Skip to main content

FtsZ Constriction Force – Curved Protofilaments Bending Membranes

  • Chapter
  • First Online:
Prokaryotic Cytoskeletons

Part of the book series: Subcellular Biochemistry ((SCBI,volume 84))

Abstract

FtsZ assembles in vitro into protofilaments (pfs) that are one subunit thick and ~50 subunits long. In vivo these pfs assemble further into the Z ring, which, along with accessory division proteins, constricts to divide the cell. We have reconstituted Z rings in liposomes in vitro, using pure FtsZ that was modified with a membrane targeting sequence to directly bind the membrane. This FtsZ-mts assembled Z rings and constricted the liposomes without any accessory proteins. We proposed that the force for constriction was generated by a conformational change from straight to curved pfs. Evidence supporting this mechanism came from switching the membrane tether to the opposite side of the pf. These switched-tether pfs assembled “inside-out” Z rings, and squeezed the liposomes from the outside, as expected for the bending model. We propose three steps for the full process of cytokinesis: (a) pf bending generates a constriction force on the inner membrane, but the rigid peptidoglycan wall initially prevents any invagination; (b) downstream proteins associate to the Z ring and remodel the peptidoglycan, permitting it to follow the constricting FtsZ to a diameter of ~250 nm; the final steps of closure of the septum and membrane fusion are achieved by excess membrane synthesis and membrane fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This study quantitates the number of molecules of almost all proteins in E. coli MG1655, under three growth conditions. Our Table 5.1 collects their data for cell division and cytoskeletal proteins.

    Table 5.1 Copy number of cell division and cytoskeleton proteins, determined by Li et al. (2014)

References

  • Adams DW, Wu LJ, Czaplewski LG, Errington J (2011) Multiple effects of benzamide antibiotics on FtsZ function. Mol Microbiol 80:68–84

    Article  CAS  PubMed  Google Scholar 

  • Addinall SG, Lutkenhaus J (1996) FtsZ-spirals and -arcs determine the shape of the invaginating septa in some mutants of Escherichia coli. Mol Microbiol 22:231–237

    Article  CAS  PubMed  Google Scholar 

  • Anderson DE, Gueiros-Filho FJ, Erickson HP (2004) Assembly Dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J Bacteriol 186:5775–5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreu JM et al (2010) The antibacterial cell division inhibitor PC190723 is an FtsZ polymer-stabilizing agent that induces filament assembly and condensation. J Biol Chem 285:14239–14246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumugam S, Chwastek G, Fischer-Friedrich E, Ehrig C, Monch I, Schwille P (2012) Surface topology engineering of membranes for the mechanical investigation of the tubulin homologue FtsZ. Angew Chem Int Ed Eng 51:11858–11862

    Article  CAS  Google Scholar 

  • Arumugam S, Petrasek Z, Schwille P (2014) MinCDE exploits the dynamic nature of FtsZ filaments for its spatial regulation. Proc Natl Acad Sci U S A 111:E1192–E1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beuria TK, Mullapudi S, Mileykovskaya E, Sadasivam M, Dowhan W, Margolin W (2009) Adenine nucleotide-dependent regulation of assembly of bacterial tubulin-like FtsZ by a hypermorph of bacterial actin-like FtsA. J Biol Chem 284:14079–14086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biteen JS, Goley ED, Shapiro L, Moerner WE (2012) Three-dimensional super-resolution imaging of the midplane protein FtsZ in live Caulobacter crescentus cells using astigmatism. ChemPhysChem 13:1007–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buske PJ, Levin PA (2012) Extreme C terminus of bacterial cytoskeletal protein FtsZ plays fundamental role in assembly independent of modulatory proteins. J Biol Chem 287:10945–10957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buss J, Coltharp C, Shtengel G, Yang X, Hess H, Xiao J (2015) A multi-layered protein network stabilizes the Escherichia coli FtsZ-ring and modulates constriction dynamics. PLoS Genet 11:e1005128

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Erickson HP (2005) Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer. J Biol Chem 280:22549–22554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Erickson HP (2009) FtsZ filament dynamics at steady state: subunit exchange with and without nucleotide hydrolysis. Biochemistry 48:6664–6673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Bjornson K, Redick SD, Erickson HP (2005) A rapid fluorescence assay for FtsZ assembly indicates cooperative assembly with a dimer nucleus. Biophys J 88:505–514

    Article  CAS  PubMed  Google Scholar 

  • Coltharp C, Buss J, Plumer TM, Xiao J (2016) Defining the rate-limiting processes of bacterial cytokinesis. Proc Natl Acad Sci U S A 113(8):E1044–E1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dajkovic A, Lan G, Sun SX, Wirtz D, Lutkenhaus J (2008) MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ. Curr Biol 18:235–244

    Article  CAS  PubMed  Google Scholar 

  • Erickson HP (1997) FtsZ, a tubulin homolog, in prokaryote cell division. Trends Cell Biol 7:362–367

    Article  CAS  PubMed  Google Scholar 

  • Erickson HP (2009) Modeling the physics of FtsZ assembly and force generation. Proc Natl Acad Sci U S A 106:9238–9243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson HP, Taylor DW, Taylor KA, Bramhill D (1996) Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci U S A 93:519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74:504–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eun YJ, Kapoor M, Hussain S, Garner EC (2015) Bacterial filament systems: toward understanding their emergent behavior and cellular functions. J Biol Chem 290:17181–17189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu G, Huang T, Buss J, Coltharp C, Hensel Z, Xiao J (2010) In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM). PLoS ONE 5:e12682

    Article  PubMed  Google Scholar 

  • Fujiwara MT, Sekine K, Yamamoto YY, Abe T, Sato N, Itoh RD (2009) Live imaging of chloroplast FtsZ1 filaments, rings, spirals, and motile dot structures in the AtMinE1 mutant and overexpressor of Arabidopsis thaliana. Plant Cell Physiol 50:1116–1126

    Article  CAS  PubMed  Google Scholar 

  • Geissler B, Shiomi D, Margolin W (2007) The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring. Microbiology (Reading, England) 153:814–825

    Google Scholar 

  • Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120:923–934

    Article  CAS  PubMed  Google Scholar 

  • Goley ED, Dye NA, Werner JN, Gitai Z, Shapiro L (2010) Imaging-based identification of a critical regulator of FtsZ protofilament curvature in Caulobacter. Mol Cell 39:975–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goley ED, Yeh YC, Hong SH, Fero MJ, Abeliuk E, McAdams HH, Shapiro L (2011) Assembly of the Caulobacter cell division machine. Mol Microbiol 80:1680–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez JM et al (2005) Cooperative behavior of Escherichia coli cell-division protein FtsZ assembly involves the preferential cyclization of long single-stranded fibrils. Proc Natl Acad Sci U S A 102:1895–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grafmuller A, Voth GA (2011) Intrinsic bending of microtubule protofilaments. Structure 19:409–417

    Article  CAS  PubMed  Google Scholar 

  • Hamon L et al (2009) Mica surface promotes the assembly of cytoskeletal proteins. Langmuir 25:3331–3335

    Article  CAS  PubMed  Google Scholar 

  • Holden SJ, Pengo T, Meibom KL, Fernandez Fernandez C, Collier J, Manley S (2014) High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. Proc Natl Acad Sci U S A 111:4566–4571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hörger I, Velasco E, Mingorance J, Rivas G, Tarazona P, Velez M (2008) Langevin computer simulations of bacterial protein filaments and the force-generating mechanism during cell division. Phys Rev E Stat Nonlinear Soft Matter Phys 77:011902

    Article  Google Scholar 

  • Housman M, Milam SL, Moore DA, Osawa M, Erickson HP (2016) FtsZ protofilament curvature is the opposite of tubulin rings. Biochemistry 55:4085–4091

    Google Scholar 

  • Hsin J, Gopinathan A, Huang KC (2012) Nucleotide-dependent conformations of FtsZ dimers and force generation observed through molecular dynamics simulations. Proc Natl Acad Sci U S A 109:9432–9437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huecas S, Andreu JM (2004) Polymerization of nucleotide-free, GDP- and GTP-bound cell division protein FtsZ: GDP makes the difference. FEBS Lett 569:43–48

    Article  CAS  PubMed  Google Scholar 

  • Huecas S, Llorca O, Boskovic J, Martin-Benito J, Valpuesta JM, Andreu JM (2008) Energetics and geometry of FtsZ polymers: nucleated self-assembly of single protofilaments. Biophys J 94:1796–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huecas S et al (2015) Beyond a fluorescent probe: inhibition of cell division protein FtsZ by mant-GTP elucidated by NMR and biochemical approaches. ACS Chem Biol 10:2382–2392

    Article  CAS  PubMed  Google Scholar 

  • Jacq M, Adam V, Bourgeois D, Moriscot C, Di Guilmi AM, Vernet T, Morlot C (2015) Remodeling of the Z-ring nanostructure during the Streptococcus pneumoniae cell cycle revealed by photoactivated localization microscopy. mBio 6:eo1108–1115

    Google Scholar 

  • Johnson CBLZ, Luo Z, Shaik RS, Sung MW, Vitha S, Holzenburg A (2015) In situ structure of FtsZ mini-rings in Arabidopsis chloroplasts. Adv Struct Chem Imag 1:12

    Article  Google Scholar 

  • Lan G, Daniels BR, Dobrowsky TM, Wirtz D, Sun SX (2009) Condensation of FtsZ filaments can drive bacterial cell division. Proc Natl Acad Sci U S A 106:121–126

    Article  CAS  PubMed  Google Scholar 

  • Leaver M, Dominguez-Cuevas P, Coxhead JM, Daniel RA, Errington J (2009) Life without a wall or division machine in Bacillus subtilis. Nature 457:849–853

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Trimble MJ, Brun YV, Jensen GJ (2007) The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26:4694–4708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2013) FtsZ protofilaments use a hinge-opening mechanism for constrictive force generation. Science 341:392–395

    Article  CAS  PubMed  Google Scholar 

  • Li GW, Burkhardt D, Gross C, Weissman JS (2014) Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157:624–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loose M, Mitchison TJ (2014) The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat Cell Biol 16:38–46

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Reedy M, Erickson HP (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol 182:164–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolin W, Wang R, Kumar M (1996) Isolation of an ftsZ homolog from the archaebacterium Halobacterium salinarium: implications for the evolution of FtsZ and tubulin. J Bacteriol 178:1320–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateos-Gil P et al (2012) FtsZ polymers bound to lipid bilayers through ZipA form dynamic two dimensional networks. Biochim Biophys Acta 1818:806–813

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Yamane J, Mogi N, Yamaguchi H, Takemoto H, Yao M, Tanaka I (2012) Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus. Acta Crystallogr 68:1175–1188

    CAS  Google Scholar 

  • McIntosh JR, Volkov V, Ataullakhanov FI, Grishchuk EL (2010) Tubulin depolymerization may be an ancient biological motor. J Cell Sci 123:3425–3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier EL, Goley ED (2014) Form and function of the bacterial cytokinetic ring. Curr Opin Cell Biol 26:19–27

    Article  CAS  PubMed  Google Scholar 

  • Mercier R, Kawai Y, Errington J (2013) Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 152:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Michie KA, Monahan LG, Beech PL, Harry EJ (2006) Trapping of a spiral-like intermediate of the bacterial cytokinetic protein FtsZ. J Bacteriol 188:1680–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mickey B, Howard J (1995) Rigidity of microtubules is increased by stabilizing agents. J Cell Biol 130:909–917

    Article  CAS  PubMed  Google Scholar 

  • Milam SL, Erickson HP (2013) Rapid in vitro assembly of Caulobacter crescentus FtsZ protein at pH 6.5 and 7.2. J Biol Chem 288:23675–23679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milam SL, Osawa M, Erickson HP (2012) Negative-stain electron microscopy of inside-out FtsZ rings reconstituted on artificial membrane tubules show ribbons of protofilaments. Biophys J 103:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mingorance J, Tadros M, Vicente M, Gonzalez JM, Rivas G, Velez M (2005) Visualization of single Escherichia coli FtsZ filament dynamics with atomic force microscopy. J Biol Chem 280:20909–20914

    Article  CAS  PubMed  Google Scholar 

  • Moores CA, Milligan RA (2008) Visualisation of a kinesin-13 motor on microtubule end mimics. J Mol Biol 377:647–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrotek A, Knossow M, Gigant B (2011) The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin. J Mol Biol 412:35–42

    Article  CAS  PubMed  Google Scholar 

  • Ohi M, Li Y, Cheng Y, Walz T (2004) Negative staining and image classification – powerful tools in modern electron microscopy. Biol Proced Online 6:23–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa M, Erickson HP (2011) Inside-out Z rings – constriction with and without GTP hydrolysis. Mol Microbiol 81:571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa M, Erickson HP (2013) Liposome division by a simple bacterial division machinery. Proc Natl Acad Sci U S A 110:11000–11004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa M, Anderson DE, Erickson HP (2008) Reconstitution of contractile FtsZ rings in liposomes. Science 320:792–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa M, Anderson DE, Erickson HP (2009) Curved FtsZ protofilaments generate bending forces on liposome membranes. EMBO J 28:3476–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichoff S, Lutkenhaus J (2005) Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol Microbiol 55:1722–1734

    Article  CAS  PubMed  Google Scholar 

  • Popp D, Iwasa M, Narita A, Erickson HP, Maeda Y (2009) FtsZ condensates: an in vitro electron microscopy study. Biopolymers 91:340–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popp D, Iwasa M, Erickson HP, Narita A, Maeda Y, Robinson RC (2010) Suprastructures and dynamic properties of Mycobacterium tuberculosis FtsZ. J Biol Chem 285:11281–11289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Aportela E, Lopez-Blanco JR, Andreu JM, Chacon P (2014) Understanding nucleotide-regulated FtsZ filament dynamics and the monomer assembly switch with large-scale atomistic simulations. Biophys J 107:2164–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romberg L, Mitchison TJ (2004) Rate-limiting guanosine 5’-triphosphate hydrolysis during nucleotide turnover by FtsZ, a prokaryotic tubulin homologue involved in bacterial cell division. Biochemistry 43:282–288

    Article  CAS  PubMed  Google Scholar 

  • Romberg L, Simon M, Erickson HP (2001) Polymerization of FtsZ, a bacterial homolog of tubulin. Is assembly cooperative? J Biol Chem 276:11743–11753

    Article  CAS  PubMed  Google Scholar 

  • Rowlett VW, Margolin W (2014) 3D-SIM super-resolution of FtsZ and its membrane tethers in Escherichia coli cells. Biophys J 107:L17–L20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato M, Mogi Y, Nishikawa T, Miyamura S, Nagumo T, Kawano S (2009) The dynamic surface of dividing cyanelles and ultrastructure of the region directly below the surface in Cyanophora paradoxa. Planta 229:781–791

    Article  CAS  PubMed  Google Scholar 

  • Soderstrom B, Skoog K, Blom H, Weiss DS, von Heijne G, Daley DO (2014) Disassembly of the divisome in Escherichia coli: evidence that FtsZ dissociates before compartmentalization. Mol Microbiol 92:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasan R, Mishra M, Wu L, Yin Z, Balasubramanian MK (2008) The bacterial cell division protein FtsZ assembles into cytoplasmic rings in fission yeast. Genes Dev 22:1741–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss MP, Liew AT, Turnbull L, Whitchurch CB, Monahan LG, Harry EJ (2012) 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. PLoS Biol 10:e1001389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stricker J, Maddox P, Salmon ED, Erickson HP (2002) Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci U S A 99:3171–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szwedziak P, Wang Q, Freund SM, Lowe J (2012) FtsA forms actin-like protofilaments. EMBO J 31:2249–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szwedziak P, Wang Q, Bharat TA, Tsim M, Lowe J (2014) Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. eLife 3:e04601

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan D, Rice WJ, Sosa H (2008) Structure of the kinesin13-microtubule ring complex. Structure 16:1732–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theisen KE, Zhmurov A, Newberry ME, Barsegov V, Dima RI (2012) Multiscale modeling of the nanomechanics of microtubule protofilaments. J Phys Chem B 116:8545–8555

    Article  CAS  PubMed  Google Scholar 

  • Turner DJ, Portman I, Dafforn TR, Rodger A, Roper DI, Smith CJ, Turner MS (2012) The mechanics of FtsZ fibers. Biophys J 102:731–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Lutkenhaus J (1996a) Characterization of FtsZ from Mycoplasma pulmonis, an organism lacking a cell wall. J Bacteriol 178:2314–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Lutkenhaus J (1996b) FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. Mol Microbiol 21:313–319

    Article  CAS  PubMed  Google Scholar 

  • Wang HW, Nogales E (2005) Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435:911–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Schmitz AJ, Kadirjan-Kalbach DK, Terbush AD, Osteryoung KW (2013) Chloroplast division protein ARC3 regulates chloroplast FtsZ-ring assembly and positioning in arabidopsis through interaction with FtsZ2. Plant Cell 25:1787–1802

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao FQ, Craig R (2003) Capturing time-resolved changes in molecular structure by negative staining. J Struct Biol 141:43–52

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold P. Erickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Erickson, H.P., Osawa, M. (2017). FtsZ Constriction Force – Curved Protofilaments Bending Membranes. In: Löwe, J., Amos, L. (eds) Prokaryotic Cytoskeletons. Subcellular Biochemistry, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-53047-5_5

Download citation

Publish with us

Policies and ethics