Skip to main content

Green Engineering: Integration of Green Chemistry, Pollution Prevention, Risk-Based Considerations, and Life Cycle Analysis

  • Chapter
  • First Online:
Handbook of Industrial Chemistry and Biotechnology

Abstract

Green Chemistry refers to the study of the general methodology for synthesis of chemicals in a benign and environmentally safe manner. Similarly Green Engineering refers application of green chemistry on an industrial scale with the goal of designing processes which minimizes the waste and pollution. The practice of green engineering requires the integration of green chemistry concepts and a systematic use of pollution prevention heuristics in design and operation together with risk assessment tools and life cycle analysis tools. The intent of this chapter is to familiarize the readers with the integration of these tools and spell out the approaches one need to use for green engineering of new processes as well as improving the environmental risks of existing processes.

The Chapter is divided into five major sections: Green chemistry and engineering principles, Pollution prevention heuristics to be used in design, Environmental performance assessment, and Life cycle assessment of processes, and Prediction of environmental fate of chemicals released into the environment. A number of examples of integration of green chemistry and engineering are provided and examples of including life cycle assessment at early design stage are shown. The information provided will be useful for practitioners to design and operate environmentally benign chemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EPA Green Chemistry website, 12 Principles of Green Chemistry. www.epa.gov/oppt/greenchemistry/principles.html

  2. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  3. Matlack A (2010) Introduction to green chemistry. CRC Press, Boca Raton

    Google Scholar 

  4. Green Chemistry Textbooks. www.migreenchemistry.org

  5. EPA Green Engineering website. www.epa.gov/oppt/greenengineering

  6. Allen DT, Shonnard DR (2004) Green engineering: environmentally conscious design of chemical processes, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  7. Bishop PL (2004) Pollution prevention: fundamentals and practice. Waveland Press, Long Grove

    Google Scholar 

  8. Suresh S, Sundaramoorthy S (2014) Green chemical engineering; An introduction to catalysis, kinetics and processes. CRC Publications, Boca Raton

    Google Scholar 

  9. Anzas PT, Zimmerman JB. Design through the twelve principles of green engineering, Environ Sci Technol March 2003, 37(5):94A-101A.

    Google Scholar 

  10. Martin A, Nguyen N (2003) Green engineering: definiting the principles—results from the Sandestin conference. Environ Prog 22:233–236

    Article  Google Scholar 

  11. Ritter S (2003) A green agenda for engineering. Chem Eng News 81(29):30–32

    Article  Google Scholar 

  12. Shonnard DR et al (2003) Green engineering education through a U.S EPA/Academic Collaboration. Environ Sci Technol 37(23):5453–5462

    Article  CAS  Google Scholar 

  13. EPA Pollution Prevention Framework website. www.epa.gov/oppt/p2framework/

  14. EPA Exposure Assessment website. www.epa.gov/risk

  15. EPA Exposure Assessment website. www.epa.gov/oppt/exposure

  16. Curran MA (2012) Life cycle assessment handbook: a guide for environmentally sustainable products. Wiley, New York

    Book  Google Scholar 

  17. Mills PL, Chaudhari RV, Ramachandran PA (1992) Multiphase reaction engineering for fine chemicals and pharmaceuticals. Rev Chem Eng 8:1–76

    Article  CAS  Google Scholar 

  18. Tunca C, Ramachandran PA, Dudukovic MP (2004) Role of chemical reaction engineering in sustainable development. Paper presented at AIChE session 7d, Austin, TX, November 10. See http://www.researchgate.net/publication/238710238_Role_of_Chemical_Reaction_Engineering_in_Sustainable_Process_Development_Addendum_CHE_505

  19. Ramachandran PA, Chaudhari RV (1983) Three phase catalytic reactors. Gordon & Breach Publishing Company, Newark, NJ

    Google Scholar 

  20. Douglas JM (1992) Ind Eng Chem Res 41(25):2522

    Google Scholar 

  21. Rossiter AP, Klee H (1995) In: Rossetier AP (ed) Hierarchical review for waste minimization. McGraw-Hill, New York

    Google Scholar 

  22. Wynn C (2001) Pervaporation comes of age. Chem Eng Process 96:66–72

    Google Scholar 

  23. Schultz MA, Stewart DG, Harris JM, Rosenblum SP, Shakur MS, DE O’B (2002) Reduce costs with dividing-wall columns. Chem Eng Process 98:64–71

    CAS  Google Scholar 

  24. Dejanovic I, Matijasevic LJ, Olujic Z (2010) Divided wall column: A breakthrough towards sustainable distilling. Chem Eng Process 40:559–580

    Article  CAS  Google Scholar 

  25. Wu YC, Lee H-Y, Huang H-P, Chien I-L (2014) Energy-saving dividing-wall column design and control for heterogeneous azeotropic distillation systems. Ind Eng Chem Res 53(4):1537–1552

    Article  CAS  Google Scholar 

  26. El-Halwagi MM (1997) Pollution prevention through process integration. Academic Press, New York

    Google Scholar 

  27. Liu YA, Lucas B, Mann JM (2004) Up-to-date tools for water system optimization. Chem Eng 111(1):30–41

    Google Scholar 

  28. Malone MF, Huss RS (2003) Green chemical engineering aspects of reactive distillation. Environ Sci Technol 37(23):5325–5329

    Article  CAS  Google Scholar 

  29. Cussler EL, Moggridge GD (2001) Product engineering. Cambridge University Press, Cambridge

    Google Scholar 

  30. Allen DT, Rosselot KS (1997) Pollution prevention for chemical processes. Wiley, New York

    Google Scholar 

  31. EPA Green Chemistry website. Green chemistry expert system: Analysis of existing processes, building new green processes, and design. www.epa.gov/greenchemistry/tools.htm

  32. Dyer JA, Mulholland KL (1998) Prevent pollution via better Reactor design and operation. Chem Eng Prog 94(2)

    Google Scholar 

  33. Freeman H (ed) (1994) Industrial pollution prevention handbook. McGraw Hill, New York

    Google Scholar 

  34. Klemeš JJ (ed) (2013) Handbook of process integration (PI): minimization of energy and water use, waste and emissions. Elsevier, Oxford

    Google Scholar 

  35. Tuchelenski A, Beckmann A, Reusch D, Dussel R, Weidlich U, Janowsky R (2001) Reactive distillation-Industrial applications, process design and scaleup. Chem Eng Sci 56:387–394

    Article  Google Scholar 

  36. Ramaswamy RC, Ramachandran PA, Dudukovic MP, Coupling of exothermic and endothermic reactions, Chem Eng Sci, 63, 1654-1667, 2008;

    Google Scholar 

  37. Upadhye AA, Wei Q, Huber GW (2011) Conceptual process design: a systematic method to evaluate and develop renewable technologies. AIChE J 57:2292–2301

    Article  CAS  Google Scholar 

  38. Ney RE Jr (1990) Where did that chemical go? Van Nostrand Reinhold, New York

    Google Scholar 

  39. Mackay D, Patterson S, diGuardo A, Cowan CE (1996) Evaluating the environmental fate of a variety of types of chemicals using the EQC model. Environ Toxicol Chem 15:1627–1637

    Article  CAS  Google Scholar 

  40. Andren AW, Mackay D, Depinto JV, Fox K, Thibodeaux LJ, McLachlan M, Haderlein S (2000) Inter-media Partitioning and Transport. In: Klečka G, Boethling B, Franklin J, Grady L (eds) Evaluation of persistence and long range transport of organic chemicals in the environment. SETAC Press, Pensacola, FL, pp 131–168

    Google Scholar 

  41. Franklin J, Atkinson R, Howard PH, Orlando JJ, Seigneur C, Wallington TJ, Zetzsch C (2000) Quantitative determination of persistence in air. In: Klečka G, Boethling B, Franklin J, Grady L, Graham D, Howard PH, Kannan K, Larson B, Mackay D, Muir D, van de Meent D (eds) Evaluation of persistence and long-range transport of organic chemicals in the environment. SETAC Press, Pensacola, FL, pp 7–62

    Google Scholar 

  42. Thibodeaux LJ (1996) Environmental chemodynamics: movement of chemicals in air, water, and soil, 2nd edn. Wiley, New York

    Google Scholar 

  43. Clark MM (1997) Modeling for environmental engineers and scientists. Wiley, New York

    Google Scholar 

  44. Schnoor JL (1997) Environmental Modeling. Wiley, New York

    Google Scholar 

  45. Graedel TE, Allenby BR (1995) Industrial ecology. Prentice Hall

    Google Scholar 

  46. Mackay D (1991) Multimedia environmental models. The fugacity approach. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  47. Socolow R, Andrews F, Berkhout F, Thomas V (1994) Industrial ecology and global change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  48. Thomas RG (1990) Volatilization from water. In: Lyman WJ, Reehl WF, Rosenblatt DH (eds) Handbook of chemical property estimation methods. American Chemical Society, Washington, DC, pp 15-1–15-34

    Google Scholar 

  49. Larson RA, Weber EJ (1994) Reaction mechanisms in environmental organic chemistry. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  50. Lerman A (1971) Time to chemical steady states in lakes and oceans. In: Hem JD (ed) Nonequilibrium systems in natural water chemistry. Advances in Chemistry Ser. #106. American Chemical Society, Washington, DC, pp 30–76

    Chapter  Google Scholar 

  51. Baum EJ (1998) Chemical property estimation: theory and application. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  52. SC MC, Schnoor JL (2003) Overview of phytotransformation and control of wastes. In: SC MC, Schnoor JL (eds) Phytoremediation: Transformation and control of contaminants. Wiley, New York, pp 3–58

    Google Scholar 

  53. Thibodeaux LJ, Valsaraj KT, Reible DD (1993) Associations of polychlorinated biphenyls with particles in natural waters. Water Sci Technol 28(8):215–221

    CAS  Google Scholar 

  54. Larson R, Forney L, Grady L Jr, Klečka GM, Masunanga S, Peijnenburg W, Wolfe L (2000) Quantification of persistence in soil, water, and sediments. In: Klečka G, Boethling B, Franklin J, Grady L, Graham D, Howard PH, Kannan K, Larson B, Mackay D, Muir D, van de Meent D (eds) Evaluation off persistence and long-range transport of organic chemicals in the environment. SETAC Press, Pensacola, FL, pp 63–130

    Google Scholar 

  55. Gibson DT, Subramanian V (1984) Microbial degradation of aromatic compounds. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York

    Google Scholar 

  56. Bedard DL, Quensen JF III (1995) Microbial reductive dechlorination of polychlorianted biphenyls. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley, New York

    Google Scholar 

  57. Fish KM, Principe JM (1994) Biotransformations of Arochlor 1242 in Hudson River test tube microcosms. Appl Environ Microbiol 60(12):4289–4296

    CAS  Google Scholar 

  58. Ye D, Quensen JF III, Tiedje JM, Boyd SA (1995) Evidence for para-dechlorination of polychlorobiphenyls by methanogenic bacteria. Appl Environ Microbiol 61:2166–2171

    CAS  Google Scholar 

  59. Chakrabarty AM (1982) Biodegradation and detoxification of environmental pollutants. CRC Press, Boca Raton, FL

    Google Scholar 

  60. Alexander M (1994) Biodegradation and Bioremediation. Academic, San Diego, CA

    Google Scholar 

  61. Young LY, Cerniglia CE (1995) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York

    Google Scholar 

  62. Burken JG (2004) Uptake and metabolism of organic compounds: green liver model. In: SC MC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, New York, pp 59–84

    Google Scholar 

  63. Jeffers PM, Wolfe NL (1997) Degradation of methyl bromide by green plants. In: Seiber JN (ed) Fumigants: environmental fate, exposure and analysis. American Chemical Society, Washington, DC

    Google Scholar 

  64. O’Neill W, Nzengung V, Noakes J, Bender J, Phillips P (1998) Biodegradation of tetrachloroehtylene and trichloroethylene using mixed-species microbial mats. In: Wickramanayake GB, Hinchee RE (eds) Bioremediation and phytoremediation. Batelle, Columbus, WA, pp 233–237

    Google Scholar 

  65. Hughes JB, Shanks J, Vanderford M, Lauritzen J, Bhadra R (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31:266–271

    Article  CAS  Google Scholar 

  66. Vanderford M, Shanks JV, Hughes JB (1997) Phytotransformation of trinitrotoluene (TNT) and distribution of metabolic products in Myriphyllum aquaticum. Biotechnol Lett 199:277–280

    Article  Google Scholar 

  67. Gao J, Garrison AW, Hoehamer C, Mazur C, Wolfe NL (1999) Phytotransformations of organophosphate pesticides using axenic plant tissue cultures and tissue enzyme extract. In situ and on-site bioremediation. In The fifth international symposium, San Diego, CA, USA, 19–22 April 1999

    Google Scholar 

  68. Cunningham SD, Berti WR (1993) The remediation of contaminated soils with green plants: an overview. In vitro Cell Dev Biol Plant 29:207–212

    Article  Google Scholar 

  69. Wolfe NL, Jeffers PM (2000) Hydrolysis. In: Boethling RS, Mackay D (eds) Handbooks of property estimation methods for chemicals: enviornmental and health science. CRC Press, Boca Raton, FL, pp 311–334

    Google Scholar 

  70. Zepp RG (1982) Experimental approaches to environmental photochemistry. In: Hutzinger O (ed) The handbook of environmental chemistry, vol 2B. Springer, Berlin, pp 19–41

    Google Scholar 

  71. Banks MK, Schwab AP, Govindaraju RS, Kulakow P (1999) Phytoremediation of hydrocarbon contaminated soils. In: Fiorenza S, Oubre LC, Ward CH (eds) Phytoremediation. CRC Press, New York

    Google Scholar 

  72. Alebić-Juretić A, Güsten H, Zetzsch C (1991) Absorption spectra of hexachlorobenzene adsorbed on SiO2 powders. Fresenius J Anal Chem 340:380–383

    Article  Google Scholar 

  73. Bermen JM, Graham JL, Dellinger B (1992) High temperature UV absorption characteristics of three environmentally sensitive compounds. J Photochem Photobiol A Chem 68:353–362

    Article  Google Scholar 

  74. Tysklind M, Lundgren K, Rappe C (1993) Ultraviolet absorption characteristics of all tetra-to octachlorinated dibenzofurans. Chemosphere 27:535–546

    Article  CAS  Google Scholar 

  75. Kwok ESC, Arey J, Atkinson R (1994) Gas-phase atmospheric chemistry of dibenzo-p-dioxin and dibenzofuran. Environ Sci Technol 28:528–533

    Article  CAS  Google Scholar 

  76. Konstantinou IK, Zarkdis AK, Albanis TA (2001) Photodegradation of selected herbicides in various natural waters and soils under environmental conditions. J Environ Qual 30:121–130

    Article  CAS  Google Scholar 

  77. Windholz M, Budavara S, Blumetti RF, Otterbein ES (1983) The Merck Index: an encyclopedia of chemicals, drugs, and biologicals, 6th edn. Merck & Co., Inc., Rahway, NJ

    Google Scholar 

  78. Howard PH, Boethling RS, Jarvis WF, Meylan WM, Michalenko EM (1991) Handbooks of environmental degradation rates. Lewis Publishers, Chelsea, MI

    Google Scholar 

  79. Dean JA (1992) Lange’s handbook of chemistry, 14th edn. McGraw-Hill, New York

    Google Scholar 

  80. Lide DR (1994) CRC handbook of chemistry and physics, 74th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  81. Mackay D, Shiu WY, Ma KC (1992–1997) Illustrated handbook of physical chemical properties and environmental fate of organic chemicals, vol 1–5. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  82. Howard PH, Meylan WM (1997) Handbook of physical properties of organic chemicals. CRC Press, Boca Raton, FL

    Google Scholar 

  83. Tomlin CDS (1997) The pesticide manual, 11th edn. British Crop Protection Council, Farnham, Surrey

    Google Scholar 

  84. Yaws CL (1999) Chemical properties handbook. McGraw-Hill, New York

    Google Scholar 

  85. Verschueren K (1996) Handbook of environmental data on organic chemicals, 3 & 4 edn. Van Nostrand-Reinhold, New York, p 2001

    Google Scholar 

  86. Lyman WJ, Reehl WF, Rosenblatt DH (1982) Handbook of chemical property estimation methods: environmental behavior of organic compounds. McGraw-Hill, New York

    Google Scholar 

  87. Neely WB, Blau GE (1985) Environmental exposure from chemicals, vol I and II. CRC Press, Boca Raton, FL

    Google Scholar 

  88. Chen H, Shonnard DR (2004) A systematic framework for environmental-conscious chemical process design: early and detailed design stages. Ind Eng Chem Res 43(2):535–552

    Article  CAS  Google Scholar 

  89. Allen DT, Shonnard DR (2001) Green engineering: environmentally conscious design of chemical processes and products. AIChE J 47(9):1906–1910

    Article  CAS  Google Scholar 

  90. Shonnard DR, Hiew DS (2000) Comparative environmental assessments of VOC recovery and recycle design alternatives for a gaseous waste stream. Environ Sci Technol 34(24):5222–5228

    Article  CAS  Google Scholar 

  91. NRC (National Research Council) (1983) Risk assessment in the federal government: managing the process. Committee on institutional means for assessment of risks to public health, National Academy Press, Washington, DC.

    Google Scholar 

  92. Air CHIEF, accessed 2005, The AirClearingHouse for Inventories and Emission Factors, CD-ROM. http://www.epa.gov/oppt/greenengineering/software.html

  93. Bare JC, Norris GA, Pennington DW, McKone T (2003) TRACI: the tool for the reduction and assessment of chemical and other impacts. J Ind Ecol 6(3–4):49–78

    Google Scholar 

  94. SACHE, accessed 2005, Safety and Chemical Engineering Education, American Institute of Chemical Engineers, http://www.sache.org

  95. Shonnard DR (2005) Tools and materials for green chemistry and green engineering education. In National Reseacrh council workshop, November 2005

    Google Scholar 

  96. Shonnard DR, Chen H (2005) Green engineering: a case study in process design—early design evaluation of a green chemistry innovation for pulp bleaching

    Google Scholar 

  97. Genco JM (1991) In: Kroschwitz JI (ed) Pulp, Kirk-Othmer encyclopedia of chemical technology, vol 20. Wiley, New York, p 493

    Google Scholar 

  98. Collins TJ, Horwitz C, Gordon-Wylie SW (1999) TAML™ activators: general activation of hydrogen peroxide for green oxidation processes, provided by Mary Kirchhoff, reen Chemistry Institute, American Chemical Society

    Google Scholar 

  99. Cano-Ruiz JA, McRae GJ (1998) Environmentally conscious chemical process design. Annu Rev Energy Environ 23:499

    Article  Google Scholar 

  100. Schrott W, Saling P (2000) Eco-efficiency analysis—testing products for their value to the customer. Melliand Textil 81(3). 190, 192–194

    Google Scholar 

  101. Landsiedel R, Saling P (2002) Assessment of toxicological risks for life cycle assessment and eco-efficiency analysis. Int J Life Cycle Assess 7(5):261–268

    Article  CAS  Google Scholar 

  102. Azapagic A (1999) Life cycle assessment and its application to process selection, design, and optimization. Chem Eng J 73(1):1–21

    Article  CAS  Google Scholar 

  103. Burgess AA, Brennan DJ (2001). 2589, 2609 Application of life cycle assessment to chemical processes. Chem Eng Sci 56(8)

    Google Scholar 

  104. Royal Commission on Environmental Pollution (1988) Best practicable environmental option. In Twelfth report, Cm130, London, England, UK

    Google Scholar 

  105. Beaver ER (2004) Calculating metrics for acetic acid production. In AIChE sustainability engineering conference proceedings, Austin, TX, pp 7–15

    Google Scholar 

  106. International Organization of Standardization (ISO) (1997) Environmental management—Life cycle assessment—Principles and framework. International Organization of Standardization, Geneva, Switzerland (International Standard ISO14040:1997(E))

    Google Scholar 

  107. International Organization of Standardization (ISO) (1998) Environmental management—Life cycle assessment—Goal and scope definition and inventory analysis. International Organization of Standardization, Geneva, Switzerland (International Standard ISO14041:1998(E))

    Google Scholar 

  108. International Organization of Standardization (ISO) (2000) Environmental management—Life cycle assessment—Life cycle impact assessment. International Organization of Standardization, Geneva, Switzerland (International Standard ISO14042:2000(E))

    Google Scholar 

  109. International Organization of Standardization (ISO) (2000). Environmental management—Life cycle assessment—Life cycle interpretation. International Organization of Standardization, Geneva, Switzerland (International Standard ISO14043:2000(E))

    Google Scholar 

  110. International Organization of Standardization (ISO) (2006) Environmental management—Life cycle assessment—Principals and Framework. International Organization of Standardization, Geneva, Switzerland (International Standard ISO14040:2006)

    Google Scholar 

  111. International Organization of Standardization (ISO) (2000) Environmental management—Life cycle assessment—Requirements and Guidelines. International Organization of Standardization, Geneva, Switzerland (International Standard ISO14044:2006)

    Google Scholar 

  112. SETAC, Society for Environmental Toxicology and Chemistry (1993) Guidelines for life-cycle assessment: code of practice. Brussels, Belgium

    Google Scholar 

  113. Guidelnes for Social life cycle assessment of products UNEP (United Nations environmental program) report (2009) ISBN: 978-92-807-3021-0 http://www.unep.fr/shared/publicaAons/pdf/DTIx1164xPA---guidelines_sLCA.pdf

  114. Graedel TE (1998) Streamlined life-cycle assessment. Prentice Hall, Upper Saddle River

    Google Scholar 

  115. Curran M (1997) Environmental life-cycle assessment. McGraw Hill, New York

    Google Scholar 

  116. Azapagic A, Perdan S, Clift R (2004) Sustainable development in practice: case studies for engineers and scientists. Wiley, New York

    Book  Google Scholar 

  117. Curran MA (2015) Student life cycle assessment handbook. Scrivener-Wiley Publishing, Salem

    Google Scholar 

  118. Chevalier J, Rousseaux P, Benoit V, Benadda B (2003) Environmental assessment of flue gas cleaning processes of municipal solid waste incinerators by means of the life cycle assessment approach. Chem Eng Sci 58(10):2053–2064

    Article  CAS  Google Scholar 

  119. ChemFate Database (http://www.syrres.com/eswc/chemfate.htm). WAR (WAste Reduction Algorithm) http://www.epa.gov/oppt/greenengineering/software.html

  120. Bakshi BR, Hau JL (2004) A multiscale and multiobjective approach for environmentally conscious process retrofitting. In AIChE sustainability engineering conference proceedings, Austin, TX, pp 229–235

    Google Scholar 

  121. Suh S, Lenzen M, Treloar GJ, Hondom H, Harvath A, Huppes G, Jolliet O, Klann U, Krewitt W, Morguchi Y, Munksgaard J, Norris G (2004) System boundary selection in life-cycle inventories using hybrid approaches. Environ Sci Technol 38(3):657–663

    Article  CAS  Google Scholar 

  122. Ekvall T, Finnveden G (2001) Allocation in ISO 14041—a critical review. J Cleaner Prod 9(3):197–208

    Article  Google Scholar 

  123. CarnegieMellonUniversity, http://www.eiolca.net/index.html, developed by Green Design Initiative, CarnegieMellonUniversity, last logon March 21, 2005

  124. Liu L, Liu Z, Richard F (2003) The most of the most—study of a new LCA method. In IEEE proceedings, pp 177–182

    Google Scholar 

  125. Cornelissen RL, Hirs GG (2002) The value of the exergetic life cycle assessment besides the LCA. Energy Convers Manage 43:1417–1424

    Article  CAS  Google Scholar 

  126. Ukidwe NW, Bakshi BR (2004) A multiscale bayesian framework for designing efficient and sustainable industrial systems. In AIChE sustainability engineering conference proceedings, Austin, TX, pp 179–187

    Google Scholar 

  127. Jimenez-Gonzalez C, Overcash MR, Curzons A (2001) Waste treatment modules—a partial life cycle inventory. J Chem Technol Biotechnol 76:707–716

    Article  CAS  Google Scholar 

  128. Jimenez-Gonzalez C, Curzons AD, Constable DJC, Cunningham VL (2004) Cradle-to-gate life cycle inventory and assessment of pharmaceutical compounds. Int J Life Cycle Assess 9:114–121

    Article  Google Scholar 

  129. Curzons AD, Jimenez-Gonzalez C, Duncan AL, Constable DJC, Cunningham VL (2007) Fast life cycle assessment of synthetic chemistry FLASC too. Int J Life Cycle Assess 12:272–280

    Article  CAS  Google Scholar 

  130. Grinter T (2010) The development of an environmentally sustainable process for radafaxine. In: Dunn P, Wells A, Williams T (eds) Green chemistry in the pharmaceutical industry. Wiley-VCH, Weinheim, pp 197–219

    Chapter  Google Scholar 

  131. Xun J, High KA (2004) A new conceptual hierarchy for identifying environmental sustainability merrics. Environ Prog 23(4):291–2301

    Article  CAS  Google Scholar 

  132. Curran MA (2015) Life cycle assessment: a systems approach to environmental management and sustainability. Chem Eng Prog 2015:26–35

    Google Scholar 

  133. Goedkoop M (1995) The Eco-indicator 95, final report. Netherlands Agency for Energy and the Environment (NOVEM) and the National Institute of Public Health and Environmental Protection (RIVM), NOH report 9523

    Google Scholar 

  134. Shonnard DR, Kichere A, Saling P (2003) Industrial applications using BASF eco-efficiency analysis: perspectives on green engineering principles. Environ Sci Technol 37:5340–5348

    Article  CAS  Google Scholar 

  135. Mueller, Jutta, Griese H, Schischke K, Stobbe I, Norris GA, Udo de Haes HA (2004) Life cycle thinking for green electronics: basics in ecodesign and the UNEP/SETAC life cycle initiative. In International IEEE conference on Asian green electronics, pp 193–199

    Google Scholar 

  136. Widiyanto A, Kato S, Maruyama N, Kojima Y (2003) Environmental impact of fossil fuel fired co-generation plants using a numerically standardized LCA scheme. J Energy Resour Technol 125:9–16

    Article  CAS  Google Scholar 

  137. Goralczyk M (2003) Life-cycle assessment in the renewable energy sector. Appl Energy 75:205–211

    Article  Google Scholar 

  138. Schleisner L (2000) Life cycle assessment of a wind farm and related externalities. Renew Energy 20:279–288

    Article  CAS  Google Scholar 

  139. Turconi R, Boldrin A, Astrup T (2013) Life cycle assessment (LCA) of electricity generation technologies: overview, comparability and limitations. Renew Sustain Energy Rev 28:555–565

    Article  CAS  Google Scholar 

  140. Koroneos C, Dompros A, Roumbas G, Moussiopoulos N (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrogen Energy 29:1443–1450

    Article  CAS  Google Scholar 

  141. Furuholt E (1995) Life cycle assessment of gasoline and diesel. Resour Conserv Recy 14:251–263

    Article  Google Scholar 

  142. MacLean HL, Lave LB (2003) Life cycle assessment of automobile/fuel options. Environ Sci Technol 37:5445–5452

    Article  CAS  Google Scholar 

  143. Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64

    Article  CAS  Google Scholar 

  144. Narayanan D, Zhang Y, Manna MS (2007) Engineering for sustainable development (ESD) in biodiesel production. Trans IChem E 85:349–359

    Article  CAS  Google Scholar 

  145. Dinh LTT, Guo Y, Manna MS (2009) Sustainability evaluation of biodiesel production using multicriteria decision making. Environ Prog Sust Energy 28:38–46

    Article  CAS  Google Scholar 

  146. Amatayakul W, Ramnas O (2001) Life cycle assessment of a catalytic converter for passenger cars. J Cleaner Prod 9:395–403

    Article  Google Scholar 

  147. Baratto F, Diwekar UM (2005) Life cycle of fuel cell-based APUs. J Power Sources 139:188–196

    Article  CAS  Google Scholar 

  148. Eagan P, Weinberg L (1999) Application of analytic hierarchy process techniques to streamlined life-cycle analysis of two anodizing processes. Environ Sci Technol 33:1495–1500

    Article  CAS  Google Scholar 

  149. Tan R, Khoo BH, Hsien H (2005) An LCA study of a primary aluminum supply chain. J Cleaner Prod 13(6):607

    Article  Google Scholar 

  150. Jodicke G, Oliver Z, Andre W, Konrad H (1999) Developing environmentally sound processes in the chemical industry: a case study on pharmaceutical intermediates. J Cleaner Prod 7(2):159–166

    Article  Google Scholar 

  151. Jimenez-Gonzalez C, Overcash MR (2000) Energy optimization during early drug development and the relationship with environmental burdens. J Chem Technol Biotechnol 75:983–990

    Article  CAS  Google Scholar 

  152. Wall-Markowski CA, Kicherer A, Saling P (2004) Using eco-efficiency analysis to assess renewable-resource-based technologies. Environ Prog 23(4):329–333

    Article  CAS  Google Scholar 

  153. Slater CS, Savelski MJ, Carole WA, Constable DJC (2010) Solvent use and waste issues. In: Dunn P, Wells A, Williams T (eds) Green chemistry in the pharmaceutical industry. Wiley-VCH, Weinheim, pp 49–82

    Chapter  Google Scholar 

  154. Slater CS, Savelski MJ (2010) Towards a greener pharmaceutical manufacturing environment. Innov Pharm Tech 29:78–83

    Google Scholar 

  155. Raymond MJ, Slater CS, Savelski MJ (2010) LCA Approach to the analysis of solvent waste issues in the pharmaceutical industry. Green Chem 12:1826–1834

    Article  CAS  Google Scholar 

  156. Slater CS, Savelski MJ, Taylor S, Kiang S, LaPorte T, Spangler L (2007) Pervaporation as a green drying process for solvent recovery in pharmaceutical production. Paper 223f, American Institute of Chemical Engineers, Annual Meeting, Salt Lake City, UT

    Google Scholar 

  157. Slater CS, Savelski MJ, Hounsell G, Pilipauskas D, Urbanski F (2008) Analysis of separation, methods for isopropanol recovery in the celecoxib process, Paper 290b. In Proceedings 208 meeting, American Institute of Chemical Engineers, Philadelphia, PA

    Google Scholar 

  158. SIMAPRO software; Pre Consultants, Amersfoot, The Netherlands

    Google Scholar 

  159. Raluy RG, Serra L, Uche J, Valero A (2004) Life-cycle of desalination technologies integrated with energy production systems. Desalination 167:445–458

    Article  CAS  Google Scholar 

  160. Kounina A, Margni M, Bayart J-B, Boulay A-M, Berger M, Bulle C, Frischknecht R et al (2013) Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int J Life Cycle Assess 18(3):707–721

    Article  CAS  Google Scholar 

  161. Corominas L, Foley J, Guest JS, Hospido A, Larsen HF, Morera S, Shaw A (2013) Life cycle assessment applied to wastewater treatment: state of the art. Water Res 47(15):5480–5492

    Article  CAS  Google Scholar 

  162. Papasavva S, Sheila K, Jospeh C, Raymond G (2001) Characterization of automotive paints: an environmental impact analysis. Prog Org Coat 43:193–206

    Article  CAS  Google Scholar 

  163. Dobson ID (2001) Life cycle assessment for painting processes, putting the VOC issue in perspective. Prog Org Coat 27:55–58

    Article  Google Scholar 

  164. Lopes E, Dias A, Arroja L, Capela I, Pereira F (2003) Application of life cycle assessment to the Portuguese pulp and paper industry. J Clean Prod 11:51–59

    Article  Google Scholar 

  165. Song H-S, Hyun JC (1999) A study on the comparison of the various waste management scenarios for Pet bottles using life-cycle assessment (LCA) methodology. Resour Conserv Recycl 27:267–284

    Article  Google Scholar 

  166. Ekvall T (1999) Key methodological issues for life cycle inventory analysis of paper recycling. J Clean Prod 7:281–294

    Article  Google Scholar 

  167. Shiojiri K, Yanagisawa Y, Fujii M, Kiyono F, Yamasaki A (2004) A life cycle impact assessment study on sulfur hexaflouride as a gas insulator. In AIChE sustainability engineering conference proceedings, Austin, TX, pp. 135–143

    Google Scholar 

  168. Vlasopoulos N, Memom FA, Butler D, Murphy R (2006) Life cycle assessment of wastewater treatment technologies treating petroleum process waters. Sci Total Environ 367:58–70

    Article  CAS  Google Scholar 

  169. Sauers L, Mitra S (2009) Sustainability innovation in the consumer products industry. Chem Eng Prog 105:36–40

    CAS  Google Scholar 

  170. Cederberg C, Mattson B (2000) Life cycle assessment of milk production—a comparison of conventional and organic farming. J Cleaner Prod 8:49–60

    Article  Google Scholar 

  171. Zabaniotou A, Kassidi E (2003) Life cycle assessment applied to egg packaging made from polystyrene and recycled paper. J Cleaner Prod 11:549–559

    Article  Google Scholar 

  172. Bohlmann GM Biodegradable packaging life-cycle assessment. Environ Prog 23(4):342–346

    Google Scholar 

  173. Anderson K, Thomas O, Par O (1998) Screening life cycle assessment of tomato ketchup: a case study. J Cleaner Prod 6:277–288

    Article  Google Scholar 

  174. Klopffer W (2014) Introducing life cycle assessment and its presentation in LCA compendium. In: Klopffer W, Curran MA (eds) Complete world of life cycle assessment. Springer, Dordrecht

    Google Scholar 

  175. Knoll Thomas M. Sensitivity analysis add-in for microsoft excel. http://www.life-cycle-costing.de/sensitivity_analysis/

  176. Jin X, High KA (2004) Comparative vs. absolute performance assessment with environmental sustainability metrics. In: AIChE sustainability engineering conference proceedings, Austin, TX, pp 27–35

    Google Scholar 

  177. A Azapagic and, S Perdan, Sustainable chemical engineering: dealing with wicked sustainability problemsAIChE J 60 (2014) 3998-4007.

    Google Scholar 

  178. Douglas JM (1988) Conceptual design of chemical processes. McGraw-Hill, New York

    Google Scholar 

  179. Abraham MA, Hesketh RP (eds) (2000) Reaction engineering for pollution prevention. Elsevier, Amsterdam, pp 137–153

    Google Scholar 

  180. Schwartzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry, 1st edn. Wiley, New York

    Google Scholar 

  181. Funk DJ, Oldenborg RC, Dayton DP, Lacosse JP, Draves JA, Logan TJ (1995) Gas-phase absorption and later-induced fluorescence measurements of representative polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and a polycyclic arolmatic hydrocbon. Appl Spectros 49:105–114

    Article  CAS  Google Scholar 

  182. PARIS II, 2005. http://www.tds-tds.com/

  183. NIOSH. Pocket Guide to Chemical Hazards (http://www.cdc.gov/niosh/npg/npg.html)

  184. Specialized Information Service of the National Library of Medicine (NLM). http://sis.nlm.nih.gov/

  185. Hesketh RP, Slater CS, Savelski MJ, Hollar K, Farrell S (2004) A program to help in designing courses to integrate green engineering subjects. Int J Eng Educ 20(1):113–128

    Google Scholar 

  186. Miller K (2005) Comments at the panel discussion in the session “Building the Business Case for Sustainability”. In AIChE Spring Meeting, Atlanta, 12 April

    Google Scholar 

  187. Jimenez-Gonzalez C, Kim S, Overcash MR (2000) Methodology for developing gate-to-gate life cycle inventory information. Int J Life Cycle Assess 5:153–159

    Article  CAS  Google Scholar 

  188. Rios P, Stuart JA, Grant E (2003) Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery. Environ Sci Technol 37:5463–5470

    Article  CAS  Google Scholar 

  189. Cobb C, Schuster D, Beloff B, Tanzil D Benchmarking sustainability. Chem Eng Prog 103(6):38–42

    Google Scholar 

  190. Sikdar, S, Schuster, D, Tanzil, D and Beloff B AIChE Sustainability index, Measuring sustainability in the real world.

    Google Scholar 

  191. Dreyers LC, Hauschild MZ, Schierbeck J (2006) A framework for social life cycle impact assessment. Int J Life Cycle Assess 11(2):88–97

    Article  Google Scholar 

  192. Jorgensen A, Bocq AL, Nazarkina L, Hauschild M (2008) Methodologies for social life cycle assessment. Int J Life Cycle Assess 2(13):96–103

    Article  Google Scholar 

  193. ReiAnger C, Dumke M, Barosevcic M, Hillerbrand R (2011) A conceptual framework for impact assessment within SLCA. Int J Life Cycle Assess 16(4):380–388

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palghat A. Ramachandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ramachandran, P.A. et al. (2017). Green Engineering: Integration of Green Chemistry, Pollution Prevention, Risk-Based Considerations, and Life Cycle Analysis. In: Kent, J., Bommaraju, T., Barnicki, S. (eds) Handbook of Industrial Chemistry and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-52287-6_36

Download citation

Publish with us

Policies and ethics