Skip to main content

Thermal-Assisted Machining of Titanium Alloys

  • Chapter
  • First Online:
Advanced Manufacturing Technologies

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

Titanium alloys are used in a variety of engineering applications, especially in automotive, aerospace and nuclear fields due to their high strength and excellent corrosion resistance. Nevertheless, titanium alloys have extreme mechanical properties making them very difficult to machine with low thermal conductivity and high chemical reactivity at high temperature. Hence, titanium alloys are required to machine at low cutting speed and feed rate but that increases the cost of production of the components made by these alloys at large. Thermal-assisted machining (TAM) is an effective approach for conventional machining whereby titanium workpiece is locally softened before/during machining with external heating. Localized reduction in workpiece hardness facilitates higher material removal rate (MRR) and extended cutting tool life whilst resulting in better surface finish. This chapter compares and analyzes the merits of different heating techniques for machining of titanium alloys. The techniques under consideration are heating by laser beam, plasma torch heating and heating with the use of induction coil. The laser beam and plasma torch tend to produce more intense localized heating compare to that by induction coil. Moreover, the laser technique offers very controllable process heating compared to other two techniques. Laser-assisted machining (LAM) also largely reduces cutting forces leading to better surface finish. Thus, laser-assisted technique is recognized to be more cost-effective and productive for improving machinability of titanium alloys than rest of the heating techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a e :

Radial depth of cut (mm)

a p :

Axial depth of cut (mm)

D :

Tool or workpiece diameter (mm)

f z :

Feed per tooth (mm)

f r :

Feed per revolution (mm)

F :

Machine linear feed, similar to the translational velocity of the plasma torch (N)

F v :

Thrust force (N)

F t :

Tangential force (N)

I :

Plasma intensity (A)

L :

Lens-workpiece distance on chamfer surface (mm)

L 1 :

Tool-laser beam distance on the surface of workpiece (mm)

\(P_{{CO_{2} }}\) :

Power of CO2 laser (kW)

RT :

Room temperature (°C)

S :

Rotary speed of the spindle (r.p.m)

T mr :

Material removal temperature

T o :

Initial workpiece bulk temperature (°C)

T s :

Surface temperature (°C)

V c :

Cutting speed (m/min)

z :

Number of teeth of the milling tool

α :

Angle between workpiece axis and beam axis (degree)

References

  1. Ezugwu E, Wang Z (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68(3):262–274

    Article  Google Scholar 

  2. Mantle A, Aspinwall D (1998) Tool life and surface roughness when high speed machining a gamma titanium aluminide, progress of cutting and grinding. In: Fourth international conference on progress of cutting and grinding, Urumqi and Turpan. International Academic Publishers, China, pp 89–94

    Google Scholar 

  3. Abele E, Hölscher R (2014) New technology for high speed cutting of titanium alloys. In: New production technologies in aerospace industry. Springer, New York, pp 75–81

    Google Scholar 

  4. Ezugwu E (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tools Manuf 45(12):1353–1367

    Article  Google Scholar 

  5. Veiga C, Davim J, Loureiro A (2013) Review on machinability of titanium alloys: the process perspective. Rev Adv Mater Sci 34(2):148–164

    Google Scholar 

  6. Pramanik A, Littlefair G (2015) Machining of titanium alloy (Ti-6Al-4V)—theory to application. Mach Sci Technol 19(1):1–49

    Article  Google Scholar 

  7. Boyer R (1996) An overview on the use of titanium in the aerospace industry. Mater Sci Eng A 213(1):103–114

    Article  MathSciNet  Google Scholar 

  8. Verma DRSV et al (2003) Effect of pre-drilled holes on tool life in turning of aerospace titanium alloys. In: Proceedings of the national conference on advances in manufacturing system, Production Engineering Department, Jadavpur University, Kolkata, India, pp 42–47

    Google Scholar 

  9. Dornfeld D et al (1999) Drilling burr formation in titanium alloy, Ti-6AI-4V. CIRP Ann Manuf Technol 48(1):73–76

    Article  Google Scholar 

  10. Oosthuizen GA et al (2010) A review of the machinability of titanium alloys. R&D J S Afr Inst Mech Eng 26:43–52

    Google Scholar 

  11. Ezugwu E, Bonney J, Yamane Y (2003) An overview of the machinability of aeroengine alloys. J Mater Process Technol 134(2):233–253

    Article  Google Scholar 

  12. Gupta K, Laubscher RF (2016) Sustainable machining of titanium alloys: a critical review. Proc Inst Mech Eng Part B J Eng Manuf, p 0954405416634278

    Google Scholar 

  13. Dandekar CR, Shin YC, Barnes J (2010) Machinability improvement of titanium alloy (Ti–6Al–4V) via LAM and hybrid machining. Int J Mach Tools Manuf 50(2):174–182

    Article  Google Scholar 

  14. Khanna N et al (2012) Effect of heat treatment conditions on the machinability of Ti64 and Ti54M alloys. Procedia CIRP 1:477–482

    Article  Google Scholar 

  15. Pramanik A (2014) Problems and solutions in machining of titanium alloys. Int J Adv Manuf Technol 70(5–8):919–928

    Article  Google Scholar 

  16. Brecher C et al (2011) Laser-assisted milling of advanced materials. Phys Procedia 12:599–606

    Article  Google Scholar 

  17. Przestacki D, Jankowiak M (2014) Surface roughness analysis after laser assisted machining of hard to cut materials. J Phy Conf Ser (IOP Publishing)

    Google Scholar 

  18. Ginta TL, Amin AN (2010) Machinability improvement in end milling titanium alloy TI-6AL-4V, vol 3, pp 25–33

    Google Scholar 

  19. Krabacher EJ, Merchant ME (1951) Basic factor of hot machining of metals. J Eng Ind 73:761–776

    Google Scholar 

  20. Pfefferkorn FE et al (2009) A metric for defining the energy efficiency of thermally assisted machining. Int J Mach Tools Manuf 49(5):357–365

    Article  Google Scholar 

  21. Radovanovic MR, Dašić PV (2006) Laser assisted turning. In: Research and development in mechanical industry, RaDMI 2006, Budva, Montenegro, pp 312–316

    Google Scholar 

  22. Shin YC (2011) LAM benefits a wide range of difficult-to-machine materials. J Ind Laser Solut Manuf

    Google Scholar 

  23. Pentland W, Mehl C, Wennbery J (1960) Hot machining. Am Mach Metalwork Manuf 1:117–132

    Google Scholar 

  24. Madhavulu G, Ahmed B (1994) Hot machining process for improved metal removal rates in turning operations. J Mater Process Technol 44(3):199–206

    Article  Google Scholar 

  25. Çakır O, Altan E (2008) Hot machining of high manganese steel: a review. In: Trends in the development of machinery and associated technology, Istanbul, Turkey, pp 105–108

    Google Scholar 

  26. Özler L, Inan A, Özel C (2001) Theoretical and experimental determination of tool life in hot machining of austenitic manganese steel. Int J Mach Tools Manuf 41(2):163–172

    Article  Google Scholar 

  27. Rajopadhye RD, Telsang MT, Dhole NS (2009) Experimental setup for hot machining process to increase tool life with torch flame. In: Second international conference on emerging trends in engineering (SICETE), Nagpur, Maharashtra, India, pp 58–62

    Google Scholar 

  28. Tosun N, Ozler L (2004) Optimisation for hot turning operations with multiple performance characteristics. Int J Adv Manuf Technol 23(11–12):777–782

    Google Scholar 

  29. Rebro PA et al (2002) Comparative assessment of laser-assisted machining for various ceramics, vol 30. Transactions of North American Manufacturing Research Institution, pp 153–160

    Google Scholar 

  30. Bermingham M, Palanisamy S, Dargusch M (2012) Understanding the tool wear mechanism during thermally assisted machining Ti-6Al-4V. Int J Mach Tools Manuf 62:76–87

    Article  Google Scholar 

  31. Amin A, Abdelgadir M (2003) The effect of preheating of work material on chatter during end milling of medium carbon steel performed on a vertical machining center (VMC). J Manuf Sci Eng 125(4):674–680

    Article  Google Scholar 

  32. Ginta TL et al (2009) Improved tool life in end milling Ti-6Al-4V through workpiece preheating. Eur J Sci Res 27(3):384–391

    Google Scholar 

  33. Lajis MA et al (2009) Hot machining of hardened steels with coated carbide inserts. Am J Eng Appl Sci 2(2):421–427

    Article  Google Scholar 

  34. Amin AN et al (2008) Effects of workpiece preheating on surface roughness, chatter and tool performance during end milling of hardened steel D2. J Mater Process Technol 201(1):466–470

    Article  Google Scholar 

  35. Kttagawa T, Maekawa K (1990) Plasma hot machining for new engineering materials. Wear 139(2):251–267

    Article  Google Scholar 

  36. Popa L (2012) Complex study of plasma hot machining (PMP). Revista de Tehnologii Neconventionale 16(1):26

    Google Scholar 

  37. De Lacalle LNL et al (2004) Plasma assisted milling of heat-resistant superalloys. J Manuf Sci Eng 126(2):274–285

    Article  Google Scholar 

  38. Leshock CE, Kim J-N, Shin YC (2001) Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results. Int J Mach Tools Manuf 41(6):877–897

    Article  Google Scholar 

  39. Novak J, Shin Y, Incropera F (1997) Assessment of plasma enhanced machining for improved machinability of Inconel 718. J Manuf Sci Eng 119(1):125–129

    Article  Google Scholar 

  40. Shin YC, Kim J-N (1996) Plasma enhanced machining of Inconel 718. Manuf Sci Eng ASME MED 4:243–249

    Google Scholar 

  41. Jau BM, Copley SM, Bass M (1981) Laser assisted machining. In: Proceedings of the ninth north american manufacturing research conference, University Park, Pennsylvania, pp 12–15

    Google Scholar 

  42. Dumitrescu P et al (2006) High-power diode laser assisted hard turning of AISI D2 tool steel. Int J Mach Tools Manuf 46(15):2009–2016

    Article  Google Scholar 

  43. Thomas T, Vigneau JO (1999) Laser-assisted milling process. Google Patents

    Google Scholar 

  44. Chryssolouris G, Anifantis N, Karagiannis S (1997) Laser assisted machining: an overview. J Manuf Sci Eng 119(4B):766–769

    Article  Google Scholar 

  45. Rajagopal S, Plankenhorn D, Hill V (1982) Machining aerospace alloys with the aid of a 15kW laser. J Appl Metalwork 2(3):170–184

    Article  Google Scholar 

  46. Dubey AK, Yadava V (2008) Laser beam machining—a review. Int J Mach Tools Manuf 48(6):609–628

    Article  Google Scholar 

  47. Venkatesan K, Ramanujam R, Kuppan P (2014) Laser assisted machining of difficult to cut materials: research opportunities and future directions-a comprehensive review. Procedia Eng 97:1626–1636

    Article  Google Scholar 

  48. Shin YC (2000) Laser assisted machining. Mach Technol 11(3):1–6

    Google Scholar 

  49. Velayudham A (2007) Modern manufacturing processes: a review. J Des Manuf Technol 1(1):30–40

    Google Scholar 

  50. Jeon Y, Park HW, Lee CM (2013) Current research trends in external energy assisted machining. Int J Precis Eng Manuf 14(2):337–342

    Article  Google Scholar 

  51. Rozzi JC et al (2000) Experimental evaluation of the laser assisted machining of silicon nitride ceramics. J Manuf Sci Eng 122(4):666–670

    Article  Google Scholar 

  52. Warap N, Mohid Z, Rahim EA (2013) Laser assisted machining of titanium alloys. In: Materials science forum. Trans Tech Publications, Switzerland

    Google Scholar 

  53. Rebro PA, Shin YC, Incropera FP (2004) Design of operating conditions for crackfree laser-assisted machining of mullite. Int J Mach Tools Manuf 44(7):677–694

    Article  Google Scholar 

  54. Lei S, Shin YC, Incropera FP (2001) Experimental investigation of thermo-mechanical characteristics in laser-assisted machining of silicon nitride ceramics. J Manuf Sci Eng 123(4):639–646

    Article  Google Scholar 

  55. Wu J-F, Guu Y-B (2006) Laser assisted machining method and device. Google Patents

    Google Scholar 

  56. Kim K-S et al (2011) A review on research and development of laser assisted turning. Int J Precis Eng Manuf 12(4):753–759

    Article  Google Scholar 

  57. Braham-Bouchnak T et al (2013) The influence of laser assistance on the machinability of the titanium alloy Ti555-3. Int J Adv Manuf Technol 68(9–12):2471–2481

    Article  Google Scholar 

  58. Shi B, Attia H (2013) Integrated process of laser-assisted machining and laser surface heat treatment. J Manuf Sci Eng 135(6):061021

    Article  Google Scholar 

  59. Anderson M, Patwa R, Shin YC (2006) Laser-assisted machining of Inconel 718 with an economic analysis. Int J Mach Tools Manuf 46(14):1879–1891

    Article  Google Scholar 

  60. Kannan V, Radhakrishnan R, Palaniyandi K (2014) A review on conventional and laser assisted machining of Aluminium based metal matrix composites. Eng Rev 34(2):75–84

    Google Scholar 

  61. Klocke F, Bergs T (1997) Laser-assisted turning of advanced ceramics. In: Lasers and optics in manufacturing III. International Society for Optics and Photonics

    Google Scholar 

  62. Rahim E, Warap N, Mohid Z (2015) Thermal-assisted machining of nickel-based alloy. Superalloys

    Google Scholar 

  63. Kong XJ et al (2014) Laser-assisted machining of advanced materials. In: Materials science forum. Trans Tech Publications, Switzerland

    Google Scholar 

  64. Pfefferkorn FE, Incropera FP, Shin YC (2005) Heat transfer model of semi-transparent ceramics undergoing laser-assisted machining. Int J Heat Mass Transf 48(10):1999–2012

    Article  Google Scholar 

  65. Xuefeng W, Hongzhi Z, Yang W (2009) Three-dimensional thermal analysis for laser assisted machining of ceramics using FEA. In: Proceedings of SPIE

    Google Scholar 

  66. Rozzi JC et al (1998) Transient thermal response of a rotating cylindrical silicon nitride workpiece subjected to a translating laser heat source, part I: comparison of surface temperature measurements with theoretical results. J Heat Transfer 120(4):899–906

    Article  Google Scholar 

  67. Sun S, Harris J, Brandt M (2008) Parametric investigation of laser-assisted machining of commercially pure titanium. Adv Eng Mater 10(6):565–572

    Article  Google Scholar 

  68. Gratias J et al (1993) Proposition of a method to optimize the machining of XC42 steel with laser assistance. CIRP Ann Manuf Technol 42(1):115–118

    Article  Google Scholar 

  69. Yang B, Lei S (2008) Laser-assisted milling of silicon nitride ceramic: a machinability study. Int J Mechatron Manuf Syst 1(1):116–130

    MathSciNet  Google Scholar 

  70. Lei S, Shin YC, Incropera FP (2000) Deformation mechanisms and constitutive modeling for silicon nitride undergoing laser-assisted machining. Int J Mach Tools Manuf 40(15):2213–2233

    Article  Google Scholar 

  71. Bejjani R et al (2011) Laser assisted turning of titanium metal matrix composite. CIRP Ann Manuf Technol 60(1):61–64

    Article  Google Scholar 

  72. Attia H et al (2010) Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions. CIRP Ann Manuf Technol 59(1):83–88

    Article  Google Scholar 

  73. Anderson M, Shin Y (2006) Laser-assisted machining of an austenitic stainless steel: P550. Proc Inst Mech Eng Part B J Eng Manuf 220(12):2055–2067

    Article  Google Scholar 

  74. Ding H, Shin YC (2010) Laser-assisted machining of hardened steel parts with surface integrity analysis. Int J Mach Tools Manuf 50(1):106–114

    Article  Google Scholar 

  75. Germain G, Dal Santo P, Lebrun JL (2011) Comprehension of chip formation in laser assisted machining. Int J Mach Tools Manuf 51(3):230–238

    Article  Google Scholar 

  76. Garcí V et al (2013) Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM). Int J Mach Tools Manuf 74:19–28

    Article  Google Scholar 

  77. Kim D-H, Lee C-M (2014) A study of cutting force and preheating-temperature prediction for laser-assisted milling of Inconel 718 and AISI 1045 steel. Int J Heat Mass Transf 71:264–274

    Article  Google Scholar 

  78. Venkatesan K, Ramanujam R, Kuppan P (2014) Analysis of cutting forces and temperature in laser assisted machining of inconel 718 using Taguchi method. Procedia Eng 97:1637–1646

    Article  Google Scholar 

  79. Dong-Gyu A, Kyung-Won B (2009) Influence of cutting parameters on surface characteristics of cut section in cutting of Inconel 718 sheet using CW Nd: YAG laser. Trans Nonferr Metals Soc China 19:s32–s39

    Article  Google Scholar 

  80. Kong X et al (2015) Cutting performance and coated tool wear mechanisms in laser-assisted milling K24 nickel-based superalloy. Int J Adv Manuf Technol 77(9–12):2151–2163

    Article  Google Scholar 

  81. Thawari G et al (2005) Influence of process parameters during pulsed Nd: YAG laser cutting of nickel-base superalloys. J Mater Process Technol 170(1):229–239

    Article  Google Scholar 

  82. Ding H, Shin YC (2013) Improvement of machinability of Waspaloy via laser-assisted machining. Int J Adv Manuf Technol 64(1–4):475–486

    Article  Google Scholar 

  83. Rebro PA, Shin YC, Incropera FP (2002) Laser-assisted machining of reaction sintered mullite ceramics. J Manuf Sci Eng 124(4):875–885

    Article  Google Scholar 

  84. Lee S-J, Kim J-D, Suh J (2014) Microstructural variations and machining characteristics of silicon nitride ceramics from increasing the temperature in laser assisted machining. Int J Precis Eng Manuf 15(7):1269–1274

    Article  Google Scholar 

  85. Kim J-D, Lee S-J, Suh J (2011) Characteristics of laser assisted machining for silicon nitride ceramic according to machining parameters. J Mech Sci Technol 25(4):995–1001

    Article  Google Scholar 

  86. Rashid RAR et al (2013) Experimental investigation of laser assisted machining of AZ91 magnesium alloy. Int J Precis Eng Manuf 14(7):1263–1265

    Article  Google Scholar 

  87. Pfefferkorn FE et al (2004) Laser-assisted machining of magnesia-partially-stabilized zirconia. J Manuf Sci Eng 126(1):42–51

    Article  Google Scholar 

  88. Wang Y, Yang L, Wang N (2002) An investigation of laser-assisted machining of Al2O3 particle reinforced aluminum matrix composite. J Mater Process Technol 129(1):268–272

    Article  Google Scholar 

  89. Chang C-W, Kuo C-P (2007) Evaluation of surface roughness in laser-assisted machining of aluminum oxide ceramics with Taguchi method. Int J Mach Tools Manuf 47(1):141–147

    Article  Google Scholar 

  90. Dandekar CR, Shin YC (2010) Laser-assisted machining of a fiber reinforced metal matrix composite. J Manuf Sci Eng 132(6):061004

    Article  Google Scholar 

  91. Hedberg G, Shin Y, Xu L (2015) Laser-assisted milling of Ti-6Al-4V with the consideration of surface integrity. Int J Adv Manuf Technol 79(9–12):1645–1658

    Article  Google Scholar 

  92. Germain G et al (2006) Effect of laser assistance machining on residual stress and fatigue strength for a bearing steel (100Cr6) and a titanium alloy (Ti 6Al 4V). In: Materials science forum. Trans Tech Publications, Switzerland

    Google Scholar 

  93. Rashid RR et al (2012) An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti–6Cr–5Mo–5V–4Al beta titanium alloy. Int J Mach Tools Manuf 63:58–69

    Article  Google Scholar 

  94. Sun S et al (2011) Experimental investigation of cutting forces and tool wear during laser-assisted milling of Ti-6Al-4V alloy. Proc Inst Mech Eng Part B J Eng Manuf 225(9):1512–1527

    Article  Google Scholar 

  95. Nasr MNA, Balbaa M (2014) Effect of laser power on residual stresses when laser-assisted turning of AISI 4340 steel. In: Proceedings of the canadian society for mechanical engineering international congress, Toronto, Ontario, Canada

    Google Scholar 

  96. Germain G et al (2008) Laser-assisted machining of Inconel 718 with carbide and ceramic inserts. Int J Mater Form 1(1):523–526

    Article  Google Scholar 

  97. Lee J-H et al (2008) Trends of laser integrated machine. J Korean Soc Precis Eng 25(9):20–26

    MathSciNet  Google Scholar 

  98. Dahotre NB, Harimkar SP (2008) Laser fabrication and machining of materials. Springer, New York

    Google Scholar 

  99. Nath A (2013) High power lasers in material processing applications: an overview of recent developments. In: Laser-assisted fabrication of materials. Springer, New York, pp 69–111

    Google Scholar 

  100. König W, Zaboklicki AK (1993) Laser assisted hot machining of ceramics and composite materials, vol 847. National Institute of Science and Technology, NIST Special Publication

    Google Scholar 

  101. König W, Wageman A (1991) Fine machining of advanced ceramics. In: Vincenzini P (ed) Ceramics today—tomorrow’s ceramics, Montecatini Terme, Italy, pp 2769–2784

    Google Scholar 

  102. Kennedy E, Byrne G, Collins D (2004) A review of the use of high power diode lasers in surface hardening. J Mater Process Technol 155:1855–1860

    Article  Google Scholar 

  103. Bachmann F (2003) Industrial applications of high power diode lasers in materials processing. Appl Surf Sci 208:125–136

    Article  Google Scholar 

  104. Li L (2000) The advances and characteristics of high-power diode laser materials processing. Opt Lasers Eng 34(4):231–253

    Article  Google Scholar 

  105. Choi S et al (2007) Characteristics of metal surface heat treatment by diode laser. J Korean Soc Manuf Process Eng 6(3):16–23

    Google Scholar 

  106. Rashid RR et al (2012) The effect of laser power on the machinability of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy during laser assisted machining. Int J Mach Tools Manuf 63:41–43

    Article  Google Scholar 

  107. Venkatesan K, Ramanujam R, Kuppan P (2016) Parametric modeling and optimization of laser scanning parameters during laser assisted machining of Inconel 718. Opt Laser Technol 78:10–18

    Article  Google Scholar 

  108. Kannan MV et al (2014) Effect of laser scan speed on surface temperature, cutting forces and tool wear during laser assisted machining of alumina. Procedia Eng 97:1647–1656

    Article  Google Scholar 

  109. Sun S, Brandt M, Dargusch M (2010) The effect of a laser beam on chip formation during machining of Ti6Al4V alloy. Metall Mater Trans A 41(6):1573–1581

    Article  Google Scholar 

  110. Yang J et al (2010) Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy. J Mater Process Technol 210(15):2215–2222

    Google Scholar 

  111. Zamani H et al (2012) Numerical and experimental investigation of laser assisted side milling of Ti6Al4V alloy. In: Proceedings of materials science & technology conference and exhibition

    Google Scholar 

  112. Zamani H et al (2013) 3D simulation and process optimization of laser assisted milling of Ti6Al4V. Procedia CIRP 8:75–80

    Google Scholar 

  113. Joshi A et al (2014) A study of temperature distribution for laser assisted machining of Ti-6Al-4V alloy. Procedia Eng 97:1466–1473

    Google Scholar 

  114. Rashid RR et al (2014) A study on laser assisted machining of Ti10V2Fe3Al alloy with varying laser power. Int J Adv Manuf Technol 74(1–4):219–224

    Google Scholar 

  115. Xi Y et al (2014) Numerical modeling of laser assisted machining of a beta titanium alloy. Comput Mater Sci 92:149–156

    Google Scholar 

  116. Ayed Y et al (2014) Experimental and numerical study of laser-assisted machining of Ti6Al4V titanium alloy. Finite Elem Anal Des 92:72–79

    Google Scholar 

  117. Pérez J, Llorente J, Sanchez J (2000) Advanced cutting conditions for the milling of aeronautical alloys. J Mater Process Technol 100(1):1–11

    Google Scholar 

  118. Pfender E, Spores R, Chen WLT (1995) A new look at the thermal and gas dynamic characteristics of a plasma jet. Int J Mater Prod Technol 10(3–6):548–565

    Google Scholar 

  119. Pfender E, Fincke J, Spores R (1991) Entrainment of cold gas into thermal plasma jets. Plasma Chem Plasma Process 11(4):529–543

    Article  Google Scholar 

  120. Wang Z et al (2003) Hybrid machining of Inconel 718. Int J Mach Tools Manuf 43(13):1391–1396

    Article  Google Scholar 

  121. Kitagawa T, Maekawa K, Kubo A (1988) Plasma hot machining for high hardness metals. Bull Jpn Soc Precis Eng 22(2):145–151

    Google Scholar 

  122. Armendia M et al (2010) Comparison of the machinabilities of Ti6Al4V and TIMETAL® 54M using uncoated WC–Co tools. J Mater Process Technol 210(2):197–203

    Article  Google Scholar 

  123. Hossain MI et al (2008) Enhancement of machinability by workpiece preheating in end milling of Ti-6Al-4V. J Achiev Mater Manuf Eng 31(2):320–326

    Google Scholar 

  124. Baili M et al (2011) An experimental investigation of hot machining with induction to improve Ti-5553 machinability. In: Applied mechanics and Materials. Trans Tech Publications, Switzerland

    Google Scholar 

  125. Amin AN et al (2007) Influence of preheating on performance of circular carbide inserts in end milling of carbon steel. J Mater Process Technol 185(1):97–105

    Article  Google Scholar 

  126. Amin A, Hossain MI, Patwari AU (2011) Enhancement of Machinability of Inconel 718 in End Milling through Online Induction Heating of Workpiece. In: Advanced materials research. Trans Tech Publications, Switzerland

    Google Scholar 

  127. Ginta TL, Amin AN (2013) Surface integrity in end milling titanium alloy Ti-6Al-4V under heat assisted machining. Asian J Sci Res 6(3):609

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Shams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shams, O.A., Pramanik, A., Chandratilleke, T.T. (2017). Thermal-Assisted Machining of Titanium Alloys. In: Gupta, K. (eds) Advanced Manufacturing Technologies. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-56099-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56099-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56098-4

  • Online ISBN: 978-3-319-56099-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics