Skip to main content

Glycine Transporters and Its Coupling with NMDA Receptors

  • Chapter
  • First Online:
Glial Amino Acid Transporters

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 16))

Abstract

Glycine plays two roles in neurotransmission. In caudal areas like the spinal cord and the brainstem, it acts as an inhibitory neurotransmitter, but in all regions of the CNS, it also works as a co-agonist with L-glutamate at N-methyl-D-aspartate receptors (NMDARs). The glycine fluxes in the CNS are regulated by two specific transporters for glycine, GlyT1 and GlyT2, perhaps with the cooperation of diverse neutral amino acid transporters like Asc-1 or SNAT5/SN2. While GlyT2 and Asc-1 are neuronal proteins, GlyT1 and SNAT5 are mainly astrocytic, although neuronal forms of GlyT1 also exist. GlyT1 has attracted considerable interest from the medical community and the pharmaceutical industry since compelling evidence indicates a clear association with the functioning of NMDARs, whose activity is decreased in various psychiatric illnesses. By controlling extracellular glycine, transporter inhibitors might potentiate the activity of NMDARs without activating excitotoxic processes. Physiologically, GlyT1 is a central actor in the cross talk between glutamatergic, glycinergic, dopaminergic, and probably other neurotransmitter systems. Many of these relationships begin to be unraveled by studies performed in recent years using genetic and pharmacological models. These studies are also clarifying the interactions between glycine, glycine transporters, and other co-agonists of the glycine site of NMDARs like D-serine. These findings are also relevant to understand the pathophysiology of devastating diseases like schizophrenia, depression, anxiety, epilepsy, stroke, and chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

GlyR:

Glycine receptor

GlyT1:

Glycine transporter-1

GlyT2:

Glycine transporter-2

LTP:

Long-term potentiation

NFPS:

(±)-N-[3-(4′fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine

NMDA:

N-methyl-D-aspartate

NMDAR:

NMDA receptor

SCZ:

Schizophrenia

SNAT:

Sodium-coupled neutral amino acid transporters

References

  • Agulhon C, Fiacco TA, McCarthy KD. Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science. 2010;327(5970):1250–4.

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi S, Muth-Selbach U, Lauterbach A, Lipfert P, Neuhuber WL, Zeilhofer HU. Facilitation of spinal NMDA receptor currents by spillover of synaptically released glycine. Science. 2003;300(5628):2094–7.

    Article  CAS  PubMed  Google Scholar 

  • Alberati D, Moreau JL, Lengyel J, Hauser N, Mory R, Borroni E, et al. Glycine reuptake inhibitor RG1678: a pharmacologic characterization of an investigational agent for the treatment of schizophrenia. Neuropharmacology. 2012;62(2):1152–61.

    Article  CAS  PubMed  Google Scholar 

  • Apostolides PF, Trussell LO. Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse. J Neurosci. 2013;33(11):4768–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aragón C, López-Corcuera B. Glycine transporters: crucial roles of pharmacological interest revealed by gene deletion. Trends Pharmacol Sci. 2005;26(6):283–6.

    Article  PubMed  CAS  Google Scholar 

  • Attwell D, Barbour B, Szatkowski M. Nonvesicular release of neurotransmitter. Neuron. 1993 Sep;11(3):401–7.

    Article  CAS  PubMed  Google Scholar 

  • Aubrey KR, Mitrovic AD, Vandenberg RJ. Molecular basis for proton regulation of glycine transport by glycine transporter subtype 1b. Mol Pharmacol. 2000;58(1):129–35.

    CAS  PubMed  Google Scholar 

  • Aubrey KR, Vandenberg RJ, Clements JD. Dynamics of forward and reverse transport by the glial glycine transporter, glyt1b. Biophys J. 2005;89(3):1657–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker AJ, Zornow MH, Scheller MS, Yaksh TL, Skilling SR, Smullin DH, et al. Changes in extracellular concentrations of glutamate, aspartate, glycine, dopamine, serotonin, and dopamine metabolites after transient global ischemia in the rabbit brain. J Neurochem. 1991;57(4):1370–9.

    Article  CAS  PubMed  Google Scholar 

  • Bakkar W, Ma CL, Pabba M, Khacho P, Zhang YL, Muller E, et al. Chronically saturating levels of endogenous glycine disrupt glutamatergic neurotransmission and enhance synaptogenesis in the CA1 region of mouse hippocampus. Synapse. 2011;65(11):1181–95.

    Article  CAS  PubMed  Google Scholar 

  • Ballard TM, Pauly-Evers M, Higgins GA, Ouagazzal AM, Mutel V, Borroni E, et al. Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity. J Neurosci. 2002;22(15):6713–23.

    CAS  PubMed  Google Scholar 

  • Balu DT, Coyle JT. The NMDA receptor ‘glycine modulatory site’ in schizophrenia: D-serine, glycine, and beyond. Curr Opin Pharmacol. 2015;20:109–15.

    Article  CAS  PubMed  Google Scholar 

  • Barthel F, Urban A, Schlösser L, Eulenburg V, Werdehausen R, Brandenburger T, et al. Long-term application of glycine transporter inhibitors acts antineuropathic and modulates spinal N-methyl-D-aspartate receptor subunit NR-1 expression in rats. Anesthesiology. 2014;121(1):160–9.

    Article  CAS  PubMed  Google Scholar 

  • Bejczy A, Nations KR, Szegedi A, Schoemaker J, Ruwe F, Söderpalm B. Efficacy and safety of the glycine transporter-1 inhibitor org 25935 for the prevention of relapse in alcohol-dependent patients: a randomized, double-blind, placebo-controlled trial. Alcohol Clin Exp Res. 2014;38(9):2427–35.

    Article  PubMed  CAS  Google Scholar 

  • Berger AJ, Isaacson JS. Modulation of motoneuron N-methyl-D-aspartate receptors by the inhibitory neurotransmitter glycine. J Physiol Paris. 1999;93(1-2):23–7.

    Article  CAS  PubMed  Google Scholar 

  • Berger AJ, Dieudonné S, Ascher P. Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J Neurophysiol. 1998;80(6):3336–40.

    CAS  PubMed  Google Scholar 

  • Bergeron R, Meyer TM, Coyle JT, Greene RW. Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci U S A. 1998;95(26):15730–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borowsky B, Mezey E, Hoffman BJ. Two glycine transporter variants with distinct localization in the CNS and peripheral tissues are encoded by a common gene. Neuron. 1993;10(5):851–63.

    Article  CAS  PubMed  Google Scholar 

  • Boulay D, Pichat P, Dargazanli G, Estenne-Bouhtou G, Terranova JP, Rogacki N, et al. Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia. Pharmacol Biochem Behav. 2008;91(1):47–58.

    Article  CAS  PubMed  Google Scholar 

  • Bradaïa A, Schlichter R, Trouslard J. Role of glial and neuronal glycine transporters in the control of glycinergic and glutamatergic synaptic transmission in lamina X of the rat spinal cord. J Physiol. 2004;559(Pt 1):169–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brookes N. Functional integration of the transport of ammonium, glutamate and glutamine in astrocytes. Neurochem Int. 2000;37(2-3):121–9.

    Article  CAS  PubMed  Google Scholar 

  • Carlezon WA Jr, Thomas MJ. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology. 2009;56(Suppl 1):122–32.

    Article  CAS  PubMed  Google Scholar 

  • Castner SA, Murthy NV, Ridler K, Herdon H, Roberts BM, Weinzimmer DP, et al. Relationship between glycine transporter 1 inhibition as measured with positron emission tomography and changes in cognitive performances in nonhuman primates. Neuropsychopharmacology. 2014;39(12):2742–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaki S, Shimazaki T, Karasawa J, Aoki T, Kaku A, Iijima M, et al. Efficacy of a glycine transporter 1 inhibitor TASP0315003 in animal models of cognitive dysfunction and negative symptoms of schizophrenia. Psychopharmacology. 2015;232(15):2849–61.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry FA, Lehre KP, van Lookeren Campagne M, Ottersen OP, Danbolt NC, Storm-Mathisen J. Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron. 1995;15(3):711–20.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Muhlhauser M, Yang CR. Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol. 2003;89(2):691–703.

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Okabe A, Sun H, Sharopov S, Hanganu-Opatz IL, Kolbaev SN, et al. Activation of glycine receptors modulates spontaneous epileptiform activity in the immature rat hippocampus. J Physiol. 2014;592(10):2153–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cioffi CL, Guzzo PR. Inhibitors of glycine transporter-1: potential therapeutics for the treatment of CNS disorders. Curr Top Med Chem. 2016;16(29):3404–37.

    Article  CAS  PubMed  Google Scholar 

  • Collingridge GL, Volianskis A, Bannister N, France G, Hanna L, Mercier M, et al. The NMDA receptor as a target for cognitive enhancement. Neuropharmacology. 2013;64:13–26.

    Article  CAS  PubMed  Google Scholar 

  • Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coyle JT. Substance use disorders and Schizophrenia: a question of shared glutamatergic mechanisms. Neurotox Res. 2006;10(3-4):221–33.

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT. NMDA receptor and schizophrenia: a brief history. Schizophr Bull. 2012;38(5):920–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coyle JT, Tsai G. The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology. 2004;174(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  • Cubelos B, Giménez C, Zafra F. Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb Cortex. 2005a;15(4):448–59.

    Article  PubMed  Google Scholar 

  • Cubelos B, Giménez C, Zafra F. The glycine transporter GLYT1 interacts with Sec3, a component of the exocyst complex. Neuropharmacology. 2005b;49(6):935–44.

    Article  CAS  PubMed  Google Scholar 

  • Cubelos B, González-González IM, Giménez C, Zafra F. Amino acid transporter SNAT5 localizes to glial cells in the rat brain. Glia. 2005c;49(2):230–44.

    Article  PubMed  Google Scholar 

  • Cubelos B, Leite C, Giménez C, Zafra F. Localization of the glycine transporter GLYT1 in glutamatergic synaptic vesicles. Neurochem Int. 2014;73:204–10.

    Article  CAS  PubMed  Google Scholar 

  • Danglot L, Rostaing P, Triller A, Bessis A. Morphologically identified glycinergic synapses in the hippocampus. Mol Cell Neurosci. 2004;27(4):394–403.

    Article  CAS  PubMed  Google Scholar 

  • Depoortère R, Dargazanli G, Estenne-Bouhtou G, Coste A, Lanneau C, Desvignes C, et al. Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology. 2005;30(11):1963–85.

    Article  PubMed  CAS  Google Scholar 

  • Doherty FC, Sladek CD. NMDA receptor subunit expression in the supraoptic nucleus of adult rats: dominance of NR2B and NR2D. Brain Res. 2011;1388:89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubroqua S, Serrano L, Boison D, Feldon J, Gargiulo PA, Yee BK. Intact working memory in the absence of forebrain neuronal glycine transporter 1. Behav Brain Res. 2012;230(1):208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupuis JP, Ladépêche L, Seth H, Bard L, Varela J, Mikasova L, et al. Surface dynamics of GluN2B-NMDA receptors controls plasticity of maturing glutamate synapses. EMBO J. 2014;33(8):842–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eulenburg V, Retiounskaia M, Papadopoulos T, Gomeza J, Betz H. Glial glycine transporter 1 function is essential for early postnatal survival but dispensable in adult mice. Glia. 2010;58(9):1066–73.

    Article  PubMed  Google Scholar 

  • Fernández-Sánchez E, Martínez-Villarreal J, Giménez C, Zafra F. Constitutive and regulated endocytosis of the glycine transporter GLYT1b is controlled by ubiquitination. J Biol Chem. 2009;284(29):19482–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fossat P, Turpin FR, Sacchi S, Dulong J, Shi T, Rivet JM, et al. Glial D-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb Cortex. 2012;22(3):595–606.

    Article  PubMed  Google Scholar 

  • Friauf E, Aragón C, Löhrke S, Westenfelder B, Zafra F. Developmental expression of the glycine transporter GLYT2 in the auditory system of rats suggests involvement in synapse maturation. J Comp Neurol. 1999;412(1):17–37.

    Article  CAS  PubMed  Google Scholar 

  • Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506(7487):179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukasawa Y, Segawa H, Kim JY, Chairoungdua A, Kim DK, Matsuo H, et al. Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral D- and L-amino acids. J Biol Chem. 2000;275(13):9690–8.

    Article  CAS  PubMed  Google Scholar 

  • Gabernet L, Pauly-Evers M, Schwerdel C, Lentz M, Bluethmann H, Vogt K, et al. Enhancement of the NMDA receptor function by reduction of glycine transporter-1 expression. Neurosci Lett. 2005;373(1):79–84.

    Article  CAS  PubMed  Google Scholar 

  • Galli A, Mori F, Bargellini M, Coppini L. Sodium-dependent release of exogenous glycine from preloaded rat hippocampal synaptosomes. J Neural Transm Gen Sect. 1993;93(3):167–79.

    Article  CAS  PubMed  Google Scholar 

  • Geerlings A, López-Corcuera B, Aragón C. Characterization of the interactions between the glycine transporters GLYT1 and GLYT2 and the SNARE protein syntaxin 1A. FEBS Lett. 2000;470(1):51–4.

    Article  CAS  PubMed  Google Scholar 

  • Gomeza J, Zafra F, Olivares L, Giménez C, Aragón C. Regulation by phorbol esters of the glycine transporter (GLYT1) in glioblastoma cells. Biochim Biophys Acta. 1995;1233(1):41–6.

    Article  PubMed  Google Scholar 

  • Gomeza J, Hülsmann S, Ohno K, Eulenburg V, Szöke K, Richter D, Betz H. Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron. 2003a;40(4):785–96.

    Article  CAS  PubMed  Google Scholar 

  • Gomeza J, Ohno K, Hülsmann S, Armsen W, Eulenburg V, Richter DW, et al. Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron. 2003b;40(4):797–806.

    Article  CAS  PubMed  Google Scholar 

  • Hamdani el H, Gudbrandsen M, Bjørkmo M, Chaudhry FA. The system N transporter SN2 doubles as a transmitter precursor furnisher and a potential regulator of NMDA receptors. Glia. 2012;60(11):1671–83.

    Article  PubMed  Google Scholar 

  • Hanuska A, Szénási G, Albert M, Koles L, Varga A, Szabo A, et al. Some operational characteristics of glycine release in rat retina: the role of reverse mode operation of glycine transporter type-1 (GlyT-1) in ischemic conditions. Neurochem Res. 2016;41(1-2):73–85.

    Article  CAS  PubMed  Google Scholar 

  • Harada K, Nakato K, Yarimizu J, Yamazaki M, Morita M, Takahashi S, et al. A novel glycine transporter-1 (GlyT1) inhibitor, ASP2535 (4-[3-isopropyl-5-(6-phenyl-3-pyridyl)-4H-1,2,4-triazol-4-yl]-2,1,3-benzoxadiazol e), improves cognition in animal models of cognitive impairment in schizophrenia and Alzheimer’s disease. Eur J Pharmacol. 2012;685(1-3):59–69.

    Article  CAS  PubMed  Google Scholar 

  • Harsing LG Jr, Gacsalyi I, Szabo G, Schmidt E, Sziray N, Sebban C, et al. The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacol Biochem Behav. 2003;74(4):811–25.

    Article  CAS  PubMed  Google Scholar 

  • Harvey RJ, Yee BK. Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Discov. 2013;12(11):866–85.

    Article  CAS  PubMed  Google Scholar 

  • Helboe L, Egebjerg J, Møller M, Thomsen C. Distribution and pharmacology of alanine-serine-cysteine transporter 1 (asc-1) in rodent brain. Eur J Neurosci. 2003;18(8):2227–38.

    Article  PubMed  Google Scholar 

  • Henneberger C, Papouin T, Oliet SH, Rusakov DA. Long-term potentiation depends on release of D-serine from astrocytes. Nature. 2010;463(7278):232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Barakat L, Wang D, Bordey A. Bergmann glial GlyT1 mediates glycine uptake and release in mouse cerebellar slices. J Physiol. 2004;560(Pt 3):721–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CC, Wei IH, Huang CL, Chen KT, Tsai MH, Tsai P, et al. Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression. Biol Psychiatry. 2013;74(10):734–41.

    Google Scholar 

  • James VM, Gill JL, Topf M, Harvey RJ. Molecular mechanisms of glycine transporter GlyT2 mutations in startle disease. Biol Chem. 2012;393(4):283–9.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez E, Zafra F, Pérez-Sen R, Delicado EG, Miras-Portugal MT, Aragón C, et al. P2Y purinergic regulation of the glycine neurotransmitter transporters. J Biol Chem. 2011;286(12):10712–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiménez E, Núñez E, Ibáñez I, Zafra F, Aragón C, Giménez C. Glycine transporters GlyT1 and GlyT2 are differentially modulated by glycogen synthase kinase 3β. Neuropharmacology. 2015;89:245–54.

    Article  PubMed  CAS  Google Scholar 

  • Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325(6104):529–31.

    Article  CAS  Google Scholar 

  • Ju P, Aubrey KR, Vandenberg RJ. Zn2+ inhibits glycine transport by glycine transporter subtype 1b. J Biol Chem. 2004;279(22):22983–91.

    Article  CAS  PubMed  Google Scholar 

  • Karakas E, Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 2014;344(6187):992–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karasawa J, Hashimoto K, Chaki S. D-Serine and a glycine transporter inhibitor improve MK-801-induced cognitive deficits in a novel object recognition test in rats. Behav Brain Res. 2008;186(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  • Kelamangalath L, Wagner JJ. D-serine treatment reduces cocaine-primed reinstatement in rats following extended access to cocaine self-administration. Neuroscience. 2010;169(3):1127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemp JA, Foster AC, Leeson PD, Priestley T, Tridgett R, Iversen LL, et al. 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. Proc Natl Acad Sci U S A. 1988;85(17):6547–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinney GG, Sur C, Burno M, Mallorga PJ, Williams JB, Figueroa DJ, et al. The glycine transporter type 1 inhibitor N-[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior. J Neurosci. 2003;23(20):7586–91.

    CAS  PubMed  Google Scholar 

  • Kleckner NW, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science. 1988;241(4867):835–7.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu H, Furuya Y, Sawada K, Asada T. Involvement of the strychnine-sensitive glycine receptor in the anxiolytic effects of GlyT1 inhibitors on maternal separation-induced ultrasonic vocalization in rat pups. Eur J Pharmacol. 2015;746:252–7.

    Article  CAS  PubMed  Google Scholar 

  • Krishtal OA, Osipchuk YV, Shelest TN, Smirnoff SV. Rapid extracellular pH transients related to synaptic transmission in rat hippocampal slices. Brain Res. 1987;436(2):352–6.

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH, Sanacora G, Duman RS. Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry. 2013;73(12):1133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane HY, Liu YC, Huang CL, Chang YC, Liau CH, Perng CH, et al. Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol Psychiatry. 2008;63(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  • Lavezzari G, McCallum J, Dewey CM, Roche KW. Subunit-specific regulation of NMDA receptor endocytosis. J Neurosci. 2004;24(28):6383–91.

    Article  CAS  PubMed  Google Scholar 

  • Le Bail M, Martineau M, Sacchi S, Yatsenko N, Radzishevsky I, Conrod S, et al. Identity of the NMDA receptor coagonist is synapse specific and developmentally regulated in the hippocampus. Proc Natl Acad Sci U S A. 2015;112(2):E204–13.

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Lü W, Michel JC, Goehring A, Du J, Song X, et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature. 2014;511(7508):191–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonetti M, Desvignes C, Bougault I, Souilhac J, Oury-Donat F, Steinberg R. 2-Chloro-N-[(S)-phenyl [(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide, monohydrochloride, an inhibitor of the glycine transporter type 1, increases evoked-dopamine release in the rat nucleus accumbens in vivo via an enhanced glutamatergic neurotransmission. Neuroscience. 2006;137(2):555–64.

    Article  CAS  PubMed  Google Scholar 

  • Lester RA, Tong G, Jahr CE. Interactions between the glycine and glutamate binding sites of the NMDA receptor. J Neurosci. 1993;13(3):1088–96.

    CAS  PubMed  Google Scholar 

  • Li Y, Krupa B, Kang JS, Bolshakov VY, Liu G. Glycine site of NMDA receptor serves as a spatiotemporal detector of synaptic activity patterns. J Neurophysiol. 2009;102(1):578–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Sacchi S, Pollegioni L, Basu AC, Coyle JT, Bolshakov VY. Identity of endogenous NMDAR glycine site agonist in amygdala is determined by synaptic activity level. Nat Commun. 2013;4:1760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lidö HH, Ericson M, Marston H, Söderpalm B. A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor org25935. Front Psychiatry. 2011;2:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim R, Hoang P, Berger AJ. Blockade of glycine transporter-1 (GLYT-1) potentiates NMDA receptor-mediated synaptic transmission in hypoglossal motorneurons. J Neurophysiol. 2004;92(4):2530–7.

    Article  CAS  PubMed  Google Scholar 

  • Liu QR, López-Corcuera B, Mandiyan S, Nelson H, Nelson N. Cloning and expression of a spinal cord- and brain-specific glycine transporter with novel structural features. J Biol Chem. 1993;268(30):22802–8.

    CAS  PubMed  Google Scholar 

  • López-Colomé AM, Gadea A. Regulation of glycine transport in cultured Müller cells by Ca2+/calmodulin-dependent enzymes. Ann N Y Acad Sci. 1999;868:685–8.

    Article  PubMed  Google Scholar 

  • Luccini E, Romei C, Raiteri L. Glycinergic nerve endings in hippocampus and spinal cord release glycine by different mechanisms in response to identical depolarizing stimuli. J Neurochem. 2008;105(6):2179–89.

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie B, Erickson JD. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch. 2004;447(5):784–95.

    Article  CAS  PubMed  Google Scholar 

  • Mao SC, Lin HC, Gean PW. Augmentation of fear extinction by infusion of glycine transporter blockers into the amygdala. Mol Pharmacol. 2009;76(2):369–78.

    Article  CAS  PubMed  Google Scholar 

  • Marcaggi P, Attwell D. Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia. 2004;47(3):217–25.

    Article  PubMed  Google Scholar 

  • Martel MA, Ryan TJ, Bell KF, Fowler JH, McMahon A, Al-Mubarak B, et al. The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults. Neuron. 2012;74(3):543–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martina M, Gorfinkel Y, Halman S, Lowe JA, Periyalwar P, Schmidt CJ, et al. Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J Physiol. 2004;557(Pt 2):489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martina M, B-Turcotte ME, Halman S, Tsai G, Tiberi M, Coyle JT, Bergeron R. Reduced glycine transporter type 1 expression leads to major changes in glutamatergic neurotransmission of CA1 hippocampal neurones in mice. J Physiol. 2005;563(3):777–93.

    Google Scholar 

  • Martineau M, Shi T, Puyal J, Knolhoff AM, Dulong J, Gasnier B, et al. Storage and uptake of D-serine into astrocytic synaptic-like vesicles specify gliotransmission. J Neurosci. 2013;33(8):3413–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martineau M, Parpura V, Mothet JP. Cell-type specific mechanisms of D-serine uptake and release in the brain. Front Synaptic Neurosci. 2014;6:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods. 2013 Feb;10(2):162–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984;309:261.

    Article  CAS  Google Scholar 

  • Meunier CN, Dallérac G, Le Roux N, Sacchi S, Levasseur G, Amar M, et al. D-serine and glycine differentially control neurotransmission during visual cortex critical period. PLoS One. 2016;11(3):e0151233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mezler M, Hornberger W, Mueller R, Schmidt M, Amberg W, Braje W, et al. Inhibitors of GlyT1 affect glycine transport via discrete binding sites. Mol Pharmacol. 2008;74(6):1705–15.

    Article  CAS  PubMed  Google Scholar 

  • Miguel TT, Nunes-de-Souza RL. Anxiogenic-like effects induced by NMDA receptor activation are prevented by inhibition of neuronal nitric oxide synthase in the periaqueductal gray in mice. Brain Res. 2008;1240:39–46.

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T. Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor epsilon1 subunit. J Neurosci. 2001;21(2):750–7.

    CAS  PubMed  Google Scholar 

  • Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology. 2012;37(1):4–15.

    Article  CAS  PubMed  Google Scholar 

  • Möhler H, Boison D, Singer P, Feldon J, Pauly-Evers M, Yee BK. Glycine transporter 1 as a potential therapeutic target for schizophrenia-related symptoms: evidence from genetically modified mouse models and pharmacological inhibition. Biochem Pharmacol. 2011;81(9):1065–77.

    Article  PubMed  CAS  Google Scholar 

  • Mohn AR, Gainetdinov RR, Caron MG, Koller BH. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell. 1999;98(4):427–36.

    Article  CAS  PubMed  Google Scholar 

  • Molander A, Lidö HH, Löf E, Ericson M, Söderpalm B. The glycine reuptake inhibitor Org 25935 decreases ethanol intake and preference in male wistar rats. Alcohol Alcohol. 2007;42(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  • Morita K, Motoyama N, Kitayama T, Morioka N, Kifune K, Dohi T. Spinal antiallodynia action of glycine transporter inhibitors in neuropathic pain models in mice. J Pharmacol Exp Ther. 2008;326(2):633–45.

    Article  CAS  PubMed  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A. 2000;97(9):4926–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mothet JP, Le Bail M, Billard JM. Time and space profiling of NMDA receptor co-agonist functions. J Neurochem. 2015;135(2):210–25.

    Article  CAS  PubMed  Google Scholar 

  • Motoyama N, Morita K, Shiraishi S, Kitayama T, Kanematsu T, Uezono Y, et al. Relief of cancer pain by glycine transporter inhibitors. Anesth Analg. 2014;119(4):988–95.

    Article  CAS  PubMed  Google Scholar 

  • Muller E, Bakkar W, Martina M, Sokolovski A, Wong AY, Legendre P, et al. Vesicular storage of glycine in glutamatergic terminals in mouse hippocampus. Neuroscience. 2013;242:110–27.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T, Kekuda R, Fei YJ, Hatanaka T, Sugawara M, Martindale RG, et al. Cloning and functional characterization of a new subtype of the amino acid transport system N. Am J Phys Cell Physiol. 2001;281(6):C1757–68.

    CAS  Google Scholar 

  • Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S. NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci. 2004;5(5):361–72.

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa H, Inoue T, Izumi T, Nakagawa S, Koyama T. SSR504734, a glycine transporter-1 inhibitor, attenuates acquisition and expression of contextual conditioned fear in rats. Behav Pharmacol. 2010;21(5-6):576–9.

    Article  CAS  PubMed  Google Scholar 

  • Nong Y, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT, et al. Glycine binding primes NMDA receptor internalization. Nature. 2003;422(6929):302–7.

    Article  CAS  PubMed  Google Scholar 

  • Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell. 2006;125(4):775–84.

    Article  CAS  PubMed  Google Scholar 

  • Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14(6):383–400.

    Article  CAS  PubMed  Google Scholar 

  • Paolone G, Botreau F, Stewart J. The facilitative effects of D-cycloserine on extinction of a cocaine-induced conditioned place preference can be long lasting and resistant to reinstatement. Psychopharmacology. 2009;202(1-3):403–9.

    Article  CAS  PubMed  Google Scholar 

  • Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, et al. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell. 2012;150(3):633–46.

    Article  CAS  PubMed  Google Scholar 

  • Pearlman RJ, Aubrey KR, Vandenberg RJ. Arachidonic acid and anandamide have opposite modulatory actions at the glycine transporter, GLYT1a. J Neurochem. 2003;84(3):592–601.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Siles G, Núñez E, Morreale A, Jiménez E, Leo-Macías A, Pita G, et al. An aspartate residue in the external vestibule of GLYT2 (glycine transporter 2) controls cation access and transport coupling. Biochem J. 2012;442(2):323–34.

    Article  PubMed  CAS  Google Scholar 

  • Peykov S, Berkel S, Degenhardt F, Rietschel M, Nöthen MM, Rappold GA. Rare SHANK2 variants in schizophrenia. Mol Psychiatry. 2015;20(12):1487–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto MC, Simão F, da Costa FL, Rosa DV, de Paiva MJ, Resende RR, et al. Sarcosine preconditioning induces ischemic tolerance against global cerebral ischemia. Neuroscience. 2014;271:160–9.

    Article  CAS  PubMed  Google Scholar 

  • Pinto MC, Lima IV, da Costa FL, Rosa DV, Mendes-Goulart VA, Resende RR, et al. Glycine transporters type 1 inhibitor promotes brain preconditioning against NMDA-induced excitotoxicity. Neuropharmacology. 2015;89:274–81.

    Article  PubMed  CAS  Google Scholar 

  • Puhl MD, Berg AR, Bechtholt AJ, Coyle JT. Availability of N-methyl-d-aspartate receptor coagonists affects cocaine-induced conditioned place preference and locomotor sensitization: implications for comorbid schizophrenia and substance abuse. J Pharmacol Exp Ther. 2015;353(3):465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian J, Noebels JL. Visualization of transmitter release with zinc fluorescence detection at the mouse hippocampal mossy fibre synapse. J Physiol. 2005;566(Pt 3):747–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey AJ. NR1 knockdown mice as a representative model of the glutamate hypothesis of schizophrenia. Prog Brain Res. 2009;179:51–8. doi:10.1016/S0079-6123(09)17906-2.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez A, Ortega A, Berumen LC, García-Alcocer MG, Giménez C, Zafra F. Expression of the System N transporter (SNAT5/SN2) during development indicates its plausible role in glutamatergic neurotransmission. Neurochem Int. 2014;73:166–71.

    Article  PubMed  CAS  Google Scholar 

  • Rose CR, Ransom BR. Mechanisms of H+ and Na+ changes induced by glutamate, kainate, and D-aspartate in rat hippocampal astrocytes. J Neurosci. 1996;16(17):5393–404.

    CAS  PubMed  Google Scholar 

  • Rosenberg D, Artoul S, Segal AC, Kolodney G, Radzishevsky I, Dikopoltsev E, et al. Neuronal D-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci. 2013;33(8):3533–44.

    Article  CAS  PubMed  Google Scholar 

  • Rousseau F, Aubrey KR, Supplisson S. The glycine transporter GlyT2 controls the dynamics of synaptic vesicle refilling in inhibitory spinal cord neurons. J Neurosci. 2008;28(39):9755–68.

    Article  CAS  PubMed  Google Scholar 

  • Roux MJ, Supplisson S. Neuronal and glial glycine transporters have different stoichiometries. Neuron. 2000;25(2):373–83.

    Article  CAS  PubMed  Google Scholar 

  • Rutter AR, Fradley RL, Garrett EM, Chapman KL, Lawrence JM, Rosahl TW, et al. Evidence from gene knockout studies implicates Asc-1 as the primary transporter mediating d-serine reuptake in the mouse CNS. Eur J Neurosci. 2007;25(6):1757–66.

    Article  PubMed  Google Scholar 

  • Safory H, Neame S, Shulman Y, Zubedat S, Radzishevsky I, Rosenberg D, et al. The alanine-serine-cysteine-1 (Asc-1) transporter controls glycine levels in the brain and is required for glycinergic inhibitory transmission. EMBO Rep. 2015;16(5):590–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saransaari P, Oja SS. Characteristics of hippocampal glycine release in cell-damaging conditions in the adult and developing mouse. Neurochem Res. 2001;26(7):845–52.

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Adams R, Betz H, Schloss P. Modulation of a recombinant glycine transporter (GLYT1b) by activation of protein kinase C. J Neurochem. 1995;65(5):1967–73.

    Article  CAS  PubMed  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH. D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A. 1995;92(9):3948–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7.

    Article  PubMed Central  CAS  Google Scholar 

  • Schmitz Y, Castagna C, Mrejeru A, Lizardi-Ortiz JE, Klein Z, Lindsley CW, et al. Glycine transporter-1 inhibition promotes striatal axon sprouting via NMDA receptors in dopamine neurons. J Neurosci. 2013;33(42):16778–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoemaker JH, Jansen WT, Schipper J, Szegedi A. The selective glycine uptake inhibitor org 25935 as an adjunctive treatment to atypical antipsychotics in predominant persistent negative symptoms of schizophrenia: results from the GIANT trial. J Clin Psychopharmacol. 2014;34(2):190–8.

    Article  CAS  PubMed  Google Scholar 

  • Shen HY, van Vliet EA, Bright KA, Hanthorn M, Lytle NK, Gorter J, et al. Glycine transporter 1 is a target for the treatment of epilepsy. Neuropharmacology. 2015;99:554–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature. 1994;368(6467):144–7.

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki K, Hosoi N, Kaneko R, Tominaga M, Yamada K. Glycine release from astrocytes via functional reversal of GlyT1. J Neurochem. 2016; doi:10.1111/jnc.13741. [Epub ahead of print]

  • Singer P, Feldon J, Yee BK. The glycine transporter 1 inhibitor SSR504734 enhances working memory performance in a continuous delayed alternation task in C57BL/6 mice. Psychopharmacology. 2009a;202(1-3):371–84.

    Article  CAS  PubMed  Google Scholar 

  • Singer P, Yee BK, Feldon J, Iwasato T, Itohara S, Grampp T, et al. Altered mnemonic functions and resistance to N-METHYL-d-aspartate receptor antagonism by forebrain conditional knockout of glycine transporter 1. Neuroscience. 2009b;161(2):635–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer P, Dubroqua S, Yee BK. Inhibition of glycine transporter 1: the yellow brick road to new schizophrenia therapy? Curr Pharm Des. 2015;21(26):3771–87.

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Singh V. Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs. 2011;25(10):859–85.

    Article  CAS  PubMed  Google Scholar 

  • Smith KE, Borden LA, Hartig PR, Branchek T, Weinshank RL. Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron. 1992;8(5):927–35.

    Article  CAS  PubMed  Google Scholar 

  • Socała K, Nieoczym D, Rundfeldt C, Wlaź P. Effects of sarcosine, a glycine transporter type 1 inhibitor, in two mouse seizure models. Pharmacol Rep. 2010;62(2):392–7.

    Article  PubMed  Google Scholar 

  • Song W, Chattipakorn SC, McMahon LL. Glycine-gated chloride channels depress synaptic transmission in rat hippocampus. J Neurophysiol. 2006;95(4):2366–79.

    Article  CAS  PubMed  Google Scholar 

  • Spike RC, Watt C, Zafra F, Todd AJ. An ultrastructural study of the glycine transporter GLYT2 and its association with glycine in the superficial laminae of the rat spinal dorsal horn. Neuroscience. 1997;77(2):543–51.

    Article  CAS  PubMed  Google Scholar 

  • Stevens ER, Gustafson EC, Miller RF. Glycine transport accounts for the differential role of glycine vs. D-serine at NMDA receptor coagonist sites in the salamander retina. Eur J Neurosci. 2010;31(5):808–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Straub H, Köhling R, Speckmann EJ. Strychnine-induced epileptiform activity in hippocampal and neocortical slice preparations: suppression by the organic calcium antagonists verapamil and flunarizine. Brain Res. 1997;773(1-2):173–80.

    Article  CAS  PubMed  Google Scholar 

  • Strzelecki D, Podgórski M, Kałużyńska O, Gawlik-Kotelnicka O, Stefańczyk L, Kotlicka-Antczak M, et al. Supplementation of antipsychotic treatment with sarcosine – GlyT1 inhibitor – causes changes of glutamatergic (1)NMR spectroscopy parameters in the left hippocampus in patients with stable schizophrenia. Neurosci Lett. 2015;606:7–12.

    Article  CAS  PubMed  Google Scholar 

  • Tanabe M, Takasu K, Yamaguchi S, Kodama D, Ono H. Glycine transporter inhibitors as a potential therapeutic strategy for chronic pain with memory impairment. Anesthesiology. 2008;108(5):929–37.

    Article  CAS  PubMed  Google Scholar 

  • Tsai G, Lane HY, Yang P, Chong MY, Lange N. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 2004a;55(5):452–6.

    Article  CAS  PubMed  Google Scholar 

  • Tsai G, Ralph-Williams RJ, Martina M, Bergeron R, Berger-Sweeney J, Dunham KS, Jiang Z, Caine SB, Coyle JT. Gene knockout of glycine transporter 1: characterization of the behavioral phenotype. Proc Natl Acad Sci U S A. 2004b;101(22):8485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turecek R, Trussell LO. Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature. 2001;411(6837):587–90.

    Article  CAS  PubMed  Google Scholar 

  • Umbricht D, Alberati D, Martin-Facklam M, Borroni E, Youssef EA, Ostland M, et al. Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia: a randomized, double-blind, proof-of-concept study. JAMA Psychiatry. 2014;71(6):637–46.

    Article  CAS  PubMed  Google Scholar 

  • Vengeliene V, Leonardi-Essmann F, Sommer WH, Marston HM, Spanagel R. Glycine transporter-1 blockade leads to persistently reduced relapse-like alcohol drinking in rats. Biol Psychiatry. 2010;68(8):704–11.

    Article  CAS  PubMed  Google Scholar 

  • Verleysdonk S, Martin H, Willker W, Leibfritz D, Hamprecht B. Rapid uptake and degradation of glycine by astroglial cells in culture: synthesis and release of serine and lactate. Glia. 1999;27(3):239–48.

    Article  CAS  PubMed  Google Scholar 

  • Werdehausen R, Mittnacht S, Bee LA, Minett MS, Armbruster A, Bauer I, et al. The lidocaine metabolite N-ethylglycine has antinociceptive effects in experimental inflammatory and neuropathic pain. Pain. 2015;156(9):1647–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehead KJ, Pearce SM, Walker G, Sundaram H, Hill D, Bowery NG. Positive N-methyl-D-aspartate receptor modulation by selective glycine transporter-1 inhibition in the rat dorsal spinal cord in vivo. Neuroscience. 2004;126(2):381–90.

    Article  CAS  PubMed  Google Scholar 

  • Wiescholleck V, Manahan-Vaughan D. Long-lasting changes in hippocampal synaptic plasticity and cognition in an animal model of NMDA receptor dysfunction in psychosis. Neuropharmacology. 2013;74:48–58.

    Article  CAS  PubMed  Google Scholar 

  • Wilcox KS, Fitzsimonds RM, Johnson B, Dichter MA. Glycine regulation of synaptic NMDA receptors in hippocampal neurons. J Neurophysiol. 1996;76(5):3415–24.

    CAS  PubMed  Google Scholar 

  • Williams K, Russell SL, Shen YM, Molinoff PB. Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron. 1993;10(2):267–78.

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Dumas T, Tang L, Brennan T, Reeder T, Thomas W, et al. Lack of the alanine-serine-cysteine transporter 1 causes tremors, seizures, and early postnatal death in mice. Brain Res. 2005;1052(2):212–21.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, et al. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci U S A. 2003;100(25):15194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yee BK, Balic E, Singer P, Schwerdel C, Grampp T, Gabernet L, et al. Disruption of glycine transporter 1 restricted to forebrain neurons is associated with a procognitive and antipsychotic phenotypic profile. J Neurosci. 2006;26(12):3169–81.

    Article  CAS  PubMed  Google Scholar 

  • Zafra F, Giménez C. Characteristics and adaptive regulation of glycine transport in cultured glial cells. Biochem J. 1989;258(2):403–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafra F, Alcantara R, Gomeza J, Aragon C, Gimenez C. Arachidonic acid inhibits glycine transport in cultured glial cells. Biochem J. 1990;271(1):237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafra F, Aragón C, Olivares L, Danbolt NC, Giménez C, Storm-Mathisen J. Glycine transporters are differentially expressed among CNS cells. J Neurosci. 1995a;15(5 Pt 2):3952–69.

    CAS  PubMed  Google Scholar 

  • Zafra F, Gomeza J, Olivares L, Aragón C, Giménez C. Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the rat CNS. Eur J Neurosci. 1995b;7(6):1342–52.

    Article  CAS  PubMed  Google Scholar 

  • Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533(7604):481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LH, Gong N, Fei D, Xu L, Xu TL. Glycine uptake regulates hippocampal network activity via glycine receptor-mediated tonic inhibition. Neuropsychopharmacology. 2008;33(3):701–11.

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Ji F, Wang N, Chen LL, Tian T, Lu W. Glycine induces bidirectional modifications in N-methyl-D-aspartate receptor-mediated synaptic responses in hippocampal CA1 neurons. J Biol Chem. 2014;289(45):31200–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Tao H, Xian W, Cai Y, Cheng W, Yin M, et al. A highly selective inhibitor of glycine transporter-1 elevates the threshold for maximal electroshock-induced tonic seizure in mice. Biol Pharm Bull. 2016;39(2):174–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. FJ Díez-Guerra for critical comments on the manuscript. This work was supported by grants from the Spanish MINECO (SAF2014-55686-R) and from “Fundación Ramón Areces.” The latter also provides support to the CBMSO through an institutional grant.

Conflict of Interest

The author declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Zafra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zafra, F., Ibáñez, I., Bartolomé-Martín, D., Piniella, D., Arribas-Blázquez, M., Giménez, C. (2017). Glycine Transporters and Its Coupling with NMDA Receptors. In: Ortega, A., Schousboe, A. (eds) Glial Amino Acid Transporters. Advances in Neurobiology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-55769-4_4

Download citation

Publish with us

Policies and ethics