Skip to main content

Structure-Function Relationship of the SERCA Pump and Its Regulation by Phospholamban and Sarcolipin

  • Chapter
  • First Online:
Membrane Dynamics and Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 981))

Abstract

Calcium is a universal second messenger involved in diverse cellular processes, including excitation-contraction coupling in muscle. The contraction and relaxation of cardiac muscle cells are regulated by the cyclic movement of calcium primarily between the extracellular space, the cytoplasm and the sarcoplasmic reticulum (SR). The rapid removal of calcium from the cytosol is primarily facilitated by the sarco(endo)plasmic reticulum calcium ATPase (SERCA) which pumps calcium back into the SR lumen and thereby controls the amount of calcium in the SR. The most studied member of the P-type ATPase family, SERCA has multiple tissue- and cell-specific isoforms and is primarily regulated by two peptides in muscle, phospholamban and sarcolipin. The multifaceted regulation of SERCA via these peptides is exemplified in the biological fine-tuning of their independent oligomerization and regulation. In this chapter, we overview the structure-function relationship of SERCA and its peptide modulators, detailing the regulation of the complexes and summarizing their physiological and disease relevance.

Przemek A. Gorski and Delaine K. Ceholski contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci USA 99:1115–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  CAS  PubMed  Google Scholar 

  3. Periasamy M, Kalyanasundaram A (2007) SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve 35:430–442

    Article  CAS  PubMed  Google Scholar 

  4. Bhupathy P, Babu GJ, Periasamy M (2007) Sarcolipin and phospholamban as regulators of cardiac sarcoplasmic reticulum Ca2+ ATPase. J Mol Cell Cardiol 42:903–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ji Y et al (1999) SERCA1a can functionally substitute for SERCA2a in the heart. Am J Phys 276:H89–H97

    CAS  Google Scholar 

  6. Loukianov E et al (1998) Enhanced myocardial contractility and increased Ca2+ transport function in transgenic hearts expressing the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. Circ Res 83:889–897

    Article  CAS  PubMed  Google Scholar 

  7. Lalli MJ et al (2001) Sarcoplasmic reticulum Ca(2+) atpase (SERCA) 1a structurally substitutes for SERCA2a in the cardiac sarcoplasmic reticulum and increases cardiac Ca(2+) handling capacity. Circ Res 89:160–167

    Article  CAS  PubMed  Google Scholar 

  8. MacLennan DH (2000) Ca2+ signalling and muscle disease. Eur J Biochem 267:5291–5297

    Article  CAS  PubMed  Google Scholar 

  9. Odermatt A et al (1996) Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nat Genet 14:191–194

    Article  CAS  PubMed  Google Scholar 

  10. Vangheluwe P et al (2003) Ca2+ transport ATPase isoforms SERCA2a and SERCA2b are targeted to the same sites in the murine heart. Cell Calcium 34:457–464

    Article  CAS  PubMed  Google Scholar 

  11. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577

    Article  CAS  PubMed  Google Scholar 

  12. Gunteski-Hamblin AM, Greeb J, Shull GE (1988) A novel Ca2+ pump expressed in brain, kidney, and stomach is encoded by an alternative transcript of the slow-twitch muscle sarcoplasmic reticulum Ca-ATPase gene. Identification of cDNAs encoding Ca2+ and other cation-transporting ATPases using an oligonucleotide probe derived from the ATP-binding site. J Biol Chem 263:15032–15040

    CAS  PubMed  Google Scholar 

  13. Verboomen H et al (1992) Functional difference between SERCA2a and SERCA2b Ca2+ pumps and their modulation by phospholamban. Biochem J 286(Pt 2):591–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dally S et al (2006) Ca2+-ATPases in non-failing and failing heart: evidence for a novel cardiac sarco/endoplasmic reticulum Ca2+-ATPase 2 isoform (SERCA2c). Biochem J 395:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kimura T et al (2005) Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet 14:2189–2200

    Article  CAS  PubMed  Google Scholar 

  16. Clausen JD et al (2012) Distinct roles of the C-terminal 11th transmembrane helix and luminal extension in the partial reactions determining the high Ca2+ affinity of sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2b (SERCA2b). J Biol Chem 287(39):460–469

    Google Scholar 

  17. Wuytack F, Raeymaekers L, Missiaen L (2002) Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 32:279–305

    Article  CAS  PubMed  Google Scholar 

  18. Periasamy M et al (1999) Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J Biol Chem 274:2556–2562

    Article  CAS  PubMed  Google Scholar 

  19. Wuytack F et al (1995) The SERCA3-type of organellar Ca2+ pumps. Biosci Rep 15:299–306

    Article  CAS  PubMed  Google Scholar 

  20. Varadi A et al (1999) Sequence variants of the sarco(endo)plasmic reticulum Ca(2+)-transport ATPase 3 gene (SERCA3) in Caucasian type II diabetic patients (UK Prospective Diabetes Study 48). Diabetologia 42:1240–1243

    Article  CAS  PubMed  Google Scholar 

  21. Liu LH et al (1997) Defective endothelium-dependent relaxation of vascular smooth muscle and endothelial cell Ca2+ signaling in mice lacking sarco(endo)plasmic reticulum Ca2+-ATPase isoform 3. J Biol Chem 272(30):538–545

    Google Scholar 

  22. Xu XY et al (2012) Aberrant SERCA3 expression is closely linked to pathogenesis, invasion, metastasis, and prognosis of gastric carcinomas. Tumour Biol 33:1845–1854

    Article  CAS  PubMed  Google Scholar 

  23. Arbabian A et al (2013) Modulation of endoplasmic reticulum calcium pump expression during lung cancer cell differentiation. FEBS J 280:5408–5418

    Article  CAS  PubMed  Google Scholar 

  24. Gelebart P et al (2002) Expression of endomembrane calcium pumps in colon and gastric cancer cells. Induction of SERCA3 expression during differentiation. J Biol Chem 277:26310–26320

    Article  CAS  PubMed  Google Scholar 

  25. Papp B, Brouland JP (2011) Altered endoplasmic reticulum calcium pump expression during breast tumorigenesis. Breast Cancer (Auckl) 5:163–174

    Google Scholar 

  26. Kuhlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5:282–295

    Article  CAS  PubMed  Google Scholar 

  27. Albers RW (1967) Biochemical aspects of active transport. Annu Rev Biochem 36:727–756

    Article  CAS  PubMed  Google Scholar 

  28. Moller JV et al (2010) The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q Rev Biophys 43:501–566

    Article  CAS  PubMed  Google Scholar 

  29. Olesen C et al (2007) The structural basis of calcium transport by the calcium pump. Nature 450:1036–1042

    Article  CAS  PubMed  Google Scholar 

  30. Moller JV et al (2005) Transport mechanism of the sarcoplasmic reticulum Ca2+ -ATPase pump. Curr Opin Struct Biol 15:387–393

    Article  CAS  PubMed  Google Scholar 

  31. Jensen AM et al (2006) Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J 25:2305–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moncoq K, Trieber CA, Young HS (2007) The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump. J Biol Chem 282:9748–9757

    Article  CAS  PubMed  Google Scholar 

  33. Laursen M et al (2009) Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 284(13):513–518

    Google Scholar 

  34. MacLennan DH et al (1985) Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316:696–700

    Article  CAS  PubMed  Google Scholar 

  35. Lee AG, East JM (2001) What the structure of a calcium pump tells us about its mechanism. Biochem J 356:665–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dux L, Martonosi A (1983) Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate. J Biol Chem 258:2599–2603

    CAS  PubMed  Google Scholar 

  37. Toyoshima C, Sasabe H, Stokes DL (1993) Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature 362:467–471

    Article  CAS  PubMed  Google Scholar 

  38. Zhang P et al (1998) Structure of the calcium pump from sarcoplasmic reticulum at 8-A resolution. Nature 392:835–839

    Article  CAS  PubMed  Google Scholar 

  39. Toyoshima C et al (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405:647–655

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Z et al (2000) Detailed characterization of the cooperative mechanism of Ca(2+) binding and catalytic activation in the Ca(2+) transport (SERCA) ATPase. Biochemistry 39:8758–8767

    Article  CAS  PubMed  Google Scholar 

  41. Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611

    Article  CAS  PubMed  Google Scholar 

  42. Clausen JD et al (2008) Critical interaction of actuator domain residues arginine 174, isoleucine 188, and lysine 205 with modulatory nucleotide in sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 283(35):703–714

    Google Scholar 

  43. Sorensen TL, Moller JV, Nissen P (2004) Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304:1672–1675

    Article  CAS  PubMed  Google Scholar 

  44. Toyoshima C et al (2003) Modeling of the inhibitory interaction of phospholamban with the Ca2+ ATPase. Proc Natl Acad Sci USA 100:467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Drachmann ND et al (2014) Comparing crystal structures of Ca(2+) -ATPase in the presence of different lipids. FEBS J 281:4249–4262

    Article  CAS  PubMed  Google Scholar 

  46. Akin BL et al (2013) The structural basis for phospholamban inhibition of the calcium pump in sarcoplasmic reticulum. J Biol Chem 288(30):181–191

    Google Scholar 

  47. Kimura Y et al (1997) Phospholamban inhibitory function is activated by depolymerization. J Biol Chem 272(15):61–64

    Google Scholar 

  48. Robia SL et al (2007) Forster transfer recovery reveals that phospholamban exchanges slowly from pentamers but rapidly from the SERCA regulatory complex. Circ Res 101:1123–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cornea RL et al (2000) Reexamination of the role of the leucine/isoleucine zipper residues of phospholamban in inhibition of the Ca2+ pump of cardiac sarcoplasmic reticulum. J Biol Chem 275(41):487–494

    Google Scholar 

  50. Kimura Y et al (1998) Phospholamban domain Ib mutations influence functional interactions with the Ca2+-ATPase isoform of cardiac sarcoplasmic reticulum. J Biol Chem 273(14):238–241

    Google Scholar 

  51. Karim CB et al (2001) Role of cysteine residues in structural stability and function of a transmembrane helix bundle. J Biol Chem 276(38):814–819

    Google Scholar 

  52. Karim CB et al (1998) Cysteine reactivity and oligomeric structures of phospholamban and its mutants. Biochemistry 37:12074–12081

    Article  CAS  PubMed  Google Scholar 

  53. Becucci L et al (2009) On the function of pentameric phospholamban: ion channel or storage form? Biophys J 96:L60–L62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kovacs RJ et al (1988) Phospholamban forms Ca2+-selective channels in lipid bilayers. J Biol Chem 263(18):364–368

    Google Scholar 

  55. Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci USA 102(10):870–875

    Google Scholar 

  56. Stokes DL et al (2006) Interactions between Ca2+-ATPase and the pentameric form of phospholamban in two-dimensional co-crystals. Biophys J 90:4213–4223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Glaves JP et al (2011) Phosphorylation and mutation of phospholamban alter physical interactions with the sarcoplasmic reticulum calcium pump. J Mol Biol 405:707–723

    Article  CAS  PubMed  Google Scholar 

  58. Chu G et al (1998) Pentameric assembly of phospholamban facilitates inhibition of cardiac function in vivo. J Biol Chem 273(33):674–680

    Google Scholar 

  59. Chen Z, Akin BL, Jones LR (2007) Mechanism of reversal of phospholamban inhibition of the cardiac Ca2+-ATPase by protein kinase A and by anti-phospholamban monoclonal antibody 2D12. J Biol Chem 282(20):968–976

    Google Scholar 

  60. Cornea RL et al (1997) Mutation and phosphorylation change the oligomeric structure of phospholamban in lipid bilayers. Biochemistry 36:2960–2967

    Article  CAS  PubMed  Google Scholar 

  61. Oxenoid K, Rice AJ, Chou JJ (2007) Comparing the structure and dynamics of phospholamban pentamer in its unphosphorylated and pseudo-phosphorylated states. Protein Sci 16:1977–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hou Z, Kelly EM, Robia SL (2008) Phosphomimetic mutations increase phospholamban oligomerization and alter the structure of its regulatory complex. J Biol Chem 283(28):996–9003

    Google Scholar 

  63. Wegener AD et al (1986) Proteolytic cleavage of phospholamban purified from canine cardiac sarcoplasmic reticulum vesicles. Generation of a low resolution model of phospholamban structure. J Biol Chem 261:5154–5159

    CAS  PubMed  Google Scholar 

  64. Choma C et al (2000) Asparagine-mediated self-association of a model transmembrane helix. Nat Struct Biol 7:161–166

    Article  CAS  PubMed  Google Scholar 

  65. Afara MR et al (2006) Rational design of peptide inhibitors of the sarcoplasmic reticulum calcium pump. Biochemistry 45:8617–8627

    Article  CAS  PubMed  Google Scholar 

  66. Afara MR et al (2008) Peptide inhibitors use two related mechanisms to alter the apparent calcium affinity of the sarcoplasmic reticulum calcium pump. Biochemistry 47:9522–9530

    Article  CAS  PubMed  Google Scholar 

  67. Kimura Y et al (1996) Phospholamban regulates the Ca2+-ATPase through intramembrane interactions. J Biol Chem 271(21):726–731

    Google Scholar 

  68. Trieber CA, Afara M, Young HS (2009) Effects of phospholamban transmembrane mutants on the calcium affinity, maximal activity, and cooperativity of the sarcoplasmic reticulum calcium pump. Biochemistry 48:9287–9296

    Article  CAS  PubMed  Google Scholar 

  69. Toyofuku T et al (1994) Amino acids Glu2 to Ile18 in the cytoplasmic domain of phospholamban are essential for functional association with the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem 269:3088–3094

    CAS  PubMed  Google Scholar 

  70. Kim HW et al (1990) Functional reconstitution of the cardiac sarcoplasmic reticulum Ca2(+)-ATPase with phospholamban in phospholipid vesicles. J Biol Chem 265:1702–1709

    CAS  PubMed  Google Scholar 

  71. Sasaki T et al (1992) Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase. J Biol Chem 267:1674–1679

    CAS  PubMed  Google Scholar 

  72. Jones LR, Field LJ (1993) Residues 2-25 of phospholamban are insufficient to inhibit Ca2+ transport ATPase of cardiac sarcoplasmic reticulum. J Biol Chem 268(11):486–488

    Google Scholar 

  73. Schmitt JP et al (2003) Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299:1410–1413

    Article  CAS  PubMed  Google Scholar 

  74. Haghighi K et al (2006) A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci USA 103:1388–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Medeiros A et al (2011) Mutations in the human phospholamban gene in patients with heart failure. Am Heart J 162(1088–1095):e1

    Google Scholar 

  76. Traaseth NJ et al (2009) Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci USA 106(10):165–170

    Google Scholar 

  77. Lamberth S et al (2000) NMR solution structure of phospholamban. Helvetica Chimica Acta 83:2141–2152

    Article  CAS  Google Scholar 

  78. Gustavsson M, Traaseth NJ, Veglia G (2011) Activating and deactivating roles of lipid bilayers on the Ca(2+)-ATPase/phospholamban complex. Biochemistry 50:10367–10374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Traaseth NJ et al (2007) Spectroscopic validation of the pentameric structure of phospholamban. Proc Natl Acad Sci USA 104(14):676–681

    Google Scholar 

  80. Hughes E, Clayton JC, Middleton DA (2009) Cytoplasmic residues of phospholamban interact with membrane surfaces in the presence of SERCA: a new role for phospholipids in the regulation of cardiac calcium cycling? Biochim Biophys Acta 1788:559–566

    Article  CAS  PubMed  Google Scholar 

  81. James P et al (1989) Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 342:90–92

    Article  CAS  PubMed  Google Scholar 

  82. Seidel K et al (2008) Structural characterization of Ca2+-ATPase-bound phospholamban in lipid bilayers by solid-state nuclear magnetic resonance (NMR) spectroscopy. Biochemistry 47:4369–4376

    Article  CAS  PubMed  Google Scholar 

  83. Gustavsson M et al (2013) Allosteric regulation of SERCA by phosphorylation-mediated conformational shift of phospholamban. Proc Natl Acad Sci USA 110(17):338–343

    Google Scholar 

  84. Chen Z et al (2003) Spatial and dynamic interactions between phospholamban and the canine cardiac Ca2+ pump revealed with use of heterobifunctional cross-linking agents. J Biol Chem 278(48):348–356

    Article  CAS  Google Scholar 

  85. Chen Z, Stokes DL, Jones LR (2005) Role of leucine 31 of phospholamban in structural and functional interactions with the Ca2+ pump of cardiac sarcoplasmic reticulum. J Biol Chem 280(10):530–539

    Google Scholar 

  86. Chen Z et al (2006) Cross-linking of C-terminal residues of phospholamban to the Ca2+ pump of cardiac sarcoplasmic reticulum to probe spatial and functional interactions within the transmembrane domain. J Biol Chem 281(14):163–172

    Article  CAS  Google Scholar 

  87. Jones LR, Cornea RL, Chen Z (2002) Close proximity between residue 30 of phospholamban and cysteine 318 of the cardiac Ca2+ pump revealed by intermolecular thiol cross-linking. J Biol Chem 277(28):319–329

    Google Scholar 

  88. Starling AP et al (1996) The effect of N-terminal acetylation on Ca(2+)-ATPase inhibition by phospholamban. Biochem Biophys Res Commun 226:352–355

    Article  CAS  PubMed  Google Scholar 

  89. Filice E et al (2011) Crucial role of phospholamban phosphorylation and S-nitrosylation in the negative lusitropism induced by 17beta-estradiol in the male rat heart. Cell Physiol Biochem 28:41–52

    Article  CAS  PubMed  Google Scholar 

  90. Kranias EG, Hajjar RJ (2017) The phospholamban journey 4 decades after setting out for Ithaka. Circ Res 120:781–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tada M et al (1974) The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′:5′’-monophosphate-dependent protein kinase. J Biol Chem 249:6174–6180

    CAS  PubMed  Google Scholar 

  92. Katz AM (1998) Discovery of phospholamban. A personal history. Ann N Y Acad Sci 853:9–19

    Article  CAS  PubMed  Google Scholar 

  93. Tada M, Kirchberger MA, Katz AM (1975) Phosphorylation of a 22,000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 250:2640–2647

    CAS  PubMed  Google Scholar 

  94. Catalucci D et al (2009) Akt increases sarcoplasmic reticulum Ca2+ cycling by direct phosphorylation of phospholamban at Thr17. J Biol Chem 284(28):180–187

    Google Scholar 

  95. Edes I, Kranias EG (1990) Phospholamban and troponin I are substrates for protein kinase C in vitro but not in intact beating guinea pig hearts. Circ Res 67:394–400

    Article  CAS  PubMed  Google Scholar 

  96. Chu G, Kranias EG (2002) Functional interplay between dual site phospholambam phosphorylation: insights from genetically altered mouse models. Basic Res Cardiol 97(Suppl 1):I43–I48

    PubMed  Google Scholar 

  97. Mattiazzi A et al (2006) The importance of the Thr17 residue of phospholamban as a phosphorylation site under physiological and pathological conditions. Braz J Med Biol Res 39:563–572

    Article  CAS  PubMed  Google Scholar 

  98. Ablorh NA et al (2014) Synthetic phosphopeptides enable quantitation of the content and function of the four phosphorylation states of phospholamban in cardiac muscle. J Biol Chem 289(29):397–405

    Google Scholar 

  99. Asahi M et al (2000) Physical interactions between phospholamban and sarco(endo)plasmic reticulum Ca2+-ATPases are dissociated by elevated Ca2+, but not by phospholamban phosphorylation, vanadate, or thapsigargin, and are enhanced by ATP. J Biol Chem 275(15):34–38

    Google Scholar 

  100. Asahi M et al (1999) Transmembrane helix M6 in sarco(endo)plasmic reticulum Ca(2+)-ATPase forms a functional interaction site with phospholamban. Evidence for physical interactions at other sites. J Biol Chem 274(32):855–862

    Google Scholar 

  101. Karim CB et al (2004) Phospholamban structural dynamics in lipid bilayers probed by a spin label rigidly coupled to the peptide backbone. Proc Natl Acad Sci USA 101(14):437–442

    Google Scholar 

  102. Karim CB et al (2006) Phosphorylation-dependent conformational switch in spin-labeled phospholamban bound to SERCA. J Mol Biol 358:1032–1040

    Article  CAS  PubMed  Google Scholar 

  103. Metcalfe EE, Traaseth NJ, Veglia G (2005) Serine 16 phosphorylation induces an order-to-disorder transition in monomeric phospholamban. Biochemistry 44:4386–4396

    Article  CAS  PubMed  Google Scholar 

  104. Arkin IT et al (1995) Structural model of the phospholamban ion channel complex in phospholipid membranes. J Mol Biol 248:824–834

    Article  CAS  PubMed  Google Scholar 

  105. Simmerman HK, Lovelace DE, Jones LR (1989) Secondary structure of detergent-solubilized phospholamban, a phosphorylatable, oligomeric protein of cardiac sarcoplasmic reticulum. Biochim Biophys Acta 997:322–329

    Article  CAS  PubMed  Google Scholar 

  106. Kim J et al (2015) Dysfunctional conformational dynamics of protein kinase A induced by a lethal mutant of phospholamban hinder phosphorylation. Proc Natl Acad Sci USA 112:3716–3721

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sugita Y et al (2006) Structural changes in the cytoplasmic domain of phospholamban by phosphorylation at Ser16: a molecular dynamics study. Biochemistry 45:11752–11761

    Article  CAS  PubMed  Google Scholar 

  108. Haghighi K et al (2003) Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 111:869–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Young HS, Ceholski DK, Trieber CA (2015) Deception in simplicity: hereditary phospholamban mutations in dilated cardiomyopathy. Biochem Cell Biol 93:1–7

    Article  CAS  PubMed  Google Scholar 

  110. Schmitt JP et al (2009) Alterations of phospholamban function can exhibit cardiotoxic effects independent of excessive sarcoplasmic reticulum Ca2+-ATPase inhibition. Circulation 119:436–444

    Article  CAS  PubMed  Google Scholar 

  111. Ha KN et al (2011) Lethal Arg9Cys phospholamban mutation hinders Ca2+-ATPase regulation and phosphorylation by protein kinase A. Proc Natl Acad Sci USA 108:2735–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gramolini AO et al (2008) Comparative proteomics profiling of a phospholamban mutant mouse model of dilated cardiomyopathy reveals progressive intracellular stress responses. Mol Cell Proteomics 7:519–533

    Article  CAS  PubMed  Google Scholar 

  113. Abrol N, de Tombe PP, Robia SL (2015) Acute inotropic and lusitropic effects of cardiomyopathic R9C mutation of phospholamban. J Biol Chem 290:7130–7140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ceholski DK, Trieber CA, Young HS (2012) Hydrophobic imbalance in the cytoplasmic domain of phospholamban is a determinant for lethal dilated cardiomyopathy. J Biol Chem 287(16):521–529

    Google Scholar 

  115. Ceholski DK et al (2012) Lethal, hereditary mutants of phospholamban elude phosphorylation by protein kinase A. J Biol Chem 287(26):596–605

    Google Scholar 

  116. van der Zwaag PA et al (2013) Recurrent and founder mutations in the Netherlands-Phospholamban p.Arg14del mutation causes arrhythmogenic cardiomyopathy. Neth Hear J 21:286–293

    Article  Google Scholar 

  117. Haghighi K et al (2012) The human phospholamban Arg14-deletion mutant localizes to plasma membrane and interacts with the Na/K-ATPase. J Mol Cell Cardiol 52:773–782

    Article  CAS  PubMed  Google Scholar 

  118. Karakikes I et al (2015) Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat Commun 6:6955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Te Rijdt WP et al (2016) Phospholamban p.Arg14del cardiomyopathy is characterized by phospholamban aggregates, aggresomes, and autophagic degradation. Histopathology 69:542–550

    Article  Google Scholar 

  120. DeWitt MM et al (2006) Phospholamban R14 deletion results in late-onset, mild, hereditary dilated cardiomyopathy. J Am Coll Cardiol 48:1396–1398

    Article  CAS  PubMed  Google Scholar 

  121. Luo W et al (1994) Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res 75:401–409

    Article  CAS  PubMed  Google Scholar 

  122. Abrol N et al (2014) Phospholamban C-terminal residues are critical determinants of the structure and function of the calcium ATPase regulatory complex. J Biol Chem 289(25):855–866

    Google Scholar 

  123. Liu GS et al (2015) A novel human R25C-phospholamban mutation is associated with super-inhibition of calcium cycling and ventricular arrhythmia. Cardiovasc Res 107:164–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Minamisawa S et al (2003) Mutation of the phospholamban promoter associated with hypertrophic cardiomyopathy. Biochem Biophys Res Commun 304:1–4

    Article  CAS  PubMed  Google Scholar 

  125. Medin M et al (2007) Mutational screening of phospholamban gene in hypertrophic and idiopathic dilated cardiomyopathy and functional study of the PLN -42 C>G mutation. Eur J Heart Fail 9:37–43

    Article  CAS  PubMed  Google Scholar 

  126. Haghighi K et al (2008) A human phospholamban promoter polymorphism in dilated cardiomyopathy alters transcriptional regulation by glucocorticoids. Hum Mutat 29:640–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Landstrom AP et al (2011) PLN-encoded phospholamban mutation in a large cohort of hypertrophic cardiomyopathy cases: summary of the literature and implications for genetic testing. Am Heart J 161:165–171

    Article  CAS  PubMed  Google Scholar 

  128. Wawrzynow A et al (1992) Sarcolipin, the “proteolipid” of skeletal muscle sarcoplasmic reticulum, is a unique, amphipathic, 31-residue peptide. Arch Biochem Biophys 298:620–623

    Article  CAS  PubMed  Google Scholar 

  129. Odermatt A et al (1997) Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: absence of structural mutations in five patients with Brody disease. Genomics 45:541–553

    Article  CAS  PubMed  Google Scholar 

  130. Odermatt A et al (1998) Sarcolipin regulates the activity of SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 273(12):360–369

    Google Scholar 

  131. Minamisawa S et al (2003) Atrial chamber-specific expression of sarcolipin is regulated during development and hypertrophic remodeling. J Biol Chem 278:9570–9575

    Article  CAS  PubMed  Google Scholar 

  132. Vangheluwe P et al (2005) Sarcolipin and phospholamban mRNA and protein expression in cardiac and skeletal muscle of different species. Biochem J 389:151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Babu GJ et al (2007) Differential expression of sarcolipin protein during muscle development and cardiac pathophysiology. J Mol Cell Cardiol 43:215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Asahi M et al (2003) Sarcolipin regulates sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by binding to transmembrane helices alone or in association with phospholamban. Proc Natl Acad Sci USA 100:5040–5045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Morita T et al (2008) Interaction sites among phospholamban, sarcolipin, and the sarco(endo)plasmic reticulum Ca(2+)-ATPase. Biochem Biophys Res Commun 369:188–194

    Article  CAS  PubMed  Google Scholar 

  136. Shaikh SA, Sahoo SK, Periasamy M (2016) Phospholamban and sarcolipin: are they functionally redundant or distinct regulators of the Sarco(Endo)Plasmic Reticulum Calcium ATPase? J Mol Cell Cardiol 91:81–91

    Article  CAS  PubMed  Google Scholar 

  137. Asahi M et al (2002) Sarcolipin inhibits polymerization of phospholamban to induce superinhibition of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs). J Biol Chem 277(26):725–728

    Google Scholar 

  138. Hughes E et al (2007) Solid-state NMR and functional measurements indicate that the conserved tyrosine residues of sarcolipin are involved directly in the inhibition of SERCA1. J Biol Chem 282(26):603–613

    Google Scholar 

  139. Tupling AR, Asahi M, MacLennan DH (2002) Sarcolipin overexpression in rat slow twitch muscle inhibits sarcoplasmic reticulum Ca2+ uptake and impairs contractile function. J Biol Chem 277(44):740–746

    Google Scholar 

  140. Babu GJ et al (2006) Targeted overexpression of sarcolipin in the mouse heart decreases sarcoplasmic reticulum calcium transport and cardiac contractility. J Biol Chem 281:3972–3979

    Article  CAS  PubMed  Google Scholar 

  141. Bhupathy P et al (2009) Threonine-5 at the N-terminus can modulate sarcolipin function in cardiac myocytes. J Mol Cell Cardiol 47:723–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gramolini AO et al (2006) Cardiac-specific overexpression of sarcolipin in phospholamban null mice impairs myocyte function that is restored by phosphorylation. Proc Natl Acad Sci USA 103:2446–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hellstern S et al (2001) Sarcolipin, the shorter homologue of phospholamban, forms oligomeric structures in detergent micelles and in liposomes. J Biol Chem 276(30):845–852

    Google Scholar 

  144. Autry JM et al (2011) Oligomeric interactions of sarcolipin and the Ca-ATPase. J Biol Chem 286(31):697–706

    Google Scholar 

  145. Gorski PA et al (2013) Sarco(endo)plasmic reticulum calcium ATPase (SERCA) inhibition by sarcolipin is encoded in its luminal tail. J Biol Chem 288:8456–8467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gramolini AO et al (2004) Sarcolipin retention in the endoplasmic reticulum depends on its C-terminal RSYQY sequence and its interaction with sarco(endo)plasmic Ca(2+)-ATPases. Proc Natl Acad Sci USA 101(16):807–812

    Google Scholar 

  147. Mascioni A et al (2002) Structure and orientation of sarcolipin in lipid environments. Biochemistry 41:475–482

    Article  CAS  PubMed  Google Scholar 

  148. Buffy JJ et al (2006) Two-dimensional solid-state NMR reveals two topologies of sarcolipin in oriented lipid bilayers. Biochemistry 45:10939–10946

    Article  CAS  PubMed  Google Scholar 

  149. Becucci L et al (2007) An electrochemical investigation of sarcolipin reconstituted into a mercury-supported lipid bilayer. Biophys J 93:2678–2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Becucci L et al (2009) The role of sarcolipin and ATP in the transport of phosphate ion into the sarcoplasmic reticulum. Biophys J 97:2693–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Stefanova HI, East JM, Lee AG (1991) Covalent and non-covalent inhibitors of the phosphate transporter of sarcoplasmic reticulum. Biochim Biophys Acta 1064:321–328

    Article  CAS  PubMed  Google Scholar 

  152. Stefanova HI et al (1991) Effects of Mg2+ and ATP on the phosphate transporter of sarcoplasmic reticulum. Biochim Biophys Acta 1064:329–334

    Article  CAS  PubMed  Google Scholar 

  153. Toyoshima C et al (2003) Modeling of the inhibitory interaction of phospholamban with the Ca2+ ATPase. Proc Natl Acad Sci USA 100:467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Winther AM et al (2013) The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm. Nature 495:265–269

    Article  CAS  PubMed  Google Scholar 

  155. Toyoshima C et al (2013) Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state. Nature 495:260–264

    Article  CAS  PubMed  Google Scholar 

  156. Henderson IM et al (1994) Binding of Ca2+ to the (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum: kinetic studies. Biochem J 297(Pt 3):625–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Shanmugam M et al (2011) Decreased sarcolipin protein expression and enhanced sarco(endo)plasmic reticulum Ca2+ uptake in human atrial fibrillation. Biochem Biophys Res Commun 410:97–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Uemura N et al (2004) Down-regulation of sarcolipin mRNA expression in chronic atrial fibrillation. Eur J Clin Investig 34:723–730

    Article  CAS  Google Scholar 

  159. Xie LH et al (2012) Ablation of sarcolipin results in atrial remodeling. Am J Phys Cell Physiol 302:C1762–C1771

    Article  CAS  Google Scholar 

  160. Pashmforoush M et al (2004) Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117:373–386

    Article  CAS  PubMed  Google Scholar 

  161. Asahi M et al (2004) Cardiac-specific overexpression of sarcolipin inhibits sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) activity and impairs cardiac function in mice. Proc Natl Acad Sci USA 101:9199–9204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Babu GJ et al (2007) Ablation of sarcolipin enhances sarcoplasmic reticulum calcium transport and atrial contractility. Proc Natl Acad Sci USA 104(17):867–872

    Google Scholar 

  163. Pant M, Bal NC, Periasamy M (2016) Sarcolipin: a key thermogenic and metabolic regulator in skeletal muscle. Trends Endocrinol Metab 27:881–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sahoo SK et al (2013) Sarcolipin protein interaction with sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA pump. J Biol Chem 288:6881–6889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Bal NC et al (2012) Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 18:1575–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Maurya SK et al (2015) Sarcolipin is a key determinant of the basal metabolic rate, and its overexpression enhances energy expenditure and resistance against diet-induced obesity. J Biol Chem 290(10):840–849

    Google Scholar 

  167. Zhai J et al (2000) Cardiac-specific overexpression of a superinhibitory pentameric phospholamban mutant enhances inhibition of cardiac function in vivo. J Biol Chem 275(10):538–544

    Google Scholar 

  168. Feldman AM et al (1991) Selective gene expression in failing human heart. Quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction. Circulation 83:1866–1872

    Article  CAS  PubMed  Google Scholar 

  169. Meyer M et al (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92:778–784

    Article  CAS  PubMed  Google Scholar 

  170. Dash R et al (2001) Gender influences on sarcoplasmic reticulum Ca2+-handling in failing human myocardium. J Mol Cell Cardiol 33:1345–1353

    Article  CAS  PubMed  Google Scholar 

  171. del Monte F et al (1999) Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 100:2308–2311

    Article  PubMed Central  Google Scholar 

  172. Jaski BE et al (2009) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail 15:171–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Jessup M et al (2011) Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124:304–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kairouz V et al (2012) Molecular targets in heart failure gene therapy: current controversies and translational perspectives. Ann N Y Acad Sci 1254:42–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hulot JS, Ishikawa K, Hajjar RJ (2016) Gene therapy for the treatment of heart failure: promise postponed. Eur Heart J 37:1651–1658

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kho C et al (2011) SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477:601–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Haghighi K et al (2001) Superinhibition of sarcoplasmic reticulum function by phospholamban induces cardiac contractile failure. J Biol Chem 276(24):145–152

    Google Scholar 

  178. Nicolaou P, Kranias EG (2009) Role of PP1 in the regulation of Ca cycling in cardiac physiology and pathophysiology. Front Biosci 14:3571–3585

    Article  CAS  Google Scholar 

  179. Ishikawa K et al (2014) Cardiac I-1c overexpression with reengineered AAV improves cardiac function in swine ischemic heart failure. Mol Ther 22:2038–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nelson BR et al (2016) A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351:271–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Anderson DM et al (2015) A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160:595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Anderson DM et al (2016) Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides. Sci Signal 9:ra119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gorski PA, Ceholski DK, Hajjar RJ (2015) Altered myocardial calcium cycling and energetics in heart failure--a rational approach for disease treatment. Cell Metab 21:183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Krols M, Bultynck G, Janssens S (2016) ER-mitochondria contact sites: a new regulator of cellular calcium flux comes into play. J Cell Biol 214:367–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard S. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gorski, P.A., Ceholski, D.K., Young, H.S. (2017). Structure-Function Relationship of the SERCA Pump and Its Regulation by Phospholamban and Sarcolipin. In: Krebs, J. (eds) Membrane Dynamics and Calcium Signaling. Advances in Experimental Medicine and Biology, vol 981. Springer, Cham. https://doi.org/10.1007/978-3-319-55858-5_5

Download citation

Publish with us

Policies and ethics