Skip to main content

The Tubulin Superfamily in Archaea

  • Chapter
  • First Online:
Prokaryotic Cytoskeletons

Part of the book series: Subcellular Biochemistry ((SCBI,volume 84))

Abstract

In comparison with bacteria and eukaryotes, the large and diverse group of microorganisms known as archaea possess a great diversity of cytoskeletal proteins, including members of the tubulin superfamily. Many species contain FtsZ, CetZ and even possible tubulins; however, some major taxonomic groups do not contain any member of the tubulin superfamily. Studies using the model archaeon, Halferax volcanii have recently been instrumental in defining the fundamental roles of FtsZ and CetZ in archaeal cell division and cell shape regulation. Structural studies of archaeal tubulin superfamily proteins provide a definitive contribution to the cytoskeletal field, showing which protein-types must have developed prior to the divergence of archaea and eukaryotes. Several regions of the globular core domain – the “signature” motifs – combine in the 3D structure of the common molecular fold to form the GTP-binding site. They are the most conserved sequence elements and provide the primary basis for identification of new superfamily members through homology searches. The currently well-characterised proteins also all share a common mechanism of GTP-dependent polymerisation, in which GTP molecules are sandwiched between successive subunits that are arranged in a head-to-tail manner. However, some poorly-characterised archaeal protein families retain only some of the signature motifs and are unlikely to be capable of dynamic polymerisation, since the promotion of depolymerisation by hydrolysis to GDP depends on contributions from both subunits that sandwich the nucleotide in the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allers T, Mevarech M (2005) Archaeal genetics – the third way. Nat Rev Genet 6 (1):58–73. doi:nrg1504 [pii]1038/nrg1504 [doi]

    Google Scholar 

  • Allers T, Ngo HP, Mevarech M, Lloyd RG (2004) Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. Appl Environ Microbiol 70(2):943–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allers T, Barak S, Liddell S, Wardell K, Mevarech M (2010) Improved strains and plasmid vectors for conditional overexpression of His-tagged proteins in Haloferax volcanii. Appl Environ Microbiol 76(6):1759–1769. doi:10.1128/aem.02670-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alushin GM, Lander GC, Kellogg EH, Zhang R, Baker D, Nogales E (2014) High-resolution microtubule structures reveal the structural transitions in alphabeta-tubulin upon GTP hydrolysis. Cell 157(5):1117–1129. doi:10.1016/j.cell.2014.03.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreu JM, Oliva MA, Monasterio O (2002) Reversible unfolding of FtsZ cell division proteins from archaea and bacteria. Comparison with eukaryotic tubulin folding and assembly. J Biol Chem 277(45):43262–43270. doi:10.1074/jbc.M206723200

    Article  CAS  PubMed  Google Scholar 

  • Aylett CH, Wang Q, Michie KA, Amos LA, Lowe J (2010) Filament structure of bacterial tubulin homologue TubZ. Proc Natl Acad Sci U S A 107(46):19766–19771. doi:10.1073/pnas.1010176107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aylett CH, Izore T, Amos LA, Lowe J (2013) Structure of the tubulin/FtsZ-like protein TubZ from Pseudomonas bacteriophage PhiKZ. J Mol Biol 425(12):2164–2173. doi:10.1016/j.jmb.2013.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker BJ, Saw JH, Lind AE, Lazar CS, Hinrichs K-U, Teske AP, Ettema TJG (2016) Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat Microbiol 1:16002. doi:10.1038/nmicrobiol.2016.2. http://www.nature.com/articles/nmicrobiol20162#supplementary-information

  • Baumann P, Jackson SP (1996) An archaebacterial homologue of the essential eubacterial cell division protein FtsZ. Proc Natl Acad Sci U S A 93(13):6726–6730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169. doi:10.1186/1471-2164-7-169

    Article  PubMed  PubMed Central  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273(5278):1058–1073

    Article  CAS  PubMed  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodriguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57(Pt 2):387–392. doi:10.1099/ijs.0.64690-0

    Article  CAS  PubMed  Google Scholar 

  • Buske PJ, Levin PA (2012) Extreme C terminus of bacterial cytoskeletal protein FtsZ plays fundamental role in assembly independent of modulatory proteins. J Biol Chem 287(14):10945–10957. doi:10.1074/jbc.M111.330324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buske PJ, Mittal A, Pappu RV, Levin PA (2015) An intrinsically disordered linker plays a critical role in bacterial cell division. Semin Cell Dev Biol 37:3–10. doi:10.1016/j.semcdb.2014.09.017

    Article  CAS  PubMed  Google Scholar 

  • Chinen A, Uchiyama I, Kobayashi I (2000) Comparison between Pyrococcus horikoshii and Pyrococcus abyssi genome sequences reveals linkage of restriction-modification genes with large genome polymorphisms. Gene 259(1–2):109–121

    Article  CAS  PubMed  Google Scholar 

  • Dai K, Lutkenhaus J (1992) The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J Bacteriol 174(19):6145–6151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz JF, Kralicek A, Mingorance J, Palacios JM, Vicente M, Andreu JM (2001) Activation of cell division protein FtsZ. Control of switch loop T3 conformation by the nucleotide gamma-phosphate. J Biol Chem 276(20):17307–17315. doi:10.1074/jbc.M010920200

    Article  CAS  PubMed  Google Scholar 

  • Duggin IG, Aylett CH, Walsh JC, Michie KA, Wang Q, Turnbull L, Dawson EM, Harry EJ, Whitchurch CB, Amos LA, Lowe J (2015) CetZ tubulin-like proteins control archaeal cell shape. Nature 519(7543):362–365. doi:10.1038/nature13983

    Article  CAS  PubMed  Google Scholar 

  • Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62 (Pt 1):72-82. doi:S0907444905036693 [pii]1107/S0907444905036693

    Google Scholar 

  • Gilson PR, Beech PL (2001) Cell division protein FtsZ: running rings around bacteria, chloroplasts and mitochondria. Res Microbiol 152(1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Huecas S, Andreu JM (2004) Polymerization of nucleotide-free, GDP- and GTP-bound cell division protein FtsZ: GDP makes the difference. FEBS Lett 569(1–3):43–48. doi:10.1016/j.febslet.2004.05.048

    Article  CAS  PubMed  Google Scholar 

  • Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S, Kosugi H, Hosoyama A, Nagai Y, Sakai M, Ogura K, Otsuka R, Nakazawa H, Takamiya M, Ohfuku Y, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Kikuchi H (1998) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 5(2):55–76

    Article  CAS  PubMed  Google Scholar 

  • Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, D’Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390(6658):364–370. doi:10.1038/37052

    Article  CAS  PubMed  Google Scholar 

  • Kraemer JA, Erb ML, Waddling CA, Montabana EA, Zehr EA, Wang H, Nguyen K, Pham DS, Agard DA, Pogliano J (2012) A phage tubulin assembles dynamic filaments by an atypical mechanism to center viral DNA within the host cell. Cell 149(7):1488–1499. doi:10.1016/j.cell.2012.04.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Large A, Stamme C, Lange C, Duan Z, Allers T, Soppa J, Lund PA (2007) Characterization of a tightly controlled promoter of the halophilic archaeon Haloferax volcanii and its use in the analysis of the essential cct1 gene. Mol Microbiol 66 (5):1092-1106. doi:MMI5980 [pii]1111/j.1365-2958.2007.05980.x [doi]

    Google Scholar 

  • Larsen RA, Cusumano C, Fujioka A, Lim-Fong G, Patterson P, Pogliano J (2007) Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis. Genes Dev 21(11):1340–1352. doi:10.1101/gad.1546107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindas AC, Karlsson EA, Lindgren MT, Ettema TJ, Bernander R (2008) A unique cell division machinery in the Archaea. Proc Natl Acad Sci U S A 105(48):18942–18946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391(6663):203–206. doi:10.1038/34472

    Article  CAS  PubMed  Google Scholar 

  • Lowe J, Amos LA (1999) Tubulin-like protofilaments in Ca2+-induced FtsZ sheets. EMBO J 18(9):2364–2371. doi:10.1093/emboj/18.9.2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe J, Amos LA (2000) Helical tubes of FtsZ from Methanococcus jannaschii. Biol Chem 381(9–10):993–999. doi:10.1515/BC.2000.122

    CAS  PubMed  Google Scholar 

  • Lowe J, Amos LA (2009) Evolution of cytomotive filaments: the cytoskeleton from prokaryotes to eukaryotes. Int J Biochem Cell Biol 41(2):323–329

    Article  PubMed  Google Scholar 

  • Lowe J, Li H, Downing KH, Nogales E (2001) Refined structure of alpha/beta-tubulin at 3.5 Å resolution. J Mol Biol 313(5):1045–1057. doi:10.1006/jmbi.2001.5077

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Koonin EV (2010) Two new families of the FtsZ-tubulin protein superfamily implicated in membrane remodeling in diverse bacteria and archaea. Biol Direct 5:33. doi:10.1186/1745-6150-5-33

    Article  PubMed  PubMed Central  Google Scholar 

  • Margolin W, Wang R, Kumar M (1996) Isolation of an ftsZ homolog from the archaebacterium Halobacterium salinarium: implications for the evolution of FtsZ and tubulin. J Bacteriol 178(5):1320–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendieta J, Rico AI, Lopez-Vinas E, Vicente M, Mingorance J, Gomez-Puertas P (2009) Structural and functional model for ionic (K(+)/Na(+)) and pH dependence of GTPase activity and polymerization of FtsZ, the prokaryotic ortholog of tubulin. J Mol Biol 390(1):17–25. doi:10.1016/j.jmb.2009.05.018

    Article  CAS  PubMed  Google Scholar 

  • Monahan LG, Robinson A, Harry EJ (2009) Lateral FtsZ association and the assembly of the cytokinetic Z ring in bacteria. Mol Microbiol 74 (4):1004-1017. doi:MMI6914 [pii]1111/j.1365-2958.2009.06914.x [doi]

    Google Scholar 

  • Mukherjee A, Lutkenhaus J (1998) Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J 17(2):462–469. doi:10.1093/emboj/17.2.462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullakhanbhai MF, Larsen H (1975) Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol 104(3):207–214

    Article  CAS  PubMed  Google Scholar 

  • Nagahisa K, Nakamura T, Fujiwara S, Imanaka T, Takagi M (2000) Characterization of FtsZ homolog from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. J Biosci Bioeng 89(2):181–187

    Article  CAS  PubMed  Google Scholar 

  • Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung KW, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A 97(22):12176–12181. doi:10.1073/pnas.190337797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng KH, Srinivas V, Srinivasan R, Balasubramanian M (2013) The Nitrosopumilus maritimus CdvB, but not FtsZ, assembles into polymers. 2013:104147. doi:10.1155/2013/104147

    Google Scholar 

  • Nogales E, Downing KH, Amos LA, Lowe J (1998a) Tubulin and FtsZ form a distinct family of GTPases. Nat Struct Biol 5(6):451–458

    Article  CAS  PubMed  Google Scholar 

  • Nogales E, Wolf SG, Downing KH (1998b) Structure of the alpha/beta-tubulin dimer by electron crystallography. Nature 391(6663):199–203. doi:10.1038/34465

    Article  CAS  PubMed  Google Scholar 

  • Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee GJ, Hattori M, Kanai A, Atomi H, Takai K, Takami H (2011) Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 39(8):3204–3223. doi:10.1093/nar/gkq1228

    Article  CAS  PubMed  Google Scholar 

  • Oliva MA, Cordell SC, Lowe J (2004) Structural insights into FtsZ protofilament formation. Nat Struct Mol Biol 11(12):1243–1250. doi:10.1038/nsmb855

    Article  CAS  PubMed  Google Scholar 

  • Oliva MA, Trambaiolo D, Lowe J (2007) Structural insights into the conformational variability of FtsZ. J Mol Biol 373(5):1229–1242. doi:10.1016/j.jmb.2007.08.056

    Article  CAS  PubMed  Google Scholar 

  • Ozawa K, Harashina T, Yatsunami R, Nakamura S (2005) Gene cloning, expression and partial characterization of cell division protein FtsZ1 from extremely halophilic archaeon Haloarcula japonica strain TR-1. Extremophiles 9(4):281–288. doi:10.1007/s00792-005-0443-6

    Article  CAS  PubMed  Google Scholar 

  • Pelve EA, Lindas AC, Martens-Habbena W, de la Torre JR, Stahl DA, Bernander R (2011) Cdv-based cell division and cell cycle organization in the thaumarchaeon Nitrosopumilus maritimus. Mol Microbiol 82(3):555–566. doi:10.1111/j.1365-2958.2011.07834.x

    Article  CAS  PubMed  Google Scholar 

  • Poplawski A, Gullbrand B, Bernander R (2000) The ftsZ gene of Haloferax mediterranei: sequence, conserved gene order, and visualization of the FtsZ ring. Gene 242 (1–2):357-367. doi:S0378-1119(99)00517-X [pii]

    Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490. doi:10.1371/journal.pone.0009490

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed CJ, Lewis H, Trejo E, Winston V, Evilia C (2013) Protein adaptations in archaeal extremophiles. 2013:373275. doi:10.1155/2013/373275

    Google Scholar 

  • Reuter CJ, Maupin-Furlow JA (2004) Analysis of proteasome-dependent proteolysis in Haloferax volcanii cells, using short-lived green fluorescent proteins. Appl Environ Microbiol 70(12):7530–7538. doi:10.1128/AEM.70.12.7530-7538.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards KL, Anders KR, Nogales E, Schwartz K, Downing KH, Botstein D (2000) Structure-function relationships in yeast tubulins. Mol Biol Cell 11(5):1887–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samson RY, Bell SD (2009) Ancient ESCRTs and the evolution of binary fission. Trends Microbiol 17(11):507–513. doi:10.1016/j.tim.2009.08.003

    Article  CAS  PubMed  Google Scholar 

  • Samson RY, Obita T, Freund SM, Williams RL, Bell SD (2008) A role for the ESCRT system in cell division in archaea. Science 322(5908):1710–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffers DJ, de Wit JG, den Blaauwen T, Driessen AJ (2002) GTP hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the association of monomers. Biochemistry 41(2):521–529

    Article  CAS  PubMed  Google Scholar 

  • Seitz KW, Lazar CS, Hinrichs KU, Teske AP, Baker BJ (2016) Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. Isme J. doi:10.1038/ismej.2015.233

    PubMed  PubMed Central  Google Scholar 

  • Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJ (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521(7551):173–179. doi:10.1038/nature14447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeckenius W (1981) Walsby’s square bacterium: fine structure of an orthogonal procaryote. J Bacteriol 148(1):352–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Margolin W (1998) FtsZ dynamics during the division cycle of live Escherichia coli cells. J Bacteriol 180(8):2050–2056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan CM, Therien AG, Lu J, Lee SH, Caron A, Gill CJ, Lebeau-Jacob C, Benton-Perdomo L, Monteiro JM, Pereira PM, Elsen NL, Wu J, Deschamps K, Petcu M, Wong S, Daigneault E, Kramer S, Liang L, Maxwell E, Claveau D, Vaillancourt J, Skorey K, Tam J, Wang H, Meredith TC, Sillaots S, Wang-Jarantow L, Ramtohul Y, Langlois E, Landry F, Reid JC, Parthasarathy G, Sharma S, Baryshnikova A, Lumb KJ, Pinho MG, Soisson SM, Roemer T (2012) Restoring methicillin-resistant Staphylococcus aureus susceptibility to beta-lactam antibiotics. Sci Transl Med 4(126):126ra135. doi:10.1126/scitranslmed.3003592

    Article  Google Scholar 

  • Vaughan S, Wickstead B, Gull K, Addinall SG (2004) Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. J Mol Evol 58(1):19–29. doi:10.1007/s00239-003-2523-5 [doi]

    Article  CAS  PubMed  Google Scholar 

  • Walsby AE (1980) Square bacterium. Nature 283(5742):69–71. doi:10.1038/283069a0

    Article  Google Scholar 

  • Wang X, Lutkenhaus J (1996) FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. Mol Microbiol 21(2):313–319

    Article  CAS  PubMed  Google Scholar 

  • Webster G, O’Sullivan LA, Meng Y, Williams AS, Sass AM, Watkins AJ, Parkes RJ, Weightman AJ (2015) Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments. FEMS Microbiol Ecol 91(2):1–18. doi:10.1093/femsec/fiu025

    Article  PubMed  Google Scholar 

  • Yaoi T, Laksanalamai P, Jiemjit A, Kagawa HK, Alton T, Trent JD (2000) Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum. Biochem Biophys Res Commun 275 (3):936–945. doi:10.1006/bbrc.2000.3401 [doi] S0006-291X(00)93401-6 [pii]

    Google Scholar 

  • Yutin N, Koonin EV (2012) Archaeal origin of tubulin. Biol Direct 7:10. doi:10.1186/1745-6150-7-106150-7-10 [pii]

  • Zhalnina KV, Dias R, Leonard MT, Dorr de Quadros P, Camargo FA, Drew JC, Farmerie WG, Daroub SH, Triplett EW (2014) Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS One 9(7):e101648. doi:10.1371/journal.pone.0101648

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

I.G. Duggin’s research is funded by the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain G. Duggin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aylett, C.H.S., Duggin, I.G. (2017). The Tubulin Superfamily in Archaea. In: Löwe, J., Amos, L. (eds) Prokaryotic Cytoskeletons. Subcellular Biochemistry, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-53047-5_14

Download citation

Publish with us

Policies and ethics