717.

    Article  CAS  PubMed  Google Scholar 

  • Jones, A.T., F.D. McElroy, and D.J.F. Brown. 1981. Tests for transmission of cherry leaf roll virus using Longidorus, Paralongidorus and Xiphinema nematodes. The Annals of Applied Biology 99: 143–150.

    Google Scholar 

  • Kahn, R.P., and F.M. Latterell. 1955. Symptoms of bud-blight of soybeans caused by the tobacco- and tomato-ringspot viruses. Phytopathology 45: 500–502.

    Google Scholar 

  • Kiefer, M.C., S. Daubert, I.R. Schneider, and G. Bruening. 1982. Multimeric forms of satellite of Tobacco ringspot virus RNA. Virology 121: 262–273.

    Article  CAS  PubMed  Google Scholar 

  • Klos, E.J. 1976. Rosette mosaic. In: U. S. Department of Agriculture Agricultural Handbook #437. U. S. Government Printing Office, Washington D. C., USA.

    Google Scholar 

  • Lammers, A.H., R.F. Allison, and D.C. Ramsdell. 1999. Cloning and sequencing of peach rosette mosaic virus RNA 1. Virus Research 65: 57–73.

    Article  CAS  PubMed  Google Scholar 

  • Lear, B., A.C. Goheen, and D.J. Raski. 1981. Effectiveness of soil fumigation for control of fanleaf-nematode complex in grapevine. American Journal of Enology and Viticulture 32: 208–211.

    CAS  Google Scholar 

  • Lee, S., C.S. Kim, Y.G. Shin, J.H. Kim, Y.S. Kim, and W.H. Jheong. 2016. Development of nested PCR-based specific markers for detection of Peach rosette mosaic virus in plant quarantine. Indian Journal of Microbiology 6: 108–111.

    Article  Google Scholar 

  • Li, R., R. Mock, M. Fuchs, J. Halbrendt, B. Howell, and Z. Liu. 2011. Characterization of the partial RNA1 and RNA2 3′ untranslated region of Tomato ringspot virus isolates from North America. Canadian Journal of Plant Pathology 33: 94–99.

    Article  CAS  Google Scholar 

  • Li, J.L., R.S. Cornman, J.D. Evans, J.S. Pettis, Y. Zhao, C. Murphy, W.J. Peng, J. Wu, M. Hamilton, H.F. Boncristiani, L. Zhou, J. Hammond, and Y.P. Chen. 2014a. Systemic spread and propagation of a plant-pathogenic virus in European honeybees, Apis mellifera. mBio 5: e00898–e00813.

    Google Scholar 

  • ———. 2014b. Reply to “Conclusive evidence of replication of a plant virus in honeybees is lacking.”. mBio 5: e01250–e01214.

    Google Scholar 

  • Lister, R.M., and A.F. Murant. 1967. Seed-transmission of nematode-borne viruses. The Annals of Applied Biology 59: 49–62.

    Article  Google Scholar 

  • Maliogka, V.I., G.P. Martelli, M. Fuchs, and N.I. Katis. 2015. Control of viruses infecting grapevine. Advances in Virus Research 91: 175–227.

    Article  PubMed  Google Scholar 

  • Martelli, G.P. 2014. Directory of virus and virus-like diseases of the grapevine and their agents. Journal of Plant Pathology 96: 1–136.

    Google Scholar 

  • Martelli, G., and C.E. Taylor. 1990. Distribution of viruses and their nematode vectors. In Ad. Dis. Vector Res, ed. K. Harris, vol. 6, 151–189. New York: Springer.

    Chapter  Google Scholar 

  • Mayo, M.A., H. Baker, and B.D. Harrison. 1979a. Polyadenylate in the RNA of five nepoviruses. The Journal of General Virology 43: 603–610.

    Google Scholar 

  • ———. 1979b. Evidence for a protein covalently linked to Tobacco ringspot virus RNA. The Journal of General Virology 43: 735–740.

    Google Scholar 

  • Mayo, M.A., H. Barker, and B.D. Harrison. 1982. Properties of the genome linked proteins of nepoviruses. The Journal of General Virology 59: 149–162.

    Article  CAS  Google Scholar 

  • Mink, G.I. 1993. Pollen- and seed-transmitted viruses and viroids. Annual Review of Phytopathology 31: 375–402.

    Article  CAS  PubMed  Google Scholar 

  • Mountain, W.L., C.A. Powell, L.B. Forer, and R.F. Stouffer. 1983. Transmission of tomato ringspot virus from dandelion via seed and dagger nematodes. Plant Disease 67: 867–868.

    Article  Google Scholar 

  • Powell, C.A. 1984. Comparison of enzyme-linked immunosorbent assay procedures for detection of Tomato ringspot virus in woody and herbaceous hosts. Plant Disease 68: 908–909.

    Article  Google Scholar 

  • Powell, C.A., L.B. Forer, R.F. Stouffer, J.N. Cummins, D. Gonsalves, D.A. Rosenberg, J. Hoffman, and R.M. Lister. 1984. Orchard weeds as hosts of ToRSV and TRSV. Plant Disease 68: 242–244.

    Article  Google Scholar 

  • Powell, C.A., J.L. Longenecker, and L.B. Forer. 1990. Incidence of Tomato ringspot virus and Tobacco ringspot virus in grapevine in Pennsylvania. Plant Disease 74: 702–704.

    Article  Google Scholar 

  • Price, W.C. 1940. Comparative host ranges of six plant viruses. American Journal of Botany 27: 530–541.

    Article  Google Scholar 

  • Ramsdell, D.C., and J.M. Gillett. 1981. Peach rosette mosaic virus in highbush blueberry. Plant Disease 65: 757–758.

    Article  Google Scholar 

  • ———. 1998. Peach rosette mosaic virus. CMI/AAB Description of Plant Viruses No. 364. Association of Applied Biologists. Wellesbourne, UK.

    Google Scholar 

  • Ramsdell, D.C., and R.L. Meyers. 1974. Peach rosette mosaic virus, symptomatology and nematodes associated with grapevine ‘degeneration’ in Michigan. Phytopathology 64: 1174–1178.

    Article  Google Scholar 

  • ———. 1977. Epidemiology of Peach rosette mosaic virus in a Concord grape vineyard. Phytopathology 68: 447–450.

    Article  Google Scholar 

  • Ramsdell, D.C., and R. Stace-Smith. 1981. Physical and chemical properties of the particles and ribonucleic acid of Blueberry leaf mottle virus. Phytopathology 71: 468–472.

    Article  CAS  Google Scholar 

  • ———. 1983. Blueberry leaf mottle virus. CMI/AAB Description of Plant Viruses No. 267. Association of Applied Biologists. Wellesbourne, UK.

    Google Scholar 

  • Ramsdell, D.C., R.W. Andrews, J.M. Gillett, and C.E. Morris. 1979. A comparison between enzyme-linked immunosorbent assay (ELISA) and Chenopodium quinoa for detection of Peach rosette mosaic virus in Concord grapevine. Plant Disease Report 63: 74–78.

    Google Scholar 

  • Ramsdell, D.C., J.M. Gillett, and G.W. Bird. 1995. Susceptibility of American grapevine scion cultivars and French hybrid rootstock and scion cultivars to infection by Peach rosette mosaic nepovirus. Plant Disease 79: 154–157.

    Article  Google Scholar 

  • Remaily, G. and G.L. Slate. 1970. The Finger Lake Wine Growers Association. Naples, New York, 6pp.

    Google Scholar 

  • Reynolds, B., and D.S. Tealke. 1976. Viruses infecting commercial gladiolus cultivars in Queensland. Australian Plant Pathology Newsletter 5: 22–23.

    Article  Google Scholar 

  • Roossinck, M., D. Sleat, and P. Palukaitis. 1992. Satellite RNAs of plant viruses: Structures and biological effects. Microbiological Reviews 56: 265–279.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rott, M.E., J.H. Tremaine, and D.M. Rochon. 1991. Nucleotide sequence of Tomato ringspot virus RNA-2. The Journal of General Virology 72: 1505–1514.

    Article  CAS  PubMed  Google Scholar 

  • Rott, M.E., A. Gilchrist, L. Lee, and D. Rochon. 1995. Nucleotide sequence of tomato ringspot virus RNA1. The Journal of General Virology 76: 465–473.

    Article  CAS  PubMed  Google Scholar 

  • Sandoval, C.R., D.C. Ramsdell, and J.F. Hancock. 1995. Infection of wild and cultivated Vaccinium spp. with blueberry leaf mottle nepovirus. The Annals of Applied Biology 126: 457–464.

    Article  Google Scholar 

  • Sanfaçon, H. 2008. Nepoviruses. In Encyclopedia of virology, ed. B.W.J. Mahy and M.H.V. Van Regenmortel, 3rd ed., 405–413. San Diego: Academic.

    Chapter  Google Scholar 

  • ———. 2012. Investigating the role of viral integral membrane proteins in promoting the assembly of nepovirus and comovirus replication factories. Frontiers in Plant Science 3: 313.

    PubMed  Google Scholar 

  • Sanfaçon, H., G. Zhang, J. Chisholm, B. Jafarpour, and J. Jovel. 2006. Molecular biology of Tomato ringspot nepovirus. In Floriculture, ornamental and plant biotechnology, ed. J.A. Teixeira da Silva. Isleworth: Global Science Books.

    Google Scholar 

  • Sanfaçon, H., J. Wellink, O. Le Gall, A. Karasev, R. van der Wlugt, and T. Wetzel. 2009. Secoviridae: A proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Archives of Virology 154: 899–907.

    Article  PubMed  Google Scholar 

  • Sanfaçon, H., T. Iwanami, A. Karasev, R.A.A. van der Vlugt, J. Wellink, T. Wetzel, and N. Yoshikawa. 2011. Secoviridae. In Virus taxonomy; ninth report of the International Committee on Taxonomy of Viruses, ed. A.M.Q. King, M.J. Adams, E.B. Carstens, and E.J. Lefkowitz, 881–900. Amsterdam: Elsevier.

    Google Scholar 

  • Schellenberger, P., C. Sauter, B. Lorber, P. Bron, S. Trapani, M. Bergdoll, A. Marmonier, E. Vigne, O. Lemaire, M. Fuchs, G. Demangeat, and C. Ritzenthaler. 2011. Structural insights into viral determinants of nematode-mediated Grapevine fanleaf virus transmission. PLoS Pathogens 7: e1002034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stace-Smith, R. 1984. Tomato ringspot virus. CMI/AAB Description of Plant Viruses No. 290. Association of Applied Biologists. Wellesbourne, UK.

    Google Scholar 

  • ———. 1985. Tobacco ringspot virus. CMI/AAB Description of Plant Viruses No. 309. Association of Applied Biologists. Wellesbourne, UK.

    Google Scholar 

  • Stewart, E.L., X. Qu, B.E. Overton, F.E. Gildow, N.G. Wenner, and D.S. Grove. 2007. Development of a real-time RT-PCR SYBR green assay for Tomato ringspot virus in grape. Plant Disease 91: 1083–1088.

    Article  CAS  Google Scholar 

  • Taylor, C.E., and D.J. Brown. 1977. Nematode vectors of plant viruses. Wallingford: CAB International.

    Google Scholar 

  • Thompson, J.R., N. Kamath, and K.L. Perry. 2014. An evolutionary analysis of the Secoviridae family of viruses. PLoS ONE 9: e106305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tu, J.C. 1986. Strains of tobacco ringspot virus isolated from soybean in southwestern Ontario. Canadian Journal of Plant Science 66: 491–498.

    Article  Google Scholar 

  • Uyemoto, J.K. 1970. Symptomatically distinct strains of Tomato ringspot virus isolated from grape and elderberry. Phytopathology 60: 1838–1841.

    Article  Google Scholar 

  • ———. 1975. Severe outbreak of virus-induced grapevine decline in Cascade grapevine in New York. Plant Disease Report 59: 98–101.

    Google Scholar 

  • Uyemoto, J.K., J.F. Cummins, and G.S. Abawi. 1977a. Virus and virus-like diseases affecting grapevines in New York vineyards. American Journal of Enology and Viticulture 28: 131–136.

    Google Scholar 

  • Uyemoto, J.K., E.F. Taschenberg, and D.K. Hummer. 1977b. Isolation and identification of a strain of grapevine Bulgarian latent virus in Concord grapevine in New York State. Plant Disease Report 61: 949–953.

    Google Scholar 

  • Walker, M., J. Chisholm, T. Wei, B. Ghoshal, H. Saeed, M. Rott, and H. Sanfaçon. 2015. Complete genome sequence of three Tomato ringspot virus isolates: Evidence for reassortment and recombination. Archives of Virology 160: 543–547.

    Article  CAS  PubMed  Google Scholar 

  • Wang, A., and H. Sanfaçon. 2000a. Proteolytic processing at a novel cleavage site in the N-terminal region of the Tomato ringspot nepovirus RNA-1 encoded polyprotein in vitro. The Journal of General Virology 81: 2771–2781.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2000b. Diversity in the coding regions for the coat protein, VPg, protease, and putative RNA-dependent RNA polymerase among tomato ringspot nepovirus isolates. Canadian Journal of Plant Pathology 22: 145–149.

    Article  CAS  Google Scholar 

  • Wang, A., K. Carrier, J. Chisholm, A. Wieczorek, C. Huguenot, and H. Sanfaçon. 1999. Proteolytic processing of Tomato ringspot nepovirus 3C-like protease precursors: Definition of the domains for the VPg, protease and putative RNA-dependent RNA polymerase. The Journal of General Virology 80: 799–809.

    Article  CAS  PubMed  Google Scholar 

  • Werner, R., H.P. Mühlbach, and C. Büttner. 1997. Detection of Cherry leafroll nepovirus (CLRV) in birch, beech and petunia by immuno-capture RT-PCR using a conserved primer pair. European Journal of Forest Pathology 27: 309–318.

    Article  Google Scholar 

  • Yang, A.F., and R.I. Hamilton. 1974. The mechanism of seed transmission of Tobacco ringspot virus in soybean. Virology 62: 26–37.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, F., U.S. Hwang, S. Lim, R.H. Yoo, D. Igori, S.H. Lee, H. Lim, and J.S. Moon. 2015. Complete genome sequence and construction of infectious full-length cDNA clones of Tobacco ringspot nepovirus, a viral pathogen causing bud blight in soybean. Virus Genes 51: 163–166.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rowhani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rowhani, A., Daubert, S.D., Uyemoto, J.K., Al Rwahnih, M., Fuchs, M. (2017). American Nepoviruses. In: Meng, B., Martelli, G., Golino, D., Fuchs, M. (eds) Grapevine Viruses: Molecular Biology, Diagnostics and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-57706-7_5

Download citation

Publish with us

Policies and ethics