Skip to main content

Animal Models in Glioblastoma: Use in Biology and Developing Therapeutic Strategies

  • Chapter
  • First Online:
Advances in Biology and Treatment of Glioblastoma

Part of the book series: Current Cancer Research ((CUCR))

Abstract

The gliomas are a large group of brain tumors and Glioblastoma Multiforme (GBM) is the most common and lethal primary central nervous system tumor in adults. Despite the recent advances in treatment modalities, GBM patients generally respond poorly to all therapeutic approaches and prognosis remain dismal. Gaining insights into the pathways that determine this poor treatment response and the generation of more relevant animal models that recapitulate a patient’s tumor will be instrumental for the elaboration of new therapeutic modalities.

Here we will focus on the available animal models for adult GBM and their use in preclinical drug development. We will be examining the recent advances in genetically engineered mouse models and discuss how such models may offer specific advantages over cell culture and xenograft systems for validating drug targets and prioritizing candidates for clinical trials. Lastly we will briefly examine the clinical relevance in glioma research of other animal models such as fruit fly, zebrafish and canine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Ahmed, B.Y., et al. 2004. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neuroscience 5: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alcantara Llaguno, S.R., et al. 2015. Adult lineage-restricted CNS progenitors specify distinct glioblastoma subtypes. Cancer Cell 28 (4): 429–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antunes, L., et al. 2000. Analysis of tissue chimerism in nude mouse brain and abdominal xenograft models of human glioblastoma multiforme: What does it tell us about the models and about glioblastoma biology and therapy? Journal of Histochemistry & Cytochemistry 48 (6): 847–858.

    Article  CAS  Google Scholar 

  • Aparicio, S., M. Hidalgo, and A.L. Kung. 2015. Examining the utility of patient-derived xenograft mouse models. Nature Reviews Cancer 15 (5): 311–316.

    Article  CAS  PubMed  Google Scholar 

  • Bajenaru, M.L., et al. 2003. Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Research 63 (24): 8573–8577.

    CAS  PubMed  Google Scholar 

  • Bajenaru, M.L., et al. 2005. Natural history of neurofibromatosis 1-associated optic nerve glioma in mice. Annals of Neurology 57 (1): 119–127.

    Google Scholar 

  • van den Bent, M.J. 2010. Interobserver variation of the histopathological diagnosis in clinical trials on glioma: A clinician’s perspective. Acta Neuropathologica 120 (3): 297–304.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berens, M.E., et al. 1999. Allogeneic astrocytoma in immune competent dogs. Neoplasia (New York, N.Y.) 1 (2): 107–112.

    Article  CAS  Google Scholar 

  • Biedermann, K.A., et al. 1991. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America 88 (4): 1394–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilen, J., and N.M. Bonini. 2005. Drosophila as a model for human neurodegenerative disease. Annual Review of Genetics 39: 153–171.

    Article  CAS  PubMed  Google Scholar 

  • Birling, M.C., F. Gofflot, and X. Warot. 2009. Site-specific recombinases for manipulation of the mouse genome. Methods in Molecular Biology 561: 245–263.

    Article  CAS  PubMed  Google Scholar 

  • Bjerkvig, R., et al. 1990. Multicellular tumor spheroids from human gliomas maintained in organ culture. Journal of Neurosurgery 72 (Table 1): 463–475.

    Article  CAS  PubMed  Google Scholar 

  • Boudreau, C.E., et al. 2015. Molecular signalling pathways in canine gliomas. Veterinary and Comparative Oncology 15: 133–150.

    Article  PubMed  CAS  Google Scholar 

  • Brennan, C.W., et al. 2013. The somatic genomic landscape of glioblastoma. Cell 155 (2): 462–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinster, R.L., et al. 1984. Transgenic mice harboring SV40 t-antigen genes develop characteristic brain tumors. Cell 37 (2): 367–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britt, R.H., et al. 1985. Immunohistochemical study of glial fibrillary acidic protein in avian sarcoma virus-induced gliomas in dogs. Journal of Neuro-Oncology 3 (1): 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Brumby, A.M., and H.E. Richardson. 2005. Using Drosophila melanogaster to map human cancer pathways. Nature Reviews Cancer 5 (8): 626–639.

    Article  CAS  PubMed  Google Scholar 

  • Camphausen, K., B. Purow, M. Sproull, T. Scott, T. Ozawa, D.F. Deen, et al. 2005a. Influence of in vivo growth on human glioma cell line gene expression: Convergent profiles under orthotopic conditions. Proceedings of the National Academy of Sciences of the United States of America 102 (23): 8287–8292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ———. 2005b. Orthotopic growth of human glioma cells quantitatively and qualitatively influences radiation-induced changes in gene expression. Cancer Research 65 (22): 10389–10393.

    Article  CAS  PubMed  Google Scholar 

  • Candolfi, M., et al. 2007. Intracranial glioblastoma models in preclinical neuro-oncology: Neuropathological characterization and tumor progression. Journal of Neuro-Oncology 85 (2): 133–148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceccarelli, M., et al. 2016. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164 (3): 550–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandras, C., et al. 2012. CreZOO-The European virtual repository of Cre and other targeted conditional driver strains. Database 2012: 1–5.

    Article  CAS  Google Scholar 

  • Charest, A., et al. 2006. ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Research 66 (15): 7473–7481.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., R.M. McKay, and L.F. Parada. 2012. Malignant glioma: Lessons from genomics, mouse models, and stem cells. Cell 149 (1): 36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, F., et al. 2015. Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and PiggyBac transposase lineage labeling. Development 142: 3601–3611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou, S.-H., et al. 2015. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes & Development 29 (14): 1576–1585.

    Article  CAS  Google Scholar 

  • Cook, N., D.I. Jodrell, and D.A. Tuveson. 2012. Predictive in vivo animal models and translation to clinical trials. Drug Discovery Today 17 (5–6): 253–260.

    Article  PubMed  Google Scholar 

  • Dai, C., et al. 2001. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas from and oligoastrocytomas neural progenitors and astrocytes in vivo. Genes and Development 15 (15): 1913–1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang, M., R. Fogley, and L.I. Zon. 2016. Identifying novel cancer therapies using chemical genetics and zebrafish. Advances in Experimental Medicine and Biology 916: 103–124.

    Article  PubMed  Google Scholar 

  • Danks, R.A., et al. 1995. Transformation of astrocytes in transgenic mice expressing SV40 T antigen under the transcriptional control of the glial fibrillary acidic protein promoter. Cancer Research 55 (19): 4302–4310.

    CAS  PubMed  Google Scholar 

  • Dickinson, P.J. 2014. Advances in diagnostic and treatment modalities for intracranial tumors. Journal of Veterinary Internal Medicine 28 (4): 1165–1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, H., et al. 2001. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Research 61 (9): 3826–3836.

    CAS  PubMed  Google Scholar 

  • Ding, H., et al. 2003. Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Research 63 (5): 1106–1113.

    Google Scholar 

  • Dolgin, E. 2013. Animal rule for drug approval creates a jungle of confusion. Nature Medicine 19 (2): 118–119.

    Article  CAS  PubMed  Google Scholar 

  • Dow, L.E., et al. 2015. Inducible in vivo genome editing with CRISPR-Cas9. Nature Biotechnology 33 (4): 390–394.

    Google Scholar 

  • Eckel-Passow, J.E., et al. 2015. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. The New England Journal of Medicine 372 (26): 2499–2508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Federspiel, M.J., et al. 1994. A system for tissue-specific gene targeting: Transgenic mice susceptible to subgroup A avian leukosis virus-based retroviral vectors. Proceedings of the National Academy of Sciences of the United States of America 91 (23): 11241–11245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei, X.F., et al. 2010. Development of clinically relevant orthotopic xenograft mouse model of metastatic lung cancer and glioblastoma through surgical tumor tissues injection with trocar. Journal of Experimental & Clinical Cancer Research : CR 29 (1): 84.

    Google Scholar 

  • Feil, R., et al. 1996. Ligand-activated site-specific recombination in mice. Proceedings of the National Academy of Sciences of the United States of America 93 (20): 10887–10890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fomchenko, E.I., and E.C. Holland. 2006. Mouse models of brain tumors and their applications in preclinical trials. Clinical Cancer Research 12 (18): 5288–5297.

    Article  CAS  PubMed  Google Scholar 

  • Fomchenko, E.I., et al. 2011. Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression. PLoS One 6 (7): e20605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frese, K.K., and D.A. Tuveson. 2007. Maximizing mouse cancer models. Nature Reviews Cancer 7 (9): 654–658.

    Article  CAS  Google Scholar 

  • Geiger, G.A., W. Fu, and G.D. Kao. 2008. Temozolomide-mediated radiosensitization of human glioma cells in a zebrafish embryonic system. Cancer Research 68 (9): 3396–3404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gierut, J.J., T.E. Jacks, and K.M. Haigis. 2014. Producing and concentrating lenti-cre for mouse infections. Cold Spring Harbor Protocols 2014 (3): 304–306.

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez, C. 2013. Drosophila melanogaster: A model and a tool to investigate malignancy and identify new therapeutics. Nature Reviews Cancer 13 (3): 172–183.

    Article  CAS  PubMed  Google Scholar 

  • Greenhouse, J.J., et al. 1988. Helper-independent retrovirus vectors with Rous-associated virus type O long terminal repeats. Journal of Virology 62 (12): 4809–4812.

    Google Scholar 

  • Guha, A. 1998. Ras activation in astrocytomas and neurofibromas. The Canadian Journal of Neurological Sciences 25 (4): 267–281.

    Article  CAS  PubMed  Google Scholar 

  • Günther, H.S., et al. 2008. Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27: 2897–2909.

    Article  PubMed  CAS  Google Scholar 

  • Hambardzumyan, D., et al. 2009. Modeling adult gliomas using RCAS/t-va technology. Translational Oncology 2 (2): 89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • ———. 2011. Genetic modeling of gliomas in mice: New tools to tackle old problems. Glia 59 (8): 1155–1168.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hede, S.M., et al. 2009. GFAP promoter driven transgenic expression of PDGFB in the mouse brain leads to glioblastoma in a Trp53 null background. Glia 57 (11): 1143–1153.

    Article  PubMed  Google Scholar 

  • Heidenreich, M., and F. Zhang. 2015. Applications of CRISPR–Cas systems in neuroscience. Nature Reviews Neuroscience 17 (1): 36–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henson, J.W., et al. 1994. The retinoblastoma gene is involved in malignant progression of astrocytomas. Annals of Neurology 36 (5): 714–721.

    Article  CAS  PubMed  Google Scholar 

  • Hicks, J., et al. 2015. Canine brain tumours: A model for the human disease? Veterinary and comparative oncology 15: 252–272.

    Article  PubMed  Google Scholar 

  • Hitoshi, Y., et al. 2008. Spinal glioma: Platelet-derived growth factor B-mediated oncogenesis in the spinal cord. Cancer Research 68 (20): 8507–8515.

    Article  CAS  PubMed  Google Scholar 

  • Holland, E.C., and H.E. Varmus. 1998. Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proceedings of the National Academy of Sciences of the United States of America 95 (3): 1218–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland, E.C., et al. 1998. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes and Development 12 (23): 3675–3685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ———. 2000. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genetics 25 (1): 55–57.

    Article  CAS  PubMed  Google Scholar 

  • Howe, K., et al. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496 (7446): 498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, X., et al. 2005. mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia (New York, N.Y.) 7 (4): 356–368.

    Article  CAS  Google Scholar 

  • Huse, J.T., and E.C. Holland. 2009. Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathology 19 (1): 132–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huszthy, P.C., et al. 2012. In vivo models of primary brain tumors: Pitfalls and perspectives. Neuro-Oncology 14 (8): 979–993.

    Article  PubMed  PubMed Central  Google Scholar 

  • Joo, K.M., et al. 2013. Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. Cell Reports 3 (1): 260–273.

    Article  CAS  PubMed  Google Scholar 

  • Ju, B., et al. 2015. Oncogenic KRAS promotes malignant brain tumors in zebrafish. Molecular Cancer 14 (1): 1–11.

    Article  CAS  Google Scholar 

  • Jue, T.R., and K.L. McDonald. 2016. The challenges associated with molecular targeted therapies for glioblastoma. Journal of Neuro-Oncology 127 (3): 427–434.

    Article  CAS  PubMed  Google Scholar 

  • Jung, I.H., et al. 2013. Glioma is formed by active Akt1 alone and promoted by active Rac1 in transgenic zebrafish. Neuro-Oncology 15 (3): 290–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan, R., and A. Ventura. 2015. The CRISPR revolution and its impact on cancer research. Swiss Medical Weekly 145: w14230.

    PubMed  Google Scholar 

  • Kühn, R., et al. 1995. Inducible gene targeting in mice. Science (New York, N.Y.) 269 (5229): 1427–1429.

    Article  Google Scholar 

  • Kwon, C.H., et al. 2008. Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Research 68 (9): 3286–3294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laks, D.R., et al. 2009. Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem Cells 27 (4): 980–987.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lakso, M., et al. 1992. Targeted oncogene activation by site-specific recombination in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America 89 (14): 6232–6236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leder, K., et al. 2014. Mathematical modeling of pdgf-driven glioblastoma reveals optimized radiation dosing schedules. Cell 156 (3): 603–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J., et al. 2006. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9 (5): 391–403.

    Article  CAS  PubMed  Google Scholar 

  • Lindberg, N., et al. 2014. Oncogenic signaling is dominant to cell of origin and dictates astrocytic or oligodendroglial tumor development from oligodendrocyte precursor cells. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 34 (44): 14644–14651.

    Google Scholar 

  • Louis, D.N., et al. 2016a. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathologica 131 (6): 803–820.

    Google Scholar 

  • Louis, D.N., H. Ohgaki, O.D. Wiestler, and W.K. Cavenee. 2016b. WHO classification of tumours of the central nervous system. 4th ed. Lyon: International Agency For Research On Cancer.

    Google Scholar 

  • Macleod, K.F., and T. Jacks. 1999. Insights into cancer from transgenic mouse models. Journal of Pathology 187 (1): 43–60.

    Article  CAS  PubMed  Google Scholar 

  • Marumoto, T., et al. 2009. Development of a novel mouse glioma model using lentiviral vectors. Nature Medicine 15 (1): 110–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeill, R.S., et al. 2015. Contemporary murine models in preclinical astrocytoma drug development. Neuro-Oncology 17 (1): 12–28.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, R.A. 2012. Human tumor xenografts: The good, the bad, and the ugly. Molecular Therapy 20 (5): 882–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noushmehr, H., et al. 2010. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17 (5): 510–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohgaki, H., and P. Kleihues. 2013. The definition of primary and secondary glioblastoma. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 19 (4): 764–772.

    Google Scholar 

  • Ozawa, T., et al. 2014. Article most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 26 (2): 288–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons, D.W., et al. 2008. An integrated genomic analysis of human glioblastoma multiforme. Science 321 (5897): 1807–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platt, R.J., et al. 2014. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159 (2): 440–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyonteck, S.M., et al. 2013. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine 19: 1–12.

    Article  CAS  Google Scholar 

  • Quail, D.F., et al. 2016. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352 (6288): aad3018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramaswamy, V., and M.D. Taylor. 2016. Fall of the optical wall: Freedom from the tyranny of the microscope improves glioma risk stratification. Cancer cell 29 (2): 137–138.

    Article  CAS  PubMed  Google Scholar 

  • Read, R.D. 2011. Drosophila melanogaster as a model system for human brain cancers. Glia 59 (9): 1364–1376.

    Article  PubMed  PubMed Central  Google Scholar 

  • Read, R.D., et al. 2009. A drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genetics 5 (2): e1000374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ———. 2013. A kinome-wide RNAi screen in Drosophila Glia reveals that the RIO kinases mediate cell proliferation and survival through TORC2-Akt signaling in glioblastoma. PLoS Genetics 9 (2): e1003253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reilly, K.M., et al. 2000. Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nature Genetics 26 (1): 109–113.

    Article  CAS  PubMed  Google Scholar 

  • Reiter, L.T., and E. Bier. 2002. Using Drosophila melanogaster to uncover human disease gene function and potential drug target proteins. Expert Opinion on Therapeutic Targets 6 (3): 387–399.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, G., et al. 1995. Position-dependent variegation of globin transgene expression in mice. Proceedings of the National Academy of Sciences of the United States of America 92 (12): 5371–5375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakariassen, P.Ø., et al. 2006. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. PNAS 103 (44): 16466–16471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Rivera, F.J., and T. Jacks. 2015. Applications of the CRISPR–Cas9 system in cancer biology. Nature Reviews Cancer 15 (7): 387–395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santoriello, C., and L.I. Zon. 2012. Hooked! Modeling human disease in zebrafish. The Journal of Clinical Investigation 122 (7): 2337–2343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki, M., et al. 2012. D-2-hydroxyglutarate produced by mutant Idh1 perturbs collagen maturation and basement membrane function. Genes and Development 26 (18): 2038–2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid, R.S., M. Vitucci, and C.R. Miller. 2012. Genetically engineered mouse models of diffuse gliomas. Brain Research Bulletin 88 (1): 72–79.

    Article  CAS  PubMed  Google Scholar 

  • Schönig, K., et al. 2002. Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Research 30 (23): e134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shih, A.H., et al. 2004. Dose-dependent effects of platelet-derived growth factor-B on glial tumorigenesis. Cancer Research 64 (14): 4783–4789.

    Article  CAS  PubMed  Google Scholar 

  • Shin, J., et al. 2012. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development. Disease Models & Mechanisms 5 (6): 881–894.

    Article  CAS  Google Scholar 

  • Shive, H.R. 2013. Zebrafish models for human cancer. Veterinary Pathology 50 (3): 468–482.

    Article  CAS  PubMed  Google Scholar 

  • Shultz, L.D., F. Ishikawa, and D.L. Greiner. 2007. Humanized mice in translational biomedical research. Nature reviews Immunology 7 (2): 118–130.

    Article  CAS  PubMed  Google Scholar 

  • Smedley, D., E. Salimova, and N. Rosenthal. 2011. Cre recombinase resources for conditional mouse mutagenesis. Methods 53 (4): 411–416.

    Article  CAS  PubMed  Google Scholar 

  • Song, R.B., et al. 2013. Postmortem evaluation of 435 cases of intracranial neoplasia in dogs and relationship of neoplasm with breed, age, and body weight. Journal of Veterinary Internal Medicine / American College of Veterinary Internal Medicine 27 (5): 1143–1152.

    Article  CAS  Google Scholar 

  • Squatrito, M., et al. 2010. Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell 18 (6): 619–629.

    Article  CAS  PubMed  Google Scholar 

  • Squatrito, M., and E.C. Holland. 2011. DNA damage response and growth factor signaling pathways in gliomagenesis and therapeutic resistance. Cancer Research 71 (18): 5945–5949.

    Article  CAS  PubMed  Google Scholar 

  • Stupp, R., et al. 2005. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine 352 (10): 987–996.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2009. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The Lancet Oncology 10 (5): 459–466.

    Article  CAS  PubMed  Google Scholar 

  • Taillandier, L., L. Antunes, and K.S. Angioi-Duprez. 2003. Models for neuro-oncological preclinical studies: Solid orthotopic and heterotopic grafts of human gliomas into nude mice. Journal of Neuroscience Methods 125 (1–2): 147–157.

    Article  PubMed  Google Scholar 

  • Talmadge, J.E., et al. 2007. Murine models to evaluate novel and conventional therapeutic strategies for cancer. The American Journal of Pathology 170 (3): 793–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Network, T.C.G.A. 2008. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455 (7216): 1061–1068.

    Article  CAS  Google Scholar 

  • ———. 2015. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. The New England Journal of Medicine 372 (26): 2481–2498.

    Article  CAS  Google Scholar 

  • Theeler, B.J., and M.R. Gilbert. 2015. Advances in the treatment of newly diagnosed glioblastoma. BMC Medicine 13: 293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Truvé, K., et al. 2016. Utilizing the dog genome in the search for novel candidate genes involved in glioma development-genome wide association mapping followed by targeted massive parallel sequencing identifies a strongly associated locus. PLoS Genetics 12 (5): e1006000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueki, K., et al. 1996. CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Research 56 (1): 150–153.

    CAS  PubMed  Google Scholar 

  • Uhrbom, L., et al. 1998. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Research 58 (23): 5275–5279.

    CAS  PubMed  Google Scholar 

  • ———. 2002. Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Research 62 (19): 5551–5558.

    CAS  PubMed  Google Scholar 

  • Venneti, S., et al. 2015. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Science Translational Medicine 7 (274): 274ra17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verhaak, R.G.W., et al. 2010. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17 (1): 98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voskoglou-Nomikos, T., J.L. Pater, and L. Seymour. 2003. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 9 (11): 4227–4239.

    Google Scholar 

  • de Vries, N.A., J.H. Beijnen, and O. van Tellingen. 2009. High-grade glioma mouse models and their applicability for preclinical testing. Cancer Treatment Reviews 35 (8): 714–723.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., et al. 2009. A reproducible brain tumour model established from human glioblastoma biopsies. BMC Cancer 9: 465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnke, P.C., et al. 1995. The effects of dexamethasone on transcapillary transport in experimental brain tumors: II. Canine brain tumors. Journal of Neuro-Oncology 25 (1): 29–38.

    Article  CAS  PubMed  Google Scholar 

  • Wehmas, L.C., et al. 2016. Developing a novel embryo-larval zebrafish xenograft assay to prioritize human glioblastoma therapeutics. Zebrafish 13: 317–329.

    Article  CAS  PubMed  Google Scholar 

  • Wei, Q., et al. 2006. High-grade glioma formation results from postnatal Pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Research 66 (15): 7429–7437.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, B., and K. Shannon. 2003. Mouse cancer models as a platform for performing preclinical therapeutic trials. Current Opinion in Genetics and Development 13 (1): 84–89.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, W.A., et al. 2003. Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Research 63 (7): 1589–1595.

    CAS  PubMed  Google Scholar 

  • Weissenberger, J., et al. 1997. Development and malignant progression of astrocytomas in GFAP-v- src transgenic mice. Oncogene 14 (17): 2005–2013.

    Article  CAS  PubMed  Google Scholar 

  • Welker, A.M., et al. 2015. Standardized orthotopic xenografts in zebrafish reveal glioma cell line specific characteristics and tumor cell heterogeneity. Disease Models & Mechanisms 9: 199–210.

    Article  CAS  Google Scholar 

  • White, R., K. Rose, and L. Zon. 2013. Zebrafish cancer: The state of the art and the path forward. Nature reviews Cancer 13 (9): 624–636.

    Article  CAS  PubMed  Google Scholar 

  • Witte, H.T., et al. 2009. Modeling glioma growth and invasion in Drosophila melanogaster. Neoplasia (New York, N.Y.) 11 (9): 882–888.

    Article  CAS  Google Scholar 

  • Xiao, A., et al. 2002. Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1 (2): 157–168.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2005. Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation. Cancer Research 65 (12): 5172–5180.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Y., et al. 2015. The human glioblastoma cell culture resource: Validated cell models representing all molecular subtypes. eBioMedicine 2 (10): 1351–1363.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan, H., et al. 2009. IDH1 and IDH2 mutations in gliomas. The New England Journal of Medicine 360 (8): 765–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X.J., et al. 2013. A novel zebrafish xenotransplantation model for study of glioma stem cell invasion. PLoS One 8 (4): 1–9.

    Google Scholar 

  • Yen, J., R.M. White, and D.L. Stemple. 2014. Zebrafish models of cancer: Progress and future challenges. Current Opinion in Genetics & Development 24: 38–45.

    Article  CAS  Google Scholar 

  • Zhang, X., et al. 2013. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Research 73 (15): 4885–4897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y., et al. 2005. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8 (2): 119–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckermann, M., et al. 2015. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nature Communications 6: 7391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We are very grateful to the Seve Ballesteros Foundation for the generous support of our laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Squatrito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schuhmacher, A.J., Squatrito, M. (2017). Animal Models in Glioblastoma: Use in Biology and Developing Therapeutic Strategies. In: Somasundaram, K. (eds) Advances in Biology and Treatment of Glioblastoma. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-319-56820-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56820-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56819-5

  • Online ISBN: 978-3-319-56820-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics