Skip to main content

Progress and Challenges in Understanding the Biology, Diversity, and Biogeography of Cenococcum geophilum

  • Chapter
  • First Online:
Biogeography of Mycorrhizal Symbiosis

Part of the book series: Ecological Studies ((ECOLSTUD,volume 230))

Abstract

Cenococcum geophilum (Dothideomycetes, Ascomycota) is one of the most common ectomycorrhizal fungi in boreal and temperate regions. Although C. geophilum was originally considered as a single species, accumulating evidence suggests that C. geophilum is actually a diverse species complex. Here we provide an overview of the current data on global host range, distribution and biogeography of C. geophilum and discuss what is known about the spatial genetic structure at scales from soil cores to biomes to continents. Recent molecular data indicate that the genetic diversity within C. geophilum can be incredibly high, even at the scale of a single soil core. This highlights the need to characterize Cenococcum samples phylogenetically prior to population studies so that cryptic, reproductively isolated species are not admixed together in the analyses. Also sampling design and effort are critical for understanding population and phylogenetic diversity of C. geophilum. A recent population study targeted one Cenococcum lineage in Japanese pine forests and found no spatial autocorrelation at the forest stand level but did find evidence for a pattern of isolation by distance at larger spatial scales. These observations are consistent with the possibility of cryptic recombination. Another recent phylogenetic study found that several Cenococcum lineages are widely distributed across multiple regions and continents. This indicates that some lineages within C. geophilum may be ancient or that cryptic long-distance dispersal is ongoing. Overall, our assessment and review of the recent literature suggests that additional research is needed to understand the population structure and biology of C. geophilum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Agerer R, Gronbach E (1988) Cenococcum geophilum. In: Agerer R (ed) Colour atlas of Ectomycorrhizae, Plate 11. Einhorn–Verlag, Schwäbisch Gmünd

    Google Scholar 

  • Agerer R, Rambold G (2004–2016) DEEMY – An information system for characterization and determination of Ectomycorrhizae. Ludwig-Maximilians, München. www.deemy.de

  • Alexander IJ, Högberg P (1986) Ectomycorrhizas of tropical angiospermous trees. New Phytol 102:541–549

    Article  Google Scholar 

  • Allen MF, Egerton-Warburton LM, Allen EB, Kårén O (1999) Mycorrhizae in Adenostoma fasciculatum Hook. & Arn.: a combination of unusual ecto- and endo-forms. Mycorrhiza 8:225–228

    Article  Google Scholar 

  • Antibus RK, Croxdale JG, Miller OK, Linkins AE (1981) Ectomycorrhizal fungi of Salix rotundifolia III. Resynthesized mycorrhizal complexes and their surface phosphatase activities. Can J Bot 59:2458–2465

    Article  Google Scholar 

  • Bahram M, Põlme S, Kõljalg U, Tedersoo L (2011) A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiol Ecol 75:313–320

    Article  CAS  PubMed  Google Scholar 

  • Bai S, Bai Y, Fang L, Liu Y (2003) Mycorrhiza of Cenococcum geophilum (Fr.) formed on Ostryopsis daidiana and mycorrhizal affection on the growth of Ostryopsis davidiana. Sci Silvae Sin 40:194–196

    Google Scholar 

  • Bakshi BK, Thapar HS, Singh B (1968) Mycorrhiza in blue pine, spruce and deodar. Proc Natl Inst Sci India 84:27–34

    Google Scholar 

  • Belfiori B, Riccioni C, Paolocci F, Rubini A (2013) Mating type locus of Chinese black truffles reveals heterothallism and the presence of cryptic species within the T. indicum species complex. PLoS One 8:e82353

    Article  PubMed  PubMed Central  Google Scholar 

  • Boehm EWA, Mugambi GK, Miller AN, Huhndorf SM, Marincowitz S, Spatafora JW, Schoch CL (2009) A molecular phylogenetic reappraisal of the Hysteriaceae, Mytilinidiaceae and Gloniaceae (Pleosporomycetidae, Dothideomycetes) with keys to world species. Stud Mycol 64:49–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourne EC, Mina D, Gonçalves SC, Loureiro J, Freitas H, Muller LA (2014) Large and variable genome size unrelated to serpentine adaptation but supportive of cryptic sexuality in Cenococcum geophilum. Mycorrhiza 24:13–20

    Article  PubMed  Google Scholar 

  • Branco S, Gladieux P, Ellison CC, Kuo A, LaButii K, Lipzen A, Grigoriev IV, Liao HL, Vilgalys R, Peay KG, Taylor JW, Bruns TD (2015) Genetic isolation between two recently diverged populations of a symbiotic fungus. Mol Ecol 24:2747–2758

    Article  CAS  PubMed  Google Scholar 

  • Brearley FQ, Press MC, Scholes JD (2003) Nutrients obtained from leaf litter can improve the growth of dipterocarp seedlings. New Phytol 160:101–110

    Article  CAS  Google Scholar 

  • Brearley FQ, Scholes JD, Press MC, Palfner G (2007) How does light and phosphorus fertilisation affect the growth and ectomycorrhizal community of two contrasting dipterocarp species? Plant Ecol 192:237–249

    Article  Google Scholar 

  • Casacuberta E, González J (2013) The impact of transposable elements in environmental adaptation. Mol Ecol 22:1503–1517

    Article  CAS  PubMed  Google Scholar 

  • Castellano MA, Trappe JM (1985) Mycorrhizal associations of five species of Monotropoideae in Oregon. Mycologia 77:499–502

    Article  Google Scholar 

  • Chen LH, Wei YAN, Yan XU (2007) Identification and preliminary analysis of the genetic diversity of Cenococcum geophilum Fr. Agric Sci China 6:956–963

    Article  CAS  Google Scholar 

  • Corrales A, Arnold AE, Ferrer A, Turner BL, Dalling JW (2016) Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. Mycorrhiza 26:1–17

    Article  PubMed  Google Scholar 

  • Dahlberg A, Jonsson L, Nylund JE (1997) Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old growth Norway spruce forest in south Sweden. Can J Bot 75:1323–1335

    Article  Google Scholar 

  • Dickie IA, Guza RC, Krazewski SE, Reich PB (2004) Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. New Phytol 164:375–382

    Article  Google Scholar 

  • Diédhiou AG, Selosse MA, Galiana A, Diabaté M, Dreyfus B, Bâ AM, De Faria SM, Béna G (2010) Multi-host mycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Environ Microbiol 12:2219–2232

    PubMed  Google Scholar 

  • Dokmai P, Phosri C, Khangrang R, Suwannasai N (2015) Above- and below-ground ectomycorrhizal diversity in a pine-oak forest in northeastern Thailand. Chiang Mai J Sci 42:79–87

    Google Scholar 

  • Douhan GW, Darren PM, Rizzo DM (2007a) Using the putative asexual fungus Cenococcum geophilum as a model to test how species concepts influence recombination analyses using sequence data from multiple loci. Curr Genet 52:191–201

    Article  CAS  PubMed  Google Scholar 

  • Douhan GW, Huryn KL, Douhan LI (2007b) Significant diversity and potential problems associated with inferring population structure within the Cenococcum geophilum species complex. Mycologia 99:812–819

    Article  CAS  PubMed  Google Scholar 

  • Douhan GW, Rizzo DM (2005) Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum. New Phytol 166:263–271

    Article  CAS  PubMed  Google Scholar 

  • Douhan GW, Vincenot L, Gryta H, Selosse MA (2011) Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 115:569–597

    Article  PubMed  Google Scholar 

  • Ferdinandsen C, Winge Ö (1925) Cenococcum Fr. A monographic study. Kongelige Vet landbohøjsk 1925:332–382

    Google Scholar 

  • Fernandez CW, Koide RT (2013) The function of melanin in the ectomycorrhizal fungus Cenococcum geophilum under water stress. Fungal Ecol 6:479–486

    Article  Google Scholar 

  • Fernandez CW, McCormack ML, Hill JM, Pritchard SG, Koide RT (2013) On the persistence of Cenococcum geophilum ectomycorrhizas and its implications for forest carbon and nutrient cycles. Soil Biol Biochem 65:141–143

    Article  CAS  Google Scholar 

  • Fernández-Toirán LM, Águeda B (2007) Fruitbodies of Cenococcum geophilum. Mycotaxon 100:109–114

    Google Scholar 

  • Fries E (1825) Systema orbis vegetabilis I. Typographia Academica, Lundae

    Google Scholar 

  • Fujiyoshi M, Yoshitake S, Watanabe K, Murota K, Tsuchiya Y, Uchida M, Nakatsubo T (2011) Successional changes in ectomycorrhizal fungi associated with the polar willow Salix polaris in a deglaciated area in the high Arctic, Svalbard. Polar Biol 34:667–673

    Article  Google Scholar 

  • Ge ZW, Smith ME, Zhang QY, Yang ZL (2012) Two species of the Asian endemic genus Keteleeria form ectomycorrhizas with diverse fungal symbionts in southwestern China. Mycorrhiza 22:403–408

    Article  PubMed  Google Scholar 

  • Geng Y, Li Z, Xia LY, Wang Q, Hu XM, Zhang XG (2014) Characterization and phylogenetic analysis of the mating-type loci in the asexual ascomycete genus Ulocladium. Mycologia 106:649–665

    Article  CAS  PubMed  Google Scholar 

  • Glassman SI, Peay KG, Talbot JM, Smith DP, Chung JA, Taylor JW, Vilgalys R, Bruns TD (2015) A continental view of pine-associated ectomycorrhizal fungal spore banks: a quiescent functional guild with a strong biogeographic pattern. New Phytol 205:1619–1631

    Article  CAS  PubMed  Google Scholar 

  • Gómez BL, Nosanchuk JD (2003) Melanin and fungi. Curr Opin Infect Dis 16:91–96

    Article  PubMed  Google Scholar 

  • Gonçalves SC, Portugal A, Gonçalves MT, Vieira R, Martins-Loução MA, Freitas H (2007) Genetic diversity and differential in vitro responses to Ni in Cenococcum geophilum isolates from serpentine soils in Portugal. Mycorrhiza 17:677–686

    Article  PubMed  Google Scholar 

  • Grand LF (1971) Tuberculate and Cenoccocum mycorrhizae of Photinia (Rosaceae). Mycologia 63:1210–1212

    Article  Google Scholar 

  • Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. doi:10.1093/nar/gkt1183

    Google Scholar 

  • Haselwandter K, Read DJ (1980) Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia 45:57–62

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Higuchi R (2003) Ectomycorrhizal and arbuscular mycorrhizal colonization of two species of floodplain willows. Mycoscience 44:339–343

    Article  Google Scholar 

  • Hasselquist N, Germino MJ, McGonigle T, Smith WK (2005) Variability of Cenococcum colonization and its ecophysiological significance for young conifers at alpine-treeline. New Phytol 165:867–873

    Article  PubMed  Google Scholar 

  • Horton TR, Bruns TD (1998) Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139:331–339

    Article  Google Scholar 

  • Hrynkiewicz K, Baum C, Leinweber P (2009) Mycorrhizal community structure, microbial biomass P and phosphatase activities under Salix polaris as influenced by nutrient availability. Eur J Soil Biol 45:168–175

    Article  CAS  Google Scholar 

  • Huang J, Nara K, Zong K, Wang J, Xue S, Peng K, Shen Z, Lian C (2014) Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana) and white oak (Quercus fabri) in a manganese mining region in Hunan province, China. Fungal Ecol 9:1–10

    Article  Google Scholar 

  • Ingleby K, Mason PA, Last FT, Fleming LV (1990) Identification of ectomycorrhizas. ITE Research Publication, London

    Google Scholar 

  • Izzo A, Canright M, Bruns TD (2006) The effects of heat treatments on ectomycorrhizal resistant propagules and their ability to colonize bioassay seedlings. Mycol Res 110:196–202

    Article  PubMed  Google Scholar 

  • Jany JL, Garbaye J, Martin F (2002) Cenococcum geophilum populations show a high degree of genetic diversity in beech forests. New Phytol 154:651–659

    Article  CAS  Google Scholar 

  • Kantvilas G, Coppins BJ (1997) Melaspilea circumserpens Nyl. rediscovered and referred to Glonium; with discussion of the provenance of some of Robert Brown’s lichen specimens. Lichenologist 29:525–532

    Google Scholar 

  • Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiß M, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277

    Article  PubMed  Google Scholar 

  • Kück U, Pöggeler S (2009) Cryptic sex in fungi. Fungal Biol Rev 23:86–90

    Article  Google Scholar 

  • Lian C, Narimatsu M, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 171:825–836

    Article  PubMed  Google Scholar 

  • Linhell D (1942) Cenococcum graniforme als Mykorrizabildner von Waldbäumen. Symb Bot Ups 5:1–18

    Google Scholar 

  • LoBuglio KF (1999) Cenococcum. In: Cairney JWG, John WG, Chambers SM (eds) Ectomycorrhizal fungi key genera in profile. Springer, Berlin, pp 287–309

    Chapter  Google Scholar 

  • LoBuglio KF, Berbee ML, Taylor JW (1996) Phylogenetic origins of the asexual mycorrhizal symbiont Cenococcum geophilum Fr. and other mycorrhizal fungi among the ascomycetes. Mol Phylogenet Evol 6:287–294

    Article  CAS  PubMed  Google Scholar 

  • LoBuglio KF, Rogers SO, Wang CJK (1991) Variation in ribosomal DNA among isolates of the mycorrhizal fungus Cenococcum geophilum. Can J Bot 69:2331–2343

    Article  CAS  Google Scholar 

  • LoBuglio KF, Taylor JW (2002) Recombination and genetic differentiation in the mycorrhizal fungus Cenococcum geophilum Fr. Mycologia 94:772–780

    PubMed  Google Scholar 

  • Malloch D, Thorn RG (1985) The occurrence of ectomycorrhizae in some species of Cistaceae in north America. Can J Bot 63:872–875

    Google Scholar 

  • Maser C, Maser Z (1987) Notes on mycophagy in four species of mice in the genus Peromyscus. Great Basin Nat 47:308–313

    Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL, Luoma DL (1998) Anatomical aspects of field ectomycorrhizas on Polygonum viviparum (Polygonaceae) and Kobresia bellardii (Cyperaceae). Mycorrhiza 7:287–292

    Article  Google Scholar 

  • Massicotte HB, Trappe JM, Peterson RL, Melville LH (1992) Studies on Cenococcum geophilum. II. Sclerotium morphology, germination, and formation in pure culture and growth pouches. Can J Bot 70:125–132

    Article  Google Scholar 

  • Matsuda Y, Hayakawa N, Ito S (2009a) Local and microscale distributions of Cenococcum geophilum in soils of coastal pine forests. Fungal Ecol 2:31–35

    Article  Google Scholar 

  • Matsuda Y, Noguchi Y, Ito S (2009b) Ectomycorrhizal fungal community of naturally regenerated Pinus thunbergii seedlings in a coastal pine forest. J For Res 14:335–341

    Article  CAS  Google Scholar 

  • Matsuda Y, Takeuchi K, Obase K, Ito S (2015) Spatial distribution and genetic structure of Cenococcum geophilum in coastal pine forests in Japan. FEMS Microbiol Ecol 91. doi:10.1093/femsec/fiv108

  • Miller SL, Torres P, McClean TM (1994) Persistence of basidiospores and sclerotia of ectomycorrhizal fungi and Morchella in soil. Mycologia 86:89–95

    Article  Google Scholar 

  • Miyamoto Y, Nara K (2016) Soil propagule banks of ectomycorrhizal fungi share many common species along an elevation gradient. Mycorrhiza 26:189–197

    Article  PubMed  Google Scholar 

  • Molina R, Trappe JM (1982) Patterns of ectomycorrhizal host specificity and potential among Pacific northwest conifers and fungi. For Sci 28:423–458

    Google Scholar 

  • Morris MH, Pérez-Pérez MA, Smith ME, Bledsoe CS (2008) Multiple species of ectomycorrhizal fungi are frequently detected on individual oak root tips in a tropical cloud forest. Mycorrhiza 18:375–383

    Article  PubMed  Google Scholar 

  • Moser AM, Frank JL, D’Allura JA, Southworth D (2009) Ectomycorrhizal communities of Quercus garryana are similar on serpentine and nonserpentine soils. Plant Soil 315:185–194

    Article  CAS  Google Scholar 

  • Mühlmann O, Bacher M, Peintner U (2008) Polygonum viviparum Mycobionts on an alpine primary successional glacier forefront. Mycorrhiza 18:87–95

    Article  PubMed  Google Scholar 

  • Murat C, Rubini A, Riccioni C, De la Varga H, Akroume E, Belfiori B, Guaragno M, Le Tacon F, Robin C, Halkett F, Martin F, Paolocci F (2013) Fine-scale spatial genetic structure of the black truffle (Tuber melanosporum) investigated with neutral microsatellites and functional mating type genes. New Phytol 199:176–187

    Article  CAS  PubMed  Google Scholar 

  • O’Gorman CM, Fuller HT, Dyer PS (2009) Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457:471–474

    Article  PubMed  Google Scholar 

  • Obase K, Cha JY, Lee JK, Lee SY, Lee JH, Chun KW (2009) Ectomycorrhizal fungal communities associated with Pinus thunbergii in the eastern coastal pine forests of Korea. Mycorrhiza 20:39–49

    Article  PubMed  Google Scholar 

  • Obase K, Douhan GW, Matsuda Y, Smith ME (2016a) Revisiting phylogenetic diversity and cryptic species of Cenococcum geophilum sensu lato. Mycorrhiza 26:529–540

    Article  PubMed  Google Scholar 

  • Obase K, Douhan GW, Matsuda Y, Smith ME (2016b) Cladophialophora floridana and Cladophialophora tortuosa, new species isolated from sclerotia of Cenococcum geophilum in forest soils of Florida, USA. Mycoscience 57:26–34

    Article  Google Scholar 

  • Obase K, Lee JK, Lee SY, Chun KW (2011) Diversity and community structure of ectomycorrhizal fungi in Pinus thunbergii coastal forests in the eastern region of Korea. Mycoscience 52:383–391

    Article  Google Scholar 

  • Panaccione DG, Sheets NL, Miller SP, Cumming JR (2001) Diversity of Cenococcum geophilum isolates from serpentine and non-serpentine soils. Mycologia 93:645–652

    Article  CAS  Google Scholar 

  • Peter M, Kohler A, Ohm RA, Kuo A, Krützmann J, Morin E, Arend M, Barry KW, Binder M, Choi C, Clum A, Copeland A, Grisel N, Haridas S, Kipfer T, LaButti K, Lindquist E, Lipzen A, Maire R, Meier B, Mihaltcheva S, Molinier V, Murat C, Pöggeler S, Quandt CA, Sperisen C, Tritt A, Tisserant E, Crous PW, Henrissat B, Nehls U, Egli S, Spatafora JW, Grigoriev IV, Martin FM (2016) Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nat Commun 7:12662

    Article  PubMed  PubMed Central  Google Scholar 

  • Phosri C, Põlme S, Taylor AFS, Kõljalg U, Suwannasai N, Tedersoo L (2012) Diversity and community composition of ectomycorrhizal fungi in a dry deciduous dipterocarp forest in Thailand. Biodivers Conserv 21:2287–2298

    Article  Google Scholar 

  • Pöggeler S (2002) Genomic evidence for mating abilities in the asexual pathogen Aspergillus fumigatus. Curr Genet 42:153–160

    Article  PubMed  Google Scholar 

  • Portugal A, Martinho P, Vieira R, Freitas H (2001) Molecular characterization of Cenococcum geophilum isolates from an ultramafic soil in Portugal. S Afr J Sci 97:617–619

    CAS  Google Scholar 

  • Rubini A, Belfiori B, Riccioni C, Tisserant E, Arcioni S, Martin F, Paolocci F (2011) Isolation and characterization of MAT genes in the symbiotic ascomycete Tuber melanosporum. New Phytol 189:710–722

    Article  CAS  PubMed  Google Scholar 

  • Séne S, Avril R, Chaintreuil C, Geoffroy A, Ndiaye C, Diédhiou AG, Sadio O, Courtecuisse R, Sylla SN, Selosse MA, Bâ A (2015) Ectomycorrhizal fungal communities of Coccoloba uvifera (L.) L. mature trees and seedlings in the neotropical coastal forests of Guadeloupe (Lesser Antilles). Mycorrhiza 25:547–559

    Article  PubMed  Google Scholar 

  • Shinohara ML, LoBuglio KF, Rogers SO (1999) Comparison of ribosomal DNA ITS regions among geographic isolates of Cenococcum geophilum. Curr Genet 35:527–535

    Article  CAS  PubMed  Google Scholar 

  • Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol 174:847–863

    Article  CAS  PubMed  Google Scholar 

  • Smith ME, Henkel TW, Aime MC, Fremier AK, Vilgalys R (2011) Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytol 192:699–712

    Article  PubMed  Google Scholar 

  • Spatafora JW, Owensby CA, Douhan GW, Boehm EWA, Schoch CL (2012) Phylogenetic placement of the ectomycorrhizal genus Cenococcum in Gloniaceae (Dothideomycetes). Mycologia 104:758–765

    Article  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R et al (2014) Global diversity and geography of soil fungi. Science 346:1256688

    Article  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Trappe JM (1962) Cenococcum graniforme-its distribution, ecology, mycorrhiza formation, and inherent variation. Ph.D. Thesis, University of Washington, Seattle, WA

    Google Scholar 

  • Trappe JM (1964) Mycorrhizal host and distribution of Cenococcum graniforme. Lloydia 27:100–106

    Google Scholar 

  • Trappe JM (1971) Mycorrhiza-forming ascomycetes. In: Hacskaylo E (ed) Mycorrhizae: proceedings of the first north american conference on Mycorrhizae-April 1969. U.S. Department of Agriculture Forest Service, Washington, pp 19–37

    Google Scholar 

  • Vaario LM, Xing ST, Xie ZQ, Lun ZM, Sun X, Li YH (2006) In situ and in vitro colonization of Cathaya argyrophylla (Pinaceae) by ectomycorrhizal fungi. Mycorrhiza 16:137–142

    Article  PubMed  Google Scholar 

  • Väre H, Vestberg M, Ohtonen R (1997) Shifts in mycorrhiza and microbial activity along an oroarctic altitudinal gradient in northern Fennoscandia. Arct Alp Res 29:93–104

    Article  Google Scholar 

  • Wu B, Nara K, Hogetsu T (2005) Genetic structure of Cenococcum geophilum populations in primary successional volcanic deserts on Mount Fuji as revealed by microsatellite markers. New Phytol 165:285–293

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant-in-Aid for JSPS Postdoctoral Fellow for Research Abroad (to K. Obase) with additional funding from the University of Florida Institute for Food and Agricultural Sciences (IFAS) (to M. E. Smith). Support for the participation of M.E. Smith was also due in part to US National Science Foundation grant DEB-1354802. We thank the Interdisciplinary Center for Biotechnology Research (ICBR) at the University of Florida for performing DNA sequencing and the University of Florida’s Austin Cary Memorial forest and Ordway Swisher Biological Station for providing study sites. We appreciate the collaborators at the Smith Mycology Lab at the University of Florida for their assistance in collecting samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Obase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Obase, K., Douhan, G.W., Matsuda, Y., Smith, M.E. (2017). Progress and Challenges in Understanding the Biology, Diversity, and Biogeography of Cenococcum geophilum . In: Tedersoo, L. (eds) Biogeography of Mycorrhizal Symbiosis. Ecological Studies, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-56363-3_14

Download citation

Publish with us

Policies and ethics