Skip to main content

Identifying Novel Cancer Therapies Using Chemical Genetics and Zebrafish

  • Chapter
  • First Online:
Cancer and Zebrafish

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 916))

Abstract

Chemical genetics is the use of small molecules to perturb biological pathways. This technique is a powerful tool for implicating genes and pathways in developmental programs and disease, and simultaneously provides a platform for the discovery of novel therapeutics. The zebrafish is an advantageous model for in vivo high-throughput small molecule screening due to translational appeal, high fecundity, and a unique set of developmental characteristics that support genetic manipulation, chemical treatment, and phenotype detection. Chemical genetic screens in zebrafish can identify hit compounds that target oncogenic processes—including cancer initiation and maintenance, metastasis, and angiogenesis—and may serve as cancer therapies. Notably, by combining drug discovery and animal testing, in vivo screening of small molecules in zebrafish has enabled rapid translation of hit anti-cancer compounds to the clinic, especially through the repurposing of FDA-approved drugs. Future technological advancements in automation and high-powered imaging, as well as the development and characterization of new mutant and transgenic lines, will expand the scope of chemical genetics in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peterson RT, Link BA, Dowling JE, Schreiber SL (2000) Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci U S A 97:12965–12969. doi:10.1073/pnas.97.24.12965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moon H-SS, Jacobson EM, Khersonsky SM et al (2002) A novel microtubule destabilizing entity from orthogonal synthesis of triazine library and zebrafish embryo screening. J Am Chem Soc 124:11608–11609

    Article  CAS  PubMed  Google Scholar 

  3. Khersonsky SM, Jung D-WW, Kang T-WW et al (2003) Facilitated forward chemical genetics using a tagged triazine library and zebrafish embryo screening. J Am Chem Soc 125:11804–11805. doi:10.1021/ja035334d

    Article  CAS  PubMed  Google Scholar 

  4. Mathew LK, Sengupta S, Kawakami A et al (2007) Unraveling tissue regeneration pathways using chemical genetics. J Biol Chem 282:35202–35210. doi:10.1074/jbc.M706640200

    Article  CAS  PubMed  Google Scholar 

  5. Sachidanandan C, Yeh J-RJR, Peterson QP, Peterson RT (2008) Identification of a novel retinoid by small molecule screening with zebrafish embryos. PLoS One 3, e1947. doi:10.1371/journal.pone.0001947

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kokel D, Bryan J, Laggner C et al (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6:231–237. doi:10.1038/nchembio.307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peterson RT, Shaw SY, Peterson TA et al (2004) Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol 22:595–599. doi:10.1038/nbt963

    Article  CAS  PubMed  Google Scholar 

  8. Shepard JL, Amatruda JF, Stern HM et al (2005) A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc Natl Acad Sci U S A 102:13194–13199. doi:10.1073/pnas.0506583102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peal DS, Mills RW, Lynch SN et al (2011) Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation 123:23–30. doi:10.1161/CIRCULATIONAHA.110.003731

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Wang J, Wheat J et al (2013) AML1-ETO mediates hematopoietic self-renewal and leukemogenesis through a COX/β-catenin signaling pathway. Blood 121:4906–4916. doi:10.1182/blood-2012-08-447763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang C, Tao W, Wang Y et al (2010) Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. Eur Urol 58:418–426. doi:10.1016/j.eururo.2010.05.024

    Article  CAS  PubMed  Google Scholar 

  12. White RM, Cech J, Ratanasirintrawoot S et al (2011) DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471:518–522. doi:10.1038/nature09882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ridges S, Heaton WL, Joshi D et al (2012) Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood 119:5621–5631. doi:10.1182/blood-2011-12-398818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Le X, Pugach EK, Hettmer S et al (2013) A novel chemical screening strategy in zebrafish identifies common pathways in embryogenesis and rhabdomyosarcoma development. Development 140:2354–2364. doi:10.1242/dev.088427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gutierrez A, Pan L, Groen RW et al (2014) Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. J Clin Invest 124:644–655. doi:10.1172/JCI65093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Astin JW, Jamieson SM, Eng TC, Flores MV, Misa JP, Chien A, Crosier KE, Crosier PS (2014) An in vivo anti-lymphatic screen in zebrafish identifies novel inhibitors of mammalian lymphangiogenesis and lymphatic-mediated metastasis. Mol Cancer Ther 10:2450–2462

    Article  Google Scholar 

  17. Rennekamp AJ, Peterson RT (2015) 15 years of zebrafish chemical screening. Curr Opin Chem Biol 24C:58–70. doi:10.1016/j.cbpa.2014.10.025

    Article  Google Scholar 

  18. Kaufman CK, White RM, Zon L (2009) Chemical genetic screening in the zebrafish embryo. Nat Protoc 4:1422–1432. doi:10.1038/nprot.2009.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peterson RT, Fishman MC (2011) Designing zebrafish chemical screens. Methods Cell Biol 105:525–541. doi:10.1016/B978-0-12-381320-6.00023-0

    Article  CAS  PubMed  Google Scholar 

  20. Tan JL, Zon LI (2011) Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods Cell Biol 105:493–516. doi:10.1016/B978-0-12-381320-6.00021-7

    CAS  PubMed  Google Scholar 

  21. Adatto I, Lawrence C, Thompson M, Zon LI (2011) A new system for the rapid collection of large numbers of developmentally staged zebrafish embryos. PLoS One 6, e21715. doi:10.1371/journal.pone.0021715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503. doi:10.1038/nature12111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langheinrich U (2003) Zebrafish: a new model on the pharmaceutical catwalk. Bioessays 25:904–912. doi:10.1002/bies.10326

    Article  CAS  PubMed  Google Scholar 

  24. Milan DJ, Peterson TA, Ruskin JN et al (2003) Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107:1355–1358

    Article  PubMed  Google Scholar 

  25. Van Leeuwen CJ, Grootelaar EM, Niebeek G (1990) Fish embryos as teratogenicity screens: a comparison of embryotoxicity between fish and birds. Ecotoxicol Environ Saf 20:42–52

    Article  PubMed  Google Scholar 

  26. Yang L, Ho NY, Alshut R et al (2009) Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol 28:245–253. doi:10.1016/j.reprotox.2009.04.013

    Article  CAS  PubMed  Google Scholar 

  27. Selderslaghs IW, Van Rompay AR, De Coen W, Witters HE (2009) Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo. Reprod Toxicol 28:308–320. doi:10.1016/j.reprotox.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  28. Parng C, Seng WL, Semino C, McGrath P (2002) Zebrafish: a preclinical model for drug screening. Assay Drug Dev Technol 1(1):41–48

    Article  CAS  PubMed  Google Scholar 

  29. Spitsbergen JM, Tsai HW, Reddy A et al (2000) Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. Toxicol Pathol 28:705–715

    Article  CAS  PubMed  Google Scholar 

  30. Spitsbergen JM, Tsai HW, Reddy A et al (2000) Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N’-nitro-N-nitrosoguanidine by three exposure routes at different developmental stages. Toxicol Pathol 28:716–725

    Article  CAS  PubMed  Google Scholar 

  31. Murphey RD, Stern HM, Straub CT, Zon LI (2006) A chemical genetic screen for cell cycle inhibitors in zebrafish embryos. Chem Biol Drug Des 68:213–219. doi:10.1111/j.1747-0285.2006.00439.x

    Article  CAS  PubMed  Google Scholar 

  32. Peal DS, Peterson RT, Milan D (2010) Small molecule screening in zebrafish. J Cardiovasc Transl Res 3:454–460. doi:10.1007/s12265-010-9212-8

    Article  PubMed  Google Scholar 

  33. Oppedal D, Goldsmith MI (2010) A chemical screen to identify novel inhibitors of fin regeneration in zebrafish. Zebrafish 7:53–60. doi:10.1089/zeb.2009.0633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kokel D, Peterson RT (2011) Using the zebrafish photomotor response for psychotropic drug screening. Methods Cell Biol 105:517–524. doi:10.1016/B978-0-12-381320-6.00022-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stern HM, Murphey RD, Shepard JL, Amatruda JF, Straub CT et al (2005) Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nat Chem Biol 1(7):366–370

    Article  CAS  PubMed  Google Scholar 

  36. Cao Y, Semanchik N, Lee SH et al (2009) Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models. Proc Natl Acad Sci U S A 106:21819–21824. doi:10.1073/pnas.0911987106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tran TC, Sneed B, Haider J et al (2007) Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Cancer Res 67:11386–11392. doi:10.1158/0008-5472.CAN-07-3126

    Article  CAS  PubMed  Google Scholar 

  38. Kitambi SS, McCulloch KJ, Peterson RT, Malicki JJ (2009) Small molecule screen for compounds that affect vascular development in the zebrafish retina. Mech Dev 126:464–477. doi:10.1016/j.mod.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leet JK, Lindberg CD, Bassett LA et al (2014) High-content screening in zebrafish embryos identifies butafenacil as a potent inducer of anemia. PLoS One 9, e104190. doi:10.1371/journal.pone.0104190

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schiff MH, Strand V, Oed C, Loew-Friedrich I (2000) Leflunomide: efficacy and safety in clinical trials for the treatment of rheumatoid arthritis. Drugs Today (Barc) 36(6):383–394

    Article  CAS  Google Scholar 

  41. Graf SF, Hötzel S, Liebel U et al (2011) Image-based fluidic sorting system for automated Zebrafish egg sorting into multiwell plates. J Lab Autom 16:105–111. doi:10.1016/j.jala.2010.11.002

    Article  PubMed  Google Scholar 

  42. Mandrell D, Truong L, Jephson C et al (2012) Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom 17:66–74. doi:10.1177/2211068211432197

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pardo-Martin C, Chang T-YY, Koo BK et al (2010) High-throughput in vivo vertebrate screening. Nat Methods 7:634–636. doi:10.1038/nmeth.1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wielhouwer EM, Ali S, Al-Afandi A et al (2011) Zebrafish embryo development in a microfluidic flow-through system. Lab Chip 11:1815–1824. doi:10.1039/C0LC00443J

    Article  CAS  PubMed  Google Scholar 

  45. Chang T-YY, Pardo-Martin C, Allalou A et al (2012) Fully automated cellular-resolution vertebrate screening platform with parallel animal processing. Lab Chip 12:711–716. doi:10.1039/C1LC20849G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Masselink W, Wong JC, Liu B et al (2014) Low-cost silicone imaging casts for zebrafish embryos and larvae. Zebrafish 11:26–31. doi:10.1089/zeb.2013.0897

    Article  PubMed  Google Scholar 

  47. Wittbrodt JN, Liebel U, Gehrig J (2014) Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing. BMC Biotechnol 14:36. doi:10.1186/1472-6750-14-36

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pugach EK, Li P, White R, Zon L (2009) Retro-orbital injection in adult zebrafish. J Vis Exp. doi:10.3791/1645

    PubMed  PubMed Central  Google Scholar 

  49. Kinkel MD, Eames SC, Philipson LH, Prince VE (2010) Intraperitoneal injection into adult zebrafish. J Vis Exp. doi:10.3791/2126

    PubMed  PubMed Central  Google Scholar 

  50. Collymore C, Rasmussen S, Tolwani RJ (2013) Gavaging adult zebrafish. J Vis Exp. doi:10.3791/50691

    PubMed  PubMed Central  Google Scholar 

  51. White RM, Sessa A, Burke C et al (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2:183–189. doi:10.1016/j.stem.2007.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blackburn JS, Liu S, Raimondi AR et al (2011) High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope. Nat Protoc 6:229–241. doi:10.1038/nprot.2010.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen EY, DeRan MT, Ignatius MS et al (2014) Glycogen synthase kinase 3 inhibitors induce the canonical WNT/β-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proc Natl Acad Sci U S A 111:5349–5354. doi:10.1073/pnas.1317731111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. White R, Rose K, Zon L (2013) Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer 13:624–636. doi:10.1038/nrc3589

    Article  CAS  PubMed  Google Scholar 

  55. Yen J, White RM, Stemple DL (2014) Zebrafish models of cancer: progress and future challenges. Curr Opin Genet Dev 24:38–45. doi:10.1016/j.gde.2013.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barriuso J, Nagaraju R, Hurlstone A (2015) Zebrafish: a new companion for translational research in oncology. Clin Cancer Res. doi:10.1158/1078-0432.CCR-14-2921

    PubMed  Google Scholar 

  57. Berghmans S, Murphey RD, Wienholds E et al (2005) tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A 102:407–412. doi:10.1073/pnas.0406252102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Langenau DM, Feng H, Berghmans S et al (2005) Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 102:6068–6073. doi:10.1073/pnas.0408708102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Langenau DM, Jette C, Berghmans S et al (2005) Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish. Blood 105:3278–3285. doi:10.1182/blood-2004-08-3073

    Article  CAS  PubMed  Google Scholar 

  60. Foley JE, Maeder ML, Pearlberg J et al (2009) Targeted mutagenesis in zebrafish using customized zinc-finger nucleases. Nat Protoc 4:1855–1867. doi:10.1038/nprot.2009.209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Foley JE, Yeh J-RJR, Maeder ML et al (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS One 4, e4348. doi:10.1371/journal.pone.0004348

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sander JD, Yeh J-RJR, Peterson RT, Joung JK (2011) Engineering zinc finger nucleases for targeted mutagenesis of zebrafish. Methods Cell Biol 104:51–58. doi:10.1016/B978-0-12-374814-0.00003-3

    Article  CAS  PubMed  Google Scholar 

  63. Hwang WY, Fu Y, Reyon D et al (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8, e68708. doi:10.1371/journal.pone.0068708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229. doi:10.1038/nbt.2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Langenau DM, Traver D, Ferrando AA et al (2003) Myc-induced T cell leukemia in transgenic zebrafish. Science 299:887–890. doi:10.1126/science.1080280

    Article  CAS  PubMed  Google Scholar 

  66. Ignatius MS, Chen E, Elpek NM et al (2012) In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell 21:680–693. doi:10.1016/j.ccr.2012.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Weng AP, Ferrando AA, Lee W et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–71. doi:10.1126/science.1102160

    Article  CAS  PubMed  Google Scholar 

  68. Yang H, Xiang J, Wang N, Zhao Y, Hyman J et al (2009) Converse conformational control of smoothened activity by structurally related small molecules. Journal of Biological Chemistry 284(31):20876–20884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. D’Alençon CA, Peña OA, Wittmann C et al (2010) A high-throughput chemically induced inflammation assay in zebrafish. BMC Biol 8:151. doi:10.1186/1741-7007-8-151

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liu Y-JJ, Fan H-BB, Jin Y et al (2013) Cannabinoid receptor 2 suppresses leukocyte inflammatory migration by modulating the JNK/c-Jun/Alox5 pathway. J Biol Chem 288:13551–62. doi:10.1074/jbc.M113.453811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yeh JR, Munson KM, Elagib KE et al (2009) Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat Chem Biol 5:236–43. doi:10.1038/nchembio.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rovira M, Huang W, Yusuff S et al (2011) Chemical screen identifies FDA-approved drugs and target pathways that induce precocious pancreatic endocrine differentiation. Proc Natl Acad Sci USA 108:19264–9. doi:10.1073/pnas.1113081108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hao J, Ao A, Zhou L et al (2013) Selective small molecule targeting β-catenin function discovered by in vivo chemical genetic screen. Cell Rep 4:898–904. doi:10.1016/j.celrep.2013.07.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang Z-RR, Li J-HH, Li S et al (2014) In vivo angiogenesis screening and mechanism of action of novel tanshinone derivatives produced by one-pot combinatorial modification of natural tanshinone mixture from Salvia miltiorrhiza. PLoS One 9:e100416. doi:10.1371 journal.pone.0100416

    Article  PubMed  PubMed Central  Google Scholar 

  75. Davies H, Bignell G, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954. doi:10.1038/nature00766

    Article  CAS  PubMed  Google Scholar 

  76. McLean J, Neidhardt E, Grossman T, Hedstrom L (2001) Multiple inhibitor analysis of the brequinar and leflunomide binding sites on human dihydroorotate dehydrogenase. Biochemistry-us 40:2194–200. doi:10.1021/bi001810q

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Christian Lawrence and Kara Maloney for their input on zebrafish spawning technologies and zebrafish husbandry. The authors also thank Justin L. Tan, Charles K. Kauffman, and Owen J. Tamplin for their expertise on chemical genetics in the zebrafish. Leonard I. Zon is an investigator of the Howard Hughes Medical Institute. Leonard I. Zon is a founder and stockholder of Fate, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard I. Zon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dang, M., Fogley, R., Zon, L.I. (2016). Identifying Novel Cancer Therapies Using Chemical Genetics and Zebrafish. In: Langenau, D. (eds) Cancer and Zebrafish. Advances in Experimental Medicine and Biology, vol 916. Springer, Cham. https://doi.org/10.1007/978-3-319-30654-4_5

Download citation

Publish with us

Policies and ethics