Skip to main content

Ecogenomics of Deep-Ocean Microbial Bathytypes

  • Chapter
  • First Online:
Microbial Ecology of Extreme Environments

Abstract

The deep ocean is one of the largest and least studied biomes on Earth. The microbes inhabiting these locales require physiological adaptations to handle the associated extreme environmental conditions, including high hydrostatic pressure, low temperatures, and low organic carbon. Few microbes have been successfully cultured that are capable of growth under in situ high-pressure conditions, especially at hadal depths, thanks to the relative inaccessibility of these sites, an inability to collect samples and maintain them under in situ conditions, and difficulties in culturing methodology. However, genome sequencing and high-throughput community analyses have provided insight into the prokaryotes which inhabit the deep sea and their lifestyles. This review discusses our current understanding of microbial adaptation to the deep-ocean through genomic comparisons of deep-ocean adapted microbial ecotypes and their shallow-water counterparts, including opportunistic heterotrophic microbes belonging to the Gammaproteobacteria and the fastidious taxa SAR11 and Thaumarchaea. These comparisons are addressed in the context of culture-independent metagenomics and community diversity analyses on deep, oligotrophic pelagic communities. Both culture-dependent and—independent analyses suggest the presence of bathytypes as both isolates and whole communities are distinct from those found above them. While these studies show many attributes indicative of deep-ocean genomes, including genes for particle-association, heavy-metal resistance, the loss of a UV photolyase, and increased abundances of mobile elements, they also suggest that high-pressure adaptation seems to arise from the accumulation of many small changes, such as differences in gene expression or the accumulation of compatible solutes. Genomic analyses on a larger dataset of samples and piezophilic isolates are necessary to distinguish attributes specific to deep-sea adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agogué H, Brink M, Dinasquet J, Herndl GJ (2008) Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 456:788–792. doi:10.1038/nature07535

    Article  PubMed  CAS  Google Scholar 

  • Agusti S, González-Gordillo JI, Vaqué D, Estrada M, Cerezo MI, Salazar G, Gasol JM, Duarte CM (2014) Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat Commun 6:1–8. doi:10.1038/ncomms8608

    Google Scholar 

  • Alazard D, Dukan S, Verhé F, Bouabida N, Morel F, Thomas P, Garcia JL, Ollivier B (2003) Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53:173–178. doi:10.1099/ijs.0.02323-0

    Article  CAS  PubMed  Google Scholar 

  • Allen EE, Bartlett DH (2000) FabF is required for piezoregulation of cis-Vaccenic acid levels and piezophilic growth of the deep-sea bacterium Photobacterium profundum strain SS9. J Bacteriol 182(5):1264–1271. doi:10.1128/JB.182.5.1264-1271.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65(4):1710–1720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allers E, Wright JJ, Konwar KM, Howes CG, Beneze E, Hallam SJ, Sullivan MB (2013) Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean. ISME J 7:256–268. doi:10.1038/ismej.2012.108

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Sáez L, Galand PE, Casamayor EO, Pedrós-Alió C, Bertilsson S (2010) High bicarbonate assimilation in the dark by Arctic bacteria. ISME J 4:1581–1590. doi:10.1038/ismej.2010.69

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Sáez L, Sánchez O, Gasol JM (2012) Bacterial uptake of low molecular weight organics in the subtropical Atlantic: are major phylogenetic groups functionally different? Limnol Oceanogr 57(3):798–808

    Article  Google Scholar 

  • Amaral GRS, Campeao ME, Swings J, Thompson FL, Thompson CC (2015) Finding diagnostic phenotypic features of Photobacterium in the genome sequences. Antonie Van Leeuwenhoek 107:1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Amrani A, Bergon A, Holota H, Tamburini C, Garel M, Ollivier B, Imbert J, Dolla A, Pradel N (2014) Transcriptomics reveal several gene expression patterns in the piezophile Desulfovibrio hydrothermalis in response to hydrostatic pressure. PLoS one 9(9):1–10. doi:10.1371/journal.pone.0106831

    Article  CAS  Google Scholar 

  • Anantharaman K, Breier JA, Sheik CS, Dick GJ (2013) Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc Natl Acad Sci 110(1):330–335. doi:10.1073/pnas.1215340110

    Article  CAS  PubMed  Google Scholar 

  • Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ (2014) Sulfur oxidation genes in diverse deep-sea viruses. Science 344:757–760. doi:10.1126/science.1252229

    Article  CAS  PubMed  Google Scholar 

  • Aono E, Baba T, Ara T, Nishi T, Nakamichi T, Inamoto E, Toyonaga H, Hasegawa M, Takai Y, Okumura Y, Baba M, Tomita M, Kato C, Oshima T, Nakasone K, Mori H (2010) Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments. Mol BioSyst 6:1216–1226. doi:10.1039/C000396D

    Article  CAS  PubMed  Google Scholar 

  • Arrieta JM, Mayol E, Hansman RL, Herndl GJ, Dittmar T, Duarte CM (2015) Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348:331–333. doi:10.1126/science.1258955

    Article  CAS  PubMed  Google Scholar 

  • Azam F, Long RA (2001) Oceanography: sea snow microcosms. Nature 414:495–498. doi:10.1038/35107174

    Article  CAS  PubMed  Google Scholar 

  • Bælum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemla M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman H, Hazen TC, Jansson JK (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol 14(9):2405–2416. doi:10.1111/j.1462-2920.2012.02780.x

    Article  PubMed  CAS  Google Scholar 

  • Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Evol Microbiol 47(2):515–521. doi:10.1099/00207713-47-2-515

    CAS  Google Scholar 

  • Baltar F, Arístegui J, Gasol J, Sintes E, Herndl GJ (2009) Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic. Limnol Oceanogr 54(1):182–193. doi:10.4319/lo.2009.54.1.0182

    Article  CAS  Google Scholar 

  • Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–381. doi:10.1016/S0167-4838(01)00357-0

    Article  CAS  PubMed  Google Scholar 

  • Batzke A, Engelen B, Sass H, Cypionka H (2007) Phylogenetic and physiological diversity of cultured deep-biosphere bacteria from equatorial Pacific Ocean and Peru margin sediments. Geomicrobiol J 24:261–273. doi:10.1080/01490450701456453

    Article  CAS  Google Scholar 

  • Baumann L, Baumann P, Mandel M, Allen RD (1972) Taxonomy of aerobic marine Eubacteria. J Bacteriol 110(1):402–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beman JM, Popp BN, Francis CA (2008) Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441. doi:10.1038/ismej.2007.118

    Article  CAS  PubMed  Google Scholar 

  • Beszteri B, Temperton B, Frickenhaus S, Giovannoni SJ (2010) Average genome size: a potential source of bias in comparative metagenomics. ISME Journal 4:1075–1077. doi:10.1038/ismej.2010.29

    Article  PubMed  Google Scholar 

  • Bianchi A, Garcin J, Tholosan O (1999) A high-pressure serial sampler to measure microbial activity in the deep sea. Deep-Sea Res I 46:2129–2142

    Article  Google Scholar 

  • Biddle JF, House CH, Brenchley JE (2005) Enrichment and cultivation of microorganisms from sediment from the slope of the Peru Trench (ODP Site 1230). Proc ODP Sci Results 201:1–19

    Google Scholar 

  • Billett DSM, Lampitt RS, Rice AL, Mantoura RFC (1983) Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302:520–522. doi:10.1038/302520a0

    Article  CAS  Google Scholar 

  • Bochdanksy AB, van Aken HM, Herndl GJ (2010) Role of macroscopic particles in deep-sea oxygen consumption. Proc Natl Acad Sci 107(18):8287–8291. doi:10.1073/pnas.0913744107

    Article  Google Scholar 

  • Boetius A, Scheibe S, Tselepides A, Thiel H (1996) Microbial biomass and activities in deep-sea sediments of the Eastern Mediterranean: trenches are benthic hotspots. Deep-Sea Res I 43(9):1439–1460. doi:10.1016/S0967-0637(96)00053-2

    Article  CAS  Google Scholar 

  • Bordi C, Iobbi-Nivol I, Méjean V, Patte J (2003) Effects of ISSo2 insertions in structural and regulatory genes of the trimethylamine oxide reductase of Shewanella oneidensis. J Bacteriol 185(6):2042–2045. doi:10.1128/JB.185.6.2042-2045.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev Microbiol 6:245–252. doi:10.1038/nrmicro1852

    Article  CAS  Google Scholar 

  • Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, Wilkins MJ, Wrighton KC, Williams KH, Banfield JF (2015) Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523(7559):208–211. doi:10.1038/nature14486

    Article  CAS  PubMed  Google Scholar 

  • Brown MV, Donachie SP (2007) Evidence for tropical endemicity in the Deltaproteobacteria Marine Group B/SAR324 bacterioplankton clade. Aquat Microb Ecol 46:107–115

    Article  Google Scholar 

  • Brown MV, Fuhrman JA (2005) Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat Microb Ecol 41(1):15–23

    Article  Google Scholar 

  • Brown MV, Lauro FM, DeMaere MZ, Muir L, Wilkins D, Thomas T, Riddle MJ, Fuhrman JA, Andrews-Pfannkoch C, Hoffman JM, McQuaid JB, Allen A, Rintoul SR, Cavicchioli R (2012) Global biogeography of SAR11 marine bacteria. Mol Syst Biol 8(595):1–13. doi:10.1038/msb.2012.28

    Google Scholar 

  • Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci 108(34):14288–14293. doi:10.1073/pnas.1101591108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campanaro S, Vezzi A, Vitulo N, Lauro F, D’Angelo M, Simonato F, Cestaro A, Malacrida G, Bertoloni G, Valle G, Bartlett DH (2005) Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genom 6(122):1–15. doi:10.1186/1471-2164-6-122

    Google Scholar 

  • Cao Y, Chastain RA, Eloe EA, Nogi Y, Kato C, Bartlett DH (2014) Novel psychropiezophilic Oceanospirillales species Profundimonas piezophila gen. nov., sp. nov., isolated from the deep-sea environment of the Puerto Rico Trench. Appl Environ Microbiol 80(1):54–60. doi:10.1128/AEM.02288-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson CA, Hansell DA, Nelson NB, Siegel DA, Smethie WM, Khatiwala S, Meyers MM, Halewood E (2010) Dissolved organic carbon export and subsequent remineralization in the mesopelagic and bathypelagic realms of the North Atlantic basin. Deep-Sea Res II 57(16):1433–1445. doi:10.1016/j.dsr2.2010.02.013

    Article  CAS  Google Scholar 

  • Carlson CA, Morris R, Parsons R, Treusch AH, Giovannoni SJ, Vergin K (2009) Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J 3:283–295. doi:10.1038/ismej.2008.117

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty R, Borglin SE, Dubinsky EA, Andersen GL, Hazen TC (2012) Microbial response to the MC-252 oil and Corexit 9500 in the Gulf of Mexico. Front Microbiol 3(357):1–6. doi:10.3389/fmicb.2012.00357

    Google Scholar 

  • Chastain RA, Yayanos AA (1991) Ultrastructural changes in an obligately barophilic marine bacterium after decompression. Appl Environ Microbiol 57(5):1489–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zhang Y, Gao P, Laun X (2003) Two different proteases produced by a deep-sea psychrotrophic bacterial strain, Pseudoalteromonas sp. SM9913. Mar Biol 143(5):989–993

    Article  CAS  Google Scholar 

  • Chen Y, Wang F, Xu J, Mehmood M, Xiao X (2011) Physiological and evolutionary studies of NAP systems in Shewanella piezotolerans WP3. ISME J 5:843–855. doi:10.1038/ismej.2010.182

    Article  CAS  PubMed  Google Scholar 

  • Chikuma S, Kasahara R, Kato C, Tamegai H (2007) Bacterial adaptation to high pressure: a respiratory system in the deep-sea bacterium Shewanella violacea DSS12. FEMS Microbiol Lett 267:108–112. doi:10.1111/j.1574-6968.2006.00555.x

    Article  CAS  PubMed  Google Scholar 

  • Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo MJ, Dupont CL, Badger JH, Novotny M, Rusch DB, Fraser LJ, Gormley NA, Schulz-Trieglaff O, Smith GP, Evers DJ, Pevzner PA, Lasken RS (2011) Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nat Biotechnol 29(10):915–922. doi:10.1038/nbt.1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Church MJ, Wai B, Karl DM, Delong EF (2010) Abundances of crenarchaeal amoA genes and transcripts in the Pacific Ocean. Environ Microbiol 12(3):679–688. doi:10.1111/j.1462-2920.2009.02108.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corinaldesi C (2015) New perspectives in benthic deep-sea microbial ecology. Front Mar Sci 2(17):1–12. doi:10.3389/fmars.2015.00017

    Google Scholar 

  • Danovaro R, Croce ND, Dell’Anno A, Pusceddu A (2003) A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean. Deep-Sea Res I 50(12):1411–1420. doi:10.1016/j.dsr.2003.07.001

  • Danovaro R, Dell’Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C, Weinbauer M (2008) Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454:1084–1088. doi:10.1038/nature07268

  • Danovaro R, Gambi C, Croce ND (2002) Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean. Deep-Sea Res I 49(5):843–857. doi:10.1016/S0967-0637(01)00084-X

    Article  CAS  Google Scholar 

  • De Corte D, Sintes E, Winter C, Yokokawa T, Reinthaler T, Herndl GJ (2010) Links between viral and prokaryotic communities throughout the water column in the (sub)tropical Atlantic Ocean. ISME J 4:1431–1442. doi:10.1038/ismej.2010.65

    Article  PubMed  CAS  Google Scholar 

  • Dell’Anno A, Corinaldesi C, Danovaro R (2015) Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc Natl Acad Sci 112(16):E2014–E2019. doi:10.1073/pnas.1422234112

  • DeLong EF (1986) Adaptations of deep-sea bacteria to the abyssal environment. PhD thesis, University of California, San Diego

    Google Scholar 

  • DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38(5):924–934. doi:10.4319/lo.1993.38.5.0924

    Article  Google Scholar 

  • DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63(5):2105–2108

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeLong EF, Karl DM (2005) Genomic perspectives in microbial oceanography. Nature 437:336–342. doi:10.1038/nature04157

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503. doi:10.1126/science.1120250

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Yayanos AA (1985) Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1103. doi:10.1126/science.3992247

    Article  CAS  PubMed  Google Scholar 

  • Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT (1988) Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 10(2):152–160. doi:10.1016/S0723-2020(88)80030-4

    Article  Google Scholar 

  • Deusner C, Meyer V, Ferdelman TG (2010) High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane. Biotechnol Bioeng 105(3):524–533. doi:10.1002/bit.22553

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Bai X, Sheng H, Jiao L, Zhou H, Shao Z (2015) Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean. Biogeosciences 12:2163–2177. doi:10.5194/bg-12-2163-2015

    Article  CAS  Google Scholar 

  • El-Hajj ZW, Allcock D, Tryfona T, Lauro FM, Sawyer L, Bartlett DH, Ferguson GP (2010) Insights into piezophily from genetic studies on the deep-sea bacterium, Photobacterium profundum SS9. Ann. N.Y. Acad Sci 1189:143–148. doi:10.1111/j.1749-6632.2009.05178.x

    Article  CAS  Google Scholar 

  • El-Hajj ZW, Tryfona T, Allcock DJ, Hasan F, Lauro FM, Sawyer L, Bartlett DH, Ferguson GP (2009) Importance of proteins controlling initiation of DNA replication in the growth of the high-pressure-loving bacterium Photobacterium profundum SS9. J Bacteriol 191(20):6383–6393. doi:10.1128/JB.00576-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgcomb VP, Taylor C, Pachiadaki MG, Honjo S, Engstrom I, Yakimov M (2014) Comparison of Niskin vs. in situ approaches for analysis of gene expression in deep Mediterranean Sea water samples. Deep-Sea Res 2:1–10. doi:10.1016/j.dsr2.2014.10.020

    Google Scholar 

  • Eloe EA, Lauro FM, Vogel RF, Bartlett DH (2008) The deep-sea bacterium Photobacterium profundum SS9 utilizes separate flagellar systems for swimming and swarming under high-pressure conditions. Appl Environ Microbiol 74(20):6298–6305. doi:10.1128/AEM.01316-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eloe EA, Fadrosh DW, Novotny M, Allen LZ, Kim M, Lombardo MJ, Yee-Greenbaum J, Yooseph S, Allen EE, Lasken R, Williamson SJ, Bartlett DH (2011a) Going deeper: metagenome of a hadopelagic microbial community. PLoS one 6(5):1–15. doi:10.1371/journal.pone.0020388

    Article  CAS  Google Scholar 

  • Eloe EA, Malfatti F, Gutierrez J, Hardy K, Schmidt WE, Pogliano K, Pogliano J, Azam F, Bartlett DH (2011b) Isolation and characterization of a psychropiezophilic Alphaproteobacterium. Appl Environ Microbiol 77(22):8145–8153. doi:10.1128/AEM.05204-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eloe EA, Shulse CN, Fadrosh DW, Williamson SJ, Allen EE, Bartlett DH (2011c) Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ Microbiol Rep 3(4):449–458. doi:10.1111/j.1758-2229.2010.00223.x

    Article  PubMed  Google Scholar 

  • Engelhardt T, Sahlberg M, Cypionka H, Engelen B (2011) Induction of prophages from deep-subseafloor bacteria. Environ Microbiol 3(4):459–465. doi:10.1111/j.1758-2229.2010.00232.x

    Article  Google Scholar 

  • Field KG, Gordon D, Wright T, Rappe M, Urbach E, Vergin K, Giovannoni SJ (1997) Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. App Environ Microbiol 63(1):63–70

    CAS  Google Scholar 

  • Fontanez KM, Eppley JM, Samo TJ, Karl DM, DeLong EF (2015) Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre. Front Microbiol 6(469):1–14. doi:10.3389/fmicb.2015.00469

    Google Scholar 

  • Foustoukos DI, Perez-Rodriguez I (2015) A continuous culture system for assessing microbial activities in the piezosphere. Appl Environ Microbiol 81(19):6850–6856. doi:10.1128/AEM.01215-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry JC, Parks RJ, Cragg BA, Weightman AJ, Webster G (2008) Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol 66:181–196. doi:10.1111/j.1574-6941.2008.00566.x

    Article  CAS  PubMed  Google Scholar 

  • Ganesh S, Parris DJ, Delong EF, Stewart FJ (2014) Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. ISME 8:187–211. doi:10.1038/ismej.2013.144

    Article  CAS  Google Scholar 

  • García-Martínez J, Rodríguez-Valera F (2000) Microdiversity of uncultured marine prokaryotes: the SAR11 cluster and the marine Archaea of Group 1. Mol Ecol 9(7):935–948. doi:10.1046/j.1365-294x.2000.00953.x

    Article  PubMed  Google Scholar 

  • Giering SLC, Sanders R, Lampitt RS, Anderson TR, Tamburini C, Boutrif M, Zubkov MV, Marsay CM, Henson SA, Saw K, Cook K, Mayor DJ (2014) Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507:480–483. doi:10.1038/nature13123

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS, Short JM, Carrington JC, Mathur EJ (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309(5738):1242–1245. doi:10.1126/science.1114057

    Article  CAS  PubMed  Google Scholar 

  • Glud RN, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R, Canfield DE, Kitazato H (2013) High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci 6:284–288. doi:10.1038/ngeo1773

    Article  CAS  Google Scholar 

  • Gooday AJ, Uematsu K, Kitazato H, Toyofuku T, Young JR (2010) Traces of dissolved particles, including coccoliths, in the tests of agglutinated foraminifera from the Challenger Deep (10,890 m) water depth, western equatorial Pacific). Deep-Sea Res I 57:239–247. doi:10.1016/j.dsr.2009.11.003

    Article  CAS  Google Scholar 

  • Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ, Rappé MS (2012) Streamlining and core genome conservation among highly divergent members of the SAR11 clade. Mbio 3(5):1–13. doi:10.1128/mBio.00252-12

    Article  CAS  Google Scholar 

  • Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, Delong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4(4):0520–0536. doi:10.1371/journal.pbio.0040095

    Article  CAS  Google Scholar 

  • Hammes WP, Hertel C (2006) The genera Lactobacillus and Carnobacterium. In: Dworkin et al (eds) The Prokaryotes 3rd ed, vol 4.1.2.10. Springer, US, pp 320–403. doi:10.1007/0-387-30744-3_10

  • Hansell DA (2013) Recalcitrant dissolved organic carbon fractions. Annu Rev Mar Sci. 5:421–445. doi:10.1146/annurev-marine-120710-100757

    Article  Google Scholar 

  • Hasan NA, Grim CJ, Lipp EK, Rivera ING, Chun J, Haley BJ, Taviana E, Choi SY, Hoq M, Munk AC, Brettin TS, Bruce D, Challacombe JF, Detter JC, Han CS, Eisen JA, Huq A, Colwell RR (2015) Deep-sea hydrothermal vent bacteria related to human pathogenic Vibrio species. Proc Natl Acad Sci 112(21):E2813–E2819. doi:10.1073/pnas.1503928112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedlund BP, Dodsworth JA, Murugapiran SK, Rinke C, Woyke T (2014) Impact of single-cell genomics and metagenomics on the emerging view of extremophile “microbial dark matter”. Extremophiles 18(5):865–875. doi:10.1007/s00792-014-0664-7

    Article  CAS  PubMed  Google Scholar 

  • Heidelberg JF, Paulsen IT, Nelson KE, Gaidos EJ, Nelson WC, Read TD, Eisen JA, Seshadri R, Ward N, Methe B, Clayton RA, Meyer T, Tsapin A, Scott J, Beanan M, Brinkac L, Daugherty S, DeBoy RT, Dodson RJ, Durkin AS, Haft DH, Kolonay JF, Madupu R, Peterson JD, Umayam LA, White O, Wolf AM, Vamathevan J, Weidman J, Impraim M, Lee K, Berry K, Lee C, Mueller J, Khouri H, Gill J, Utterback TR, McDonald LA, Feldblyum TV, Smith HO, Venter JC, Nealson KH, Fraser CM (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123. doi:10.1038/nbt749

    Article  CAS  PubMed  Google Scholar 

  • Herndl GJ, Reinthaler T (2013) Microbial control of the dark end of the biological pump. Nat Geosci 6:718–724. doi:10.1038/ngeo1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A, Pernthaler J (2005) Contribution of archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol 71(5):2303–2309. doi:10.1128/AEM.71.5.2303-2309.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopwood DA (2007) Therapeutic treasures from the deep. Nat Chem Biol 3:457–458. doi:10.1038/nchembio0807-457

    Article  CAS  PubMed  Google Scholar 

  • Hu A, Jiao N, Zhang R, Yang Z (2011) Niche partitioning of Marine Group I Crenarchaeota in the euphotic and upper mesopelagic zones of the East China Sea. Appl Environ Microbiol 77(21):7469–7478. doi:10.1128/AEM.00294-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Fu C, Huang Y, Yin Y, Cheng G, Lei F, Lu N, Li J, Ashforth EJ, Zhang L, Zhu B (2010) Novel lipolytic genes from the microbial metagenomic library of the South China Sea marine sediment. FEMS Microbiol Ecol 72:228–237. doi:10.1111/j.1574-6941.2010.00851.x

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz BL, Brum JR, Sullivan MB (2015) Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J 9:472–484. doi:10.1038/ismej.2014.143

    Article  CAS  PubMed  Google Scholar 

  • Ichino MC, Clark MR, Drazen JC, Jamieson A, Jones DOB, Martin AP, Rowden AA, Shank TM, Yancey PH, Ruhl HA (2015) The distribution of benthic biomass in hadal trenches: a modeling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep Sea Res Part I 100:21–33. doi:10.1016/j.dsr.2015.01.010

    Article  CAS  Google Scholar 

  • Ikeda E, Andou S, Iwama U, Kato C, Horikoshi K, Tamegai H (2009) Physiological roles of two dissimilatory nitrate reductases in the deep-sea denitrifier Pseudomonas sp. strain MT-1. Biosci Biotechnol Biochem 73(4):896–2009

    Article  CAS  PubMed  Google Scholar 

  • Ikegami A, Nakasone K, Kato C, Nakamura Y, Koshikawa I, Usami R, Horikoshi K (2000) Glutamine synthetase gene expression at elevated hydrostatic pressure in a deep-sea piezophilic Shewanella violacea. FEMS Microbiol Lett 192:91–95. doi:10.1111/j.1574-6968.2000.tb09364.x

    Article  CAS  PubMed  Google Scholar 

  • Ingalls AE, Shah SR, Hansman RL, Aluwihare LI, Santos GM, Druffel ERM, Pearson A (2006) Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc Natl Acad Sci 103(17):6442–6447. doi:10.1073/pnas.0510157103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii A, Nakason K, Sato T, Wachi M, Sugai M, Nagai K, Kato C (2002) Isolation and characterization of the dcw cluster from the piezophilic deep-sea bacterium Shewanella violacea. J Biochem 132(2):183–188

    Article  CAS  PubMed  Google Scholar 

  • Ishii A, Sato T, Wachi M, Nagai K, Kato C (2004) Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology 150:1955–1972. doi:10.1099/mic.0.26962-0

    Article  CAS  Google Scholar 

  • Ivanova EP, Ng HJ, Webb HK (2014) The family Pseudoalteromonadaceae. In: Rosenberg E et al (eds) The Prokaryotes—Gammaproteobacteria. Springer, Berlin, pp 575–582. doi:10.1007/978-3-642-38922-1_229

  • Ivars-Martínez E, D’Auria G, Rodríguez-Valera F, Sánchez-Porro C, Ventosa A, Joint I, Mühling M (2008a) Biogeography of the ubiquitous marine bacterium Alteromonas macleodii determined by multilocus sequence analysis. Mol Ecol 17:4092–4106. doi:10.1111/j.1365-294X.2008.03883.x

    Article  PubMed  CAS  Google Scholar 

  • Ivars-Martínez E, Martin-Cuadrado AB, D’Auria G, Mira A, Ferriera S, Johnson J, Friedman R, Rodríguez-Valera F (2008b) Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME J 2:1194–1212. doi:10.1038/ismej.2008.74

    Article  PubMed  CAS  Google Scholar 

  • Jacob M, Soltwedel T, Boetius A, Ramette A (2013) Biogeography of deep-sea benthic bacteria at regional scale (LTER HAUSGARTEN, Fram Strait, Arctic). PLoS one 8(9):1–10. doi:10.1371/journal.pone.0072779

    Article  CAS  Google Scholar 

  • Jannasch HW, Wirsen CO (1982) Microbial activities in undecompressed and decompressed deep sea water samples. Appl Env Microbiol 43(5):1116–1124

    CAS  Google Scholar 

  • Jebbar M, Franzetti B, Girard E, Oger P (2015) Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 19(4):721–740. doi:10.1007/s00792-015-0760-3

    Article  CAS  PubMed  Google Scholar 

  • Ji B, Gimenez G, Barbe V, Vacherie B, Rouy Z, Amrani A, Fardeau ML, Bertin P, Alazard D, Leroy S, Talla E, Ollivier B, Dolla A, Pradel N (2013) Complete genome sequence of the piezophilic, mesophilic, sulfate-reducing bacterium Desulfovibrio hydrothermalis AM13. Genome Announc 1(1):1–2. doi:10.1128/genomeA.00226-12

    Article  CAS  Google Scholar 

  • Joffre C, Nadjar A, Lebbadi M, Calon F, Layea S (2014) n-3 LCPUFA improves cognition: the young, the old and the sick. Prostaglandins Leukot Essent Fatty Acids 91:1–20. doi:10.1016/j.plefa.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  • Jun X, Lupeng L, Minjuan X, Oger P, Fengping W, Jebbar M, Xiang X (2011) Complete genome sequence of the obligate piezophilic hyperthermophilic archaeon Pyrococcus yayanosii CH1. J Bacteriol 193(16):4297–4298. doi:10.1128/JB.05345-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci 109(40):16213–16216. doi:10.1073/pnas.1203849109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko H, Takami H, Inoue A, Horikoshi K (2000) Effects of hydrostatic pressure and temperature on growth and lipid composition of the inner membrane of barotolerant Pseudomonas sp. BT1 isolated from the deep-sea. Biosci Biotechnol Biochem 64(1):72–79. doi:10.1271/bbb.64.72

    Article  CAS  PubMed  Google Scholar 

  • Karner MB, Delong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510. doi:10.1038/35054051

    Article  CAS  PubMed  Google Scholar 

  • Karsenti E, Acinas SG, Bork P, Bowler C, De Vargas C, Raes J, Sullivan M, Arendt D, Benzoni F, Claverie JM, Follows M, Gorsky G, Hingamp P, Iudicone D, Jaillon O, Kandels-Lewis S, Krzic U, Not F, Ogata H, Pesant S, Reynaud EG, Sardet C, Sieracki ME, Speich S, Velayoudon D, Weissenbach J, Wincker P, the Tara Oceans Consortium (2011) A holistic approach to marine eco-systems biology. PloS Biol 9(10):1–5

    Google Scholar 

  • Kashtan N, Roggensack SE, Roddrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R, Follows MJ, Stepanauskas R, Chisholm SW (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344:416–420. doi:10.1126/science.1248575

    Article  CAS  PubMed  Google Scholar 

  • Kato C (2006) Handling of piezophilic microorganisms. Methods Microbiol 35:733–741

    Article  Google Scholar 

  • Kato C, Li L, Tamaoka J, Horikoshi K (1997) Molecular analyses of the sediment of the 11000-m deep Mariana Trench. Extremophiles 1(3):117–123. doi:10.1007/s007920050024

    Article  CAS  PubMed  Google Scholar 

  • Kato C, Nogi Y (2001) Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol Ecol 35:223–230. doi:10.1111/j.1574-6941.2001.tb00807.x

    Article  CAS  PubMed  Google Scholar 

  • Kawai M, Uchiyama I, Takami H, Inagaki F (2015) Low frequency of endospore-specific genes in subseafloor sedimentary metagenomes. Environ Microbiol Rep 7(2):341–350. doi:10.1111/1758-2229.12254

    Article  CAS  PubMed  Google Scholar 

  • Kawano H, Nakasone K, Matsumoto M, Yoshida Y, Usami R, Kato C, Abe F (2004) Differential pressure resistance in the activity of RNA polymerase isolated from Shewanella violacea and Escherichia coli. Extremophiles 8:367–375. doi:10.1007/s00792-004-0397-0

    Article  CAS  PubMed  Google Scholar 

  • Kaye JZ, Sylvan JB, Edwards KJ, Baross JA (2011) Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments. FEMS Microbiol Ecol 75:123–133. doi:10.1111/j.1574-6941.2010.00984.x

    Article  CAS  PubMed  Google Scholar 

  • Khelaifia S, Fardeau M, Pradel N, Aussignargues C, Garel M, Tamburini C, Cayol J, Gaudron S, Gaill F, Ollivier B (2011) Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea. Int J Syst Evol Microbiol 61:2706–2711. doi:10.1099/ijs.0.028670-0

    Article  CAS  PubMed  Google Scholar 

  • Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML, Dittmar T, Passow U, Medeiros PM, Joye SB (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci 112(48):14900–14905. doi:10.1073/pnas.1507380112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi H, Hatada Y, Tsubouchi T, Nagahama T, Takami H (2012) The hadal amphipod Hirondellea gigas possessing a unique cellulose for digesting wooden debris buried in the deepest seafloor. PLoS one 7(8):1–8. doi:10.1371/journal.pone.0042727

    Article  CAS  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546. doi:10.1038/nature03911

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Braff J, Karl DM, Delong EF (2009) Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at Station ALOHA in the North Pacific Subtropical Gyre. Appl Environ Microbiol 75(16):5345–5355. doi:10.1128/AEM.00473-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2004) Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci 101(9):3160–3165. doi:10.1073/pnas.0308653100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujawinski EB (2011) The impact of microbial metabolism on marine dissolved organic matter. Annu Rev Mar Sci 3:567–599. doi:10.1146/annurev-marine-120308-081003

    Article  Google Scholar 

  • La Cono V, Smedile F, La Spada G, Arcadi E, Genovese M, Ruggeri G, Genovese L, Giuliano L, Yakimov MM (2015) Shifts in the meso- and bathypelagic archaea communities composition during recovery and short-term handling of decompressed deep-sea samples. Environ Microbiol Rep 7(3):450–459. doi:10.1111/1758-2229.12272

    Article  PubMed  CAS  Google Scholar 

  • Langerhuus AT, Røy H, Lever MA, Morono Y, Inagaki F, Jørgensen BB, Lomstein BA (2012) Endospore abundance and D:L-amino acid modeling of bacterial turnover in Holocene marine sediment (Aarhus Bay). Geochim Cosmochim Acta 99:87–99. doi:10.1016/j.gca.2012.09.023

    Article  CAS  Google Scholar 

  • Lauro FM, Bartlett DH (2008) Prokaryotic lifestyles in deep sea habitats. Extremophiles 12(1):15–25. doi:10.1007/s00792-006-0059-5

    Article  PubMed  Google Scholar 

  • Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH (2007) The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol 73(3):838–845. doi:10.1128/AEM.01726-06

    Article  CAS  PubMed  Google Scholar 

  • Lauro FM, Chastain RA, Ferriera S, Johnson J, Yayanos AA, Bartlett DH (2013a) Draft genome sequence of the deep-sea bacterium Shewanella benthica KT99. Genome Announc 1(3):1–2. doi:10.1128/genomeA.00210-13

    Google Scholar 

  • Lauro FM, Eloe-Fadrosh EA, Richter TKS, Vitulo N, Ferriera S, Johnson JH, Bartlett DH (2014) Ecotype diversity and conversion in Photobacterium profundum strains. PLoS one 9(5):1–10. doi:10.1371/journal.pone.0096953

    Article  CAS  Google Scholar 

  • Lauro FM, Stratton TK, Chastain RA, Ferriera S, Johnson J, Goldberg SMD, Yayanos AA, Bartlett DH (2013b) Complete genome sequence of the deep-sea bacterium Psychromonas strain CNPT3. Genome Announc 1(3):1–2. doi:10.1128/genomeA.00304-13

    Google Scholar 

  • Leisner JJ, Hansen MA, Larsen MH, Hansen L, Ingmer H, Sørensen SJ (2012) The genome sequence of the lactic acid bacterium, Carnobacterium maltaromaticum ATCC 35586 encodes potential virulence factors. Int J Food Microbiol 152:107–115. doi:10.1016/j.ijfoodmicro.2011.05.012

    Article  CAS  PubMed  Google Scholar 

  • Leisner JJ, Laursen BG, Prévost H, Drider D, Dalgaard P (2007) Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiol Rev 31:592–613. doi:10.1111/j.1574-6976.2007.00080.x592-613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Rev Microbiol 9:119–130. doi:10.1038/nrmicro2504

    Article  CAS  Google Scholar 

  • Léon-Zayas R, Novotny M, Podell S, Shepard CM, Berkenpas E, Nikolenko S, Pevzner P, Lasken RS, Bartlett DH (2015) Single cells within the Puerto Rico Trench suggest hadal adaptation of microbial lineages. Appl Environ Microbiol 81(24):8265–8276. doi:10.1128/AEM.01659-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Kato C, Horikoshi K (1999) Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar Biotechnol 1(4):391–400. doi:10.1007/PL00011793

    Article  CAS  PubMed  Google Scholar 

  • Li X, Fu L, Li Z, Ma X, Xiao X, Xu J (2015) Genetic tools for the piezophilic hyperthermophilic archaeon Pyrococcus yayanosii. Extremophiles 19(1):59–67. doi:10.1007/s00792-014-0705-2

    Article  CAS  PubMed  Google Scholar 

  • Liu SB, Chen XL, He HL, Zhang XY, Xie BB, Yu Y, Chen B, Zhou BC, Zhang YZ (2013) Structure and ecological roles of a novel exopolysaccharide from the Arctic sea ice bacterium Pseudoalteromonas sp. strain SM20310. Appl Environ Microbiol 79(1):224–230. doi:10.1128/AEM.01801-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lochte K, Turley CM (1988) Bacteria and cyanobacteria associated with phytodetritus in the deep sea. Nature 333:67–69. doi:10.1038/333067a0

    Article  Google Scholar 

  • Lomstein BA, Langerhuus AT, D’Hondt S, Jørgensen BB, Spivack AJ (2012) Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature 484(7392):101–104. doi:10.1038/nature10905

    Article  CAS  PubMed  Google Scholar 

  • López-García P, López-López A, Moreira D, Rodríguez-Valera F (2001) Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microb Ecol 36:193–202. doi:10.1111/j.1574-6941.2001.tb00840.x

    Article  Google Scholar 

  • López-López A, Bartual SG, Stal L, Onyshchenko O, Rodríguez-Valera F (2005) Genetic analysis of housekeeping genes reveals a deep-sea ecotype of Alteromonas macleodii in the Mediterranean Sea. Environ Microbiol 7(5):649–659. doi:10.1111/j.1462-2920.2005.00733.x

    Article  PubMed  Google Scholar 

  • Lucas S, Han J, Lapidus A, Cheng JF, Goodwin LA, Pitluck S, Petgers L, Milkhailova N, Teshima H, Detter JC, Han C, Tapia R, Land M, Hauser L, Kyrpides NC, Ivanova N, Pagani I, Vannier P, Oger P, Bartlett DH, Noll KM, Woyke T, Jebbar M (2012) Complete genome sequence of the thermophilic, piezophilic, heterotrophic bacterium Marinitoga piezophila KA3. Genome Announc 194(21):5974–5975. doi:10.1128/JB.01430-12

    CAS  Google Scholar 

  • Luo H, Tolar BB, Swan BK, Zhang CL, Stepanauskas R, Moran MA, Hollibaugh JT (2014) Single-cell genomics shedding light on marine Thaumarchaeota diversification. ISME J 8:732–736. doi:10.1038/ismej.2013.202

    Article  CAS  PubMed  Google Scholar 

  • Lyons MM, Dobbs FC (2012) Differential utilization of carbon substrates by aggregate-associated and water-associated heterotrophic bacterial communities. Hydrobiologia 686:181–193. doi:10.1007/s10750-012-1010-7

    Article  CAS  Google Scholar 

  • Martin D, Bartlett DH, Roberts MF (2002) Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles 6:507–514. doi:10.1007/s00792-002-0288-1

    Article  CAS  PubMed  Google Scholar 

  • Martin-Cuadrado AB, Ghai R, Gonzaga A, Rodriguez-Valera F (2009) CO dehydrogenase genes found in metagenomic fosmid clones from the deep Mediterranean Sea. Appl Environ Microbiol 75(32):7436–7444. doi:10.1128/AEM.01283-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Cuadrado AB, López-García P, Alba JC, Moreira D, Monticelli L, Strittmatter A, Gottschalk G, Rodríguez-Valera F (2007) Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS one 9:1–15. doi:10.1371/journal.pone.0000914

    Google Scholar 

  • Martini S, Al Ali B, Garel M, Nerini D, Grossi V, Pacton M, Casalot L, Cuny P, Tamburini C (2013) Effects of hydrostatic pressure on growth and luminescence of a moderately-piezophilic luminous bacteria Photobacterium phosphoreum ANT-2200. PLoS one 8(6):1–9. doi:10.1371/journal.pone.0066580

    Article  CAS  Google Scholar 

  • Martiny AC, Tai APK, Veneziano D, Primeau F, Chisholm SW (2009) Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Env Microbiol 11(4):823–832. doi:10.1111/j.1462-2920.2008.01803.x

    Article  Google Scholar 

  • Mason OU, Han J, Woyke T, Jansson JK (2014a) Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater Horizon oil spill. Front Microbiol 5(332):1–8. doi:10.3389/fmicb.2014.00332

    Google Scholar 

  • Mason OU, Hazen TC, Borglin S, Chain PSG, Dubinsky EA, Fortney JL, Han J, Holman HYN, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6:1715–1727. doi:10.1038/ismej.2012.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney JL, Jurelevicius D, Stringfellow WT, Alvarez-Cohen L, Hazen TC, Knight R, Gilbert JA, Jansson JK (2014b) Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J 8:1464–1475. doi:10.1038/ismej.2013.254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, Chisholm SW, DeLong EF (2010) Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci 107(38):16420–16427. doi:10.1073/pnas.1010732107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarter LL (2004) Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7:18–29. doi:10.1159/000077866

    Article  CAS  PubMed  Google Scholar 

  • Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EPC, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335. doi:10.1101/gr.4126905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moeseneder MM, Winter C, Herndl GJ (2001) Horizontal and vertical complexity of attached and free-living bacteria of the eastern Mediterranean Sea, determined by 16S rDNA and 16S rRNA fingerprints. doi:10.4319/lo.2001.46.1.0095

  • Merbt SN, Stahl DA, Casamayor EO, Martí E, Nicol GW, Prosser JI (2012) Differential photoinhibition of bacterial and archaeal ammonia oxidation. FEMS Microbiol Lett 327:41–46. doi:10.1111/j.1574-6968.2011.02457.x

    Article  CAS  PubMed  Google Scholar 

  • Mincer TJ, Church MJ, Taylor LT, Preston C, Karl DM, Delong EF (2007) Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol 9(5):1162–1175. doi:10.1111/j.1462-2920.2007.01239.x

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki M, Nogi Y (2014) The family Psychromonadaceae. In: Rosenberg E et al (eds) The Prokaryotes—Gammaproteobacteria. Springer, Berlin, pp 583–590. doi:10.1007/978-3-642-38922-1_228

  • Morris RM, Rappé M, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810. doi:10.1038/nature01240

    Article  CAS  PubMed  Google Scholar 

  • Morris RM, Rappé MS, Urbach E, Connon SA, Giovannoni SJ (2004) Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl Environ Microbiol 70(5):2836–2842. doi:10.1128/AEM.70.5.2836-2842.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris RM, Vergin KL, Cho JC, Rappé MS, Carlson CA, Giovannoni SJ (2005) Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site. Limnol Oceanogr 50(5):1687–1696. doi:10.4319/lo.2005.50.5.1687

    Article  CAS  Google Scholar 

  • Nagata T, Tamburini C, Arístegui J, Baltar F, Bochdansky AB, Fonda-Umani S, Fukuda H, Gogou A, Hansell DA, Hansman RL, Herndl GJ, Panagiotopoulos C, Reinthaler T, Sohrin R, Verdugo P, Yamada N, Yamashita Y, Yokokawa T, Bartlett DH (2010) Emergicing concepts on microbial processes in the bathypelagic ocean—ecology, biogeochemistry, and genomics. Deep-Sea Res II 57:1519–1536. doi:10.1016/j.dsr2.2010.02.019

    Article  CAS  Google Scholar 

  • Ngugi DK, Blom J, Alam I, Rashid M, Ba-Alawi W, Zhang G, Hikmawan T, Guan Y, Antunes A, Siam R, El Dorry H, Bajic V, Stingl U (2015) Comparative genomics reveals adaptations of a halotolerant Thaumarchaeon in the interfaces of brine pools in the Red Sea. ISME J 9:396–411. doi:10.1038/ismej.2014.137

    Article  CAS  Google Scholar 

  • Nichols CM, Lardiér SG, Bowman JP, Nichols PD, Gibson JAE, Guézennec J (2005) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49(4):578–589. doi:10.1007/s00248-004-0093-8

    Article  CAS  PubMed  Google Scholar 

  • Nicholson WL, Krivushin K, Gilichinsky D, Schuerger AC (2013) Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars. Proc Natl Acad Sci 110(2):666–671. doi:10.1073/pnas.1209793110

    Article  CAS  PubMed  Google Scholar 

  • Nicol GW, Leininger S, Schleper C (2011) Distribution and activity of ammonia-oxidizing archaea in natural environments. Nitrification. ASM P. Press., Washington, DC. ISBN-13 7, pp 157–178

    Google Scholar 

  • Nogi Y, Hosoya S, Kato C, Horikoshi K (2004) Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol 54:1627–1631. doi:10.1099/ijs.0.03049-0

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998a) Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170(5):331–338. doi:10.1007/s002030050650

    Article  CAS  PubMed  Google Scholar 

  • Nogi Y, Masui N, Kato C (1998b) Photobabacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2(1):1–8. doi:10.1007/s007920050036

    Article  CAS  PubMed  Google Scholar 

  • Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, Kikuchi T, Miyazaki J, Koba K, Yoshida N, Sunamura M, Takai K (2015) Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci 112(11):E1230–E1236. doi:10.1073/pnas.1421816112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtomo Y, Ijiri A, Ikegawa Y, Tsutsumi M, Imachi H, Uramoto GI, Hoshino T, Morono Y, Sakai S, Saito Y, Tanikawa W, Hirose T, Inagaki F (2013) Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system. Front Microbiol 4(361):1–17. doi:10.3389/fmicb.2013.00361

    Google Scholar 

  • Ohwada K, Tabor PS, Colwell RR (1980) Species composition and barotolerance of gut microflora of deep-sea benthic macrofauna collected at various depths in the Atlantic Ocean. Appl Environ Microbiol 40(4):746–755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa Y, Sinmura Y, Ishizaka H, Midorikawa R, Kawamoto J, Kurihara T, Kato C, Horikoshi K, Tamegai H (2015) Nar is the dominant dissimilatory nitrate reductase under high pressure conditions in the deep-sea denitrifier Pseudomonas sp. MT-1. J Gen Appl Microbiol 61:10–14. doi:10.2323/jgam.61.10

    Article  CAS  PubMed  Google Scholar 

  • Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75(2):361–422. doi:10.1128/MMBR.00039-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouverney CC, Fuhrman JA (2000) Marine planktonic archaea take up amino acids. Appl Environ Microbiol 66(11):4829–4833. doi:10.1128/AEM.66.11.4829-4833.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parada V, Sintes E, van Aken HM, Weinbauer MG, Herndl GJ (2007) Viral abundance, decay, and diversity in the meso- and bathypelagic waters of the North Atlantic. 73(14):4429-4438. doi: 10.1128/AEM.00029-07

  • Parkes RJ, Sellek G, Webster G, Martin D, Anders E, Weightman AJ, Sass H (2009) Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG). Environ Microbiol 11(12):3140–3153. doi:10.1111/j.1462-2920.2009.02018.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathom-aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10(3):181–189. doi:10.1007/s00792-005-0482-z

    Article  CAS  PubMed  Google Scholar 

  • Pikuta EV, Marsic D, Bej A, Tang J, Krader P, Hoover RB (2005) Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska. Int J Syst Evol Microbiol 55:473–478. doi:10.1099/ijs.0.63384-0

    Article  CAS  PubMed  Google Scholar 

  • Pradel N, Ji B, Gimenez G, Talla E, Lenoble P, Garel M, Tamburini C, Fourquet P, Lebrn R, Bertin P, Denis Y, Pophillat M, Barbe V, Ollivier B, Dolla A (2013) The first genomic and proteomic characterization of a deep-sea sulfate reducer: insights into the piezophilic lifestyle of Desulfovibrio piezophilus. PLoS one 8(1):1–11. doi:10.1371/journal.pone.0055130

    Article  CAS  Google Scholar 

  • Puig P, Palanques A, Sanchez-Cabeza JA, Masqué P (1999) Heavy metals in particulate matter and sediments in the southern Barcelona sedimentation system. Mar Chem 63:311–329. doi:10.1016/S0304-4203(98)00069-3

    Article  CAS  Google Scholar 

  • Qin G, Zhu L, Chen X, Wang PG, Zhang Y (2007) Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913. Microbiology 153:1566–1572. doi:10.1099/mic.0.2006/003327-0

    Article  CAS  PubMed  Google Scholar 

  • Qin QL, Li Y, Zhang YJ, Zhou ZM, Zhang WX, Chen XL, Zhang XY, Zhou BC, Wang L, Zhang YZ (2011) Comparative genomics reveals a deep-sea sediment-adapted life style of Pseudoalteromonas sp. SM9913. ISME J 5:274–284. doi:10.1038/ismej.2010.103

    Article  PubMed  Google Scholar 

  • Qin W, Amin SA, Martens Habbena W, Walker CB, Urakawa H, Devol AH, Ingalls AE, Moffett JW, Armbrust EV, Stahl DA (2014) Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci 111(34):12504–12509. doi:10.1073/pnas.1324115111

  • Qin W, Carlson LT, Armbrust EV, Devol AH, Moffett JW, Stahl DA, Ingalls AE (2015) Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota. Proc Natl Acad Sci 112(35):10979–10984. doi:10.1073/pnas.1501568112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quaiser A, Zivanovic Y, Moreira D, López-García P (2011) Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. ISME J 5:285–304. doi:10.1038/ismej.2010.113

    Article  CAS  PubMed  Google Scholar 

  • Raguenes G, Pignet P, Gauthier G, Peres A, Christen R, Rougeaux H, Barbier G, Guezennec J (1996) Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. Fijiensis, and preliminary characterization of the polymer. Appl Environ Microbiol 62(1):67–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci 109(50):20292–20297. doi:10.1073/pnas.1108756108

    Article  CAS  PubMed  Google Scholar 

  • Reen FJ, Almagro-Moreno S, Ussery D, Boyd EF (2006) The genomic code: inferring Vibrionaceae niche specialization. Nature Rev Microbiol 4:697–704. doi:10.1038/nrmicro1476

    Article  CAS  Google Scholar 

  • Reinthaler T, van Aken HM, Herndl GJ (2010) Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic’s interior. Deep-Sea Res II 57(16):1572–1580. doi:10.1016/j.dsr2.2010.02.023

    Article  CAS  Google Scholar 

  • Reinthaler T, van Aken H, Veth C, Arístegui J, Robinson C, Williams PJIB, Lebaron P, Herndl GJ (2006) Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin. Limnol Oceanogr 51(3):1262–1273. doi:10.4319/lo.2006.51.3.1262

    Article  CAS  Google Scholar 

  • Rice AL, Billett DSM, Fry J, John AWG, Lampitt RS, Mantoura RFC, Morris RJ (1986) Seasonal deposition of phytodetritus to the deep-sea floor. Proc Roy Soc Edinb B 88:265–279. doi:10.1017/S0269727000004590

    Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499(7459):431–437. doi:10.1038/nature12352

    Article  CAS  PubMed  Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolenen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042. doi:10.1038/nature01947

    Article  CAS  PubMed  Google Scholar 

  • Roux S, Hawley AK, Beltran MT, Scofield M, Schwientek P, Stepanauskas R, Woyke T, Hallam SJ, Sullivan MB (2014) Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 3:1–20. doi:10.7554/eLife.03125

  • Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A (2015) Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci 112(13):4015–4020. doi:10.1073/pnas.1421865112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers YH, Falcon LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5(3):0398–0431. doi:10.1371/journal.pbio.0050077

    Article  CAS  Google Scholar 

  • Salazar G, Cornejo-Castillo FM, Benítez-Barrios V, Fraile-Nuez E, Alvarez-Salgado XA, Duarte CM, Gasol JM, Acinas SG (2015a) Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J,1–13. doi:10.1038/ismej.2015.137

  • Salazar G, Cornejo-Castillo FM, Borrull E, Díez-Vives C, Lara E, Vaqué D, Arrieta JM, Duarte CM, Gasol JM, Acinas SG (2015b) Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol Ecol 24(22):5692–5706. doi:10.1111/mec.13419

    Article  PubMed  Google Scholar 

  • Satomi M (2014) The family Shewanellaceae. In: Rosenberg E et al (eds) The Prokaryotes—Gammaproteobacteria. Springer, Berlin, pp 597–625. doi:10.1007/978-3-642-38922-1_226

  • Satomi M, Fujii T (2014) The family Oceanospirillaceae. In: Rosenberg E et al (eds) The Prokaryotes—Gammaproteobacteria. Springer, Berlin, pp 491–527. doi:10.1007/978-3-642-38922-1_286

  • Sauer P, Glombitza C, Kallmeyer J (2012) A system for incubations at high gas partial pressure. Front Microbiol 3(25):1–9. doi:10.3389/fmicb.2012.00025

    Google Scholar 

  • Scholin C, Doucette G, Jensen S, Roman B, Pargett D, Marin IIIIR, Preston C, Jones W, Feldman J, Everlove C, Harris A, Alvarado N, Massion E, Birch J, Greenfield D, Vrijenhoek R, Mikulski C, Jones K (2009) Remote detection of marine microbes, small invertebrates, harmful algae, and biotoxins using the environmental sample processor (ESP). Oceanography 22(2):158–167. doi:10.5670/oceanog.2009.46

    Article  Google Scholar 

  • Schrenk MO, Brazelton WJ (2013) Serpentinization, carbon, and deep life. Rev Mineral Geochem 75:575–606. doi:10.2138/rmg.2013.75.18

    Article  CAS  Google Scholar 

  • Sekiguchi T, Saika A, Nomura K, Watanabe T, Watanabe T, Fujimoto Y, Enoki M, Sato T, Kato C, Kanehiro H (2011) Biodegradation of aliphatic polyesters soaked in deep seawaters and isolation of poly(ε-caprolactone)-degrading bacteria. Polym Degrad Stabil 96:1397–1403. doi:10.1016/j.polymdegradstab.2011.03.004

    Article  CAS  Google Scholar 

  • Seyler LM, McGuinness LM, Kerkhof LJ (2014) Crenarchaeal heterotrophy in salt marsh sediments. ISME J 8:1534–1543. doi:10.1038/ismej.2014.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheik CS, Jain S, Dick GJ (2014) Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol 16(1):304–317. doi:10.1111/1462-2920.12165

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, McCarren J, DeLong EF (2012) Transcriptional responses of surface water marine microbial assemblages to deep-sea water amendment. Environ Microbiol 14(1):191–206. doi:10.1111/j.1462-2920.2011.02598.x

    Article  CAS  PubMed  Google Scholar 

  • Sikorski J, Möhle M, Wackernagel W (2002) Identification of complex composition, strong strain diversity and directional selection in local Pseudomonas stutzeri populations from marine sediment and soils. Environ Microbiol 4(8):465–476. doi:10.1046/j.1462-2920.2002.00325.x

    Article  CAS  PubMed  Google Scholar 

  • Simon HM, Smith MW, Herfort L (2014) Metagenomic insights into particles and their associated microbiota in a coastal margin ecosystem. Front Microbiol 5(466):1–10. doi:10.3389/fmicb.2014.00466

    Google Scholar 

  • Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211

    Article  Google Scholar 

  • Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ (2013) Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol 15(5):1647–1658. doi:10.1111/j.1462-2920.2012.02801.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smedile F, Messina E, la Cono V, Tsoy O, Monticelli LS, Borghini M, Giuliano L, Golyshin PN, Mushegian A, Yakimov MM (2013) Metagenomic analysis of hadopelagic microbial assemblages thriving at the deepest part of Mediterranean Sea. Matapan-Vavilov Deep Environ Microbiol 15(1):167–182. doi:10.1111/j.1462-2920.2012.02827.x

    PubMed  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103(32):12115–12120. doi:10.1073/pnas.0605127103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH (2012) Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ Microbiol 14(5):1333–1346. doi:10.1111/j.1462-2920.2012.02716.x

    Article  CAS  PubMed  Google Scholar 

  • Stratton TK (2008) Genomic analysis of high pressure adaptation in deep sea bacteria. Proquest UC San Diego Electronic Theses and Dissertations, pp 1–164

    Google Scholar 

  • Swan BK, Chaffin MD, Martinez-Garcia M, Morrison HG, Field EK, Poulton NJ, Masland EDP, Harris CC, Sczyrba A, Chain PSG, Koren S, Woyke T, Stepanauskas R (2014) Genomic and metabolic diversity of Marine Group I Thaumarchaeota in the mesopelagic of two subtropical gyres. PLoS one 9(4):1–9. doi:10.1371/journal.pone.0095380

    Article  Google Scholar 

  • Tabor PS, Deming JW, Ohwada K, Davis H, Waxman M, Colwell RR (1981a) A pressure-retaining deep ocean sampler and transfer system for measurement of microbial activity in the deep sea. Microb Ecol 7(1):51–65. doi:10.1007/BF02010478

    Article  CAS  PubMed  Google Scholar 

  • Tabor PS, Ohwada K, Colwell RR (1981b) Filterable marine bacteria found in the deep sea: distribution, taxonomy, and response to starvation. Microb Ecol 7(1):67–83. doi:10.1007/BF02010479

    Article  CAS  PubMed  Google Scholar 

  • Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett, 279–285. doi:10.1111/j.1574-6968.1997.tb10440.x

  • Takami H, Kobata K, Nagahama T, Kobayashi H, Inoue A, Horikoshi K (1999) Biodiversity in deep-sea sites located near the south part of Japan. Extremophiles 3(2):97–102. doi:10.1007/s007920050104

    Article  CAS  PubMed  Google Scholar 

  • Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW (2013) Prokaryotic responses to hydrostatic pressure in the ocean—a review. Environ Microbiol 15(5):1262–1274. doi:10.1111/1462-2920.12084

    Article  CAS  PubMed  Google Scholar 

  • Tamburini C, Garel M, Al Ali B, Mérigot B, Kriwy P, Charriére B, Budillon G (2009) Distribution and activity of bacteria and archaea in the different water masses of the Tyrrhenian Sea. Deep-Sea Res II 56:700–712. doi:10.1016/j.dsr2.2008.07.021

    Article  Google Scholar 

  • Tamegai H, Kato C, Horikoshi K (2004) Lateral gene transfer in the deep sea of Mariana Trench: identification of nar gene cluster encoding membrane-bound nitrate reductase from Pseudomonas sp. strain MT-1. DNA Seq 15:338–343. doi:10.1080/10425170400009293

    Article  CAS  PubMed  Google Scholar 

  • Tamegai H, Li L, Masui N, Kato C (1997) A denitrifying bacterium from the deep sea at 11000-m depth. Extremophiles 1(4):207–211. doi:10.1007/s007920050035

    Article  CAS  PubMed  Google Scholar 

  • Teira E, van Aken H, Veth C, Herndl GJ (2006) Archaeal uptake of enantiomeric amino acids in the meso- and bathypelagic waters of the North Atlantic. Limnol Oceanogr 51(1):60–69. doi:10.4319/lo.2006.51.1.0060

    Article  CAS  Google Scholar 

  • Thiel A, Michoud G, Moalic Y, Flament D, Jebbar M (2014) Genetic manipulations of the hyperthermophilic piezophilic archaeon Thermococcus barophilus. Appl Environ Microbiol 80(7):2299–2306. doi:10.1128/AEM.00084-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiel H, Pfannkuche O, Schriever G, Lochte K, Gooday AJ, Hemleben C, Mantoura RFG, Turley CM, Patching JW, Riemann F (1989) Phytodetritus on the deep-sea floor in a central oceanic region of the northeast Atlantic. Biol Oceanogr 6(2):203–239. doi:10.1080/01965581.1988.10749527

    Google Scholar 

  • Thrash JC, Temperton B, Swan BK, Landry ZC, Woyke T, Delong EF, Stepanauskas R, Giovannoni SJ (2014) Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME J 8:1440–1451. doi:10.1038/ismej.2013.243

    Article  PubMed  CAS  Google Scholar 

  • Thureborn P, Lundin D, Plathan J, Poole AM, Sjöberg BM, Sjöling S (2013) A metagenomics transect into the deepest point of the Baltic Sea reveals clear stratification of microbial functional capacities. PLoS one 8(9):1–11. doi:10.1371/journal.pone.0074983

    Article  CAS  Google Scholar 

  • Ting CS, Rocap G, King J, Chisholm SW (2002) Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol 10(3):134–142. doi:10.1016/S0966-842X(02)02319-3

    Article  CAS  PubMed  Google Scholar 

  • Todo T (1999) Functional diversity of the DNA photolyase/blue light receptor family. Mutat Res/DNA Repair 434:89–97

    Article  CAS  Google Scholar 

  • Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A, Ulrich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci 108(20):8420–8425. doi:10.1073/pnas.1013488108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treusch AH, Vergin KL, Finaly LA, Donatz MG, Burton RM, Carlson CA, Giovannoni SJ (2009) Seasonality and vertical structure of microbial communities in an ocean gyre. ISME J 3:1148–1163. doi:10.1038/ismej.2009.60

    Article  PubMed  Google Scholar 

  • Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557. doi:10.1126/science.1107851

    Article  CAS  PubMed  Google Scholar 

  • Turner JT (2015) Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr 130:205–248. doi:10.1016/j.pocean.2014.08.005

    Article  Google Scholar 

  • Urakawa H (2014) The family Moritellaceae. In: Rosenberg E et al (eds) The Prokaryotes—Gammaproteobacteria. Springer, Berlin, pp 477–489. doi:10.1007/978-3-642-38922-1_227

  • Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C, Hu L, Kinnaman FS, Yvon-Lewis S, Du M, Chan EW, Tigreros FG, Villanueva CJ (2010) Propane respiration jump-starts microbial response to a deep oil spill. Science 330(6001):208–211. doi:10.1126/science.1196830

    Article  CAS  PubMed  Google Scholar 

  • Vandieken V, Pester M, Finke N, Hyun JH, Friedrich MW, Loy A, Thamdrup B (2012) Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria. ISME J 6:2078–2090. doi:10.1038/ismej.2012.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannier P, Marteinsson VT, Fridjonsson OH, Oger P, Jebbar M (2011) Complete genome sequence of the hyperthermophilic, piezophilic, heterotrophic, and carboxydotrophic archaeon Thermococcus barophilus MP. J Bacteriol 193(6):1481–1482. doi:10.1128/JB.01490-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varela MM, van Aken HM, Herndl GJ (2008) Abundance and activity of Chloroflexi-type SAR202 bacterioplankton in the meso- and bathypelagic waters of the (sub)tropical Atlantic. Environ Microbiol 10(7):1903–1911. doi:10.1111/j.1462-2920.2008.01627.x

    Article  PubMed  Google Scholar 

  • Varela MM, van Aken HM, Sintes E, Reinthaler T, Herndl GJ (2011) Contribution of Crenarchaeota and Bacteria to autotrophy in the North Atlantic interior. Environ Microbiol 13(6):1524–1533. doi:10.1111/j.1462-2920.2011.02457.x

    Article  PubMed  Google Scholar 

  • Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307(5714):1459–1461. doi:10.1126/science.1103341

    Article  CAS  PubMed  Google Scholar 

  • Voget S, Klippel B, Daniel R, Antranikian G (2011) Complete genome sequence of Carnobacterium sp. 17-4. J Bacteriol 193(13):3403–3404. doi:10.1128/JB.05113-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall R, Ross RP, Fitzgerald GF, Stanton C (2010) Fatty acids from fish: the anti-inflammatory potential of long-chain ω-3 fatty acids. Nutr Rev 68:280–289. doi:10.1111/j.1753-4887.2010.00287.x

    Article  PubMed  Google Scholar 

  • Walsh DA, Zaikova E, Howes CG, Song YC, Wright JJ, Tringe SG, Tortell PD, Hallam SJ (2009) Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 326(5952):578–582. doi:10.1126/science.1175309

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang P, Chen M, Xiao X (2004) Isolation of extremophiles with the detection and retrieval of Shewanella strains in deep-sea sediments from the west Pacific. Extremophiles 8(2):165–168. doi:10.1007/s00792-003-0365-0

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang J, Jian H, Zhang B, Li S, Wang F, Zeng X, Gao L, Bartlett DH, Yu J, Hu S, Xiao X (2008) Environmental adaptation: Genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS one 3(4):1–12. doi:10.1371/journal.pone.0001937

    CAS  Google Scholar 

  • Wasmund K, Schreiber L, Lloyd KG, Petersen DG, Schramm A, Stepanauskas R, Jørgensen BB, Adrian L (2014) Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. The ISME Journal 8:383–397. doi:10.1038/ismej.2013.143

    Article  CAS  PubMed  Google Scholar 

  • Welch TJ, Farewell A, Neidhardt FC, Bartlett DH (1993) Stress response of Escherichia coli to elevated hydrostatic pressure. J Bacteriol 175(22):7170–7177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95(12):6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins D, van Sebille E, Rintoul SR, Lauro FM, Cavicchioli R (2013) Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat Commun 4(2457):1–7. doi:10.1038/ncomms3457

    Google Scholar 

  • Wilms R, Köpke B, Sass H, Chang TS, Cypionka H, Engelen B (2006) Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ Microbiol 8(4):709–719. doi:10.1111/j.1462-2920.2005.00949.x

    Article  CAS  PubMed  Google Scholar 

  • Winter C, Garcia JAL, Weinbauer MG, DuBow MS, Herndl GJ (2014) Comparison of deep-water viromes from the Atlantic Ocean and the Mediterranean Sea. PloS one 9(6):1–8. doi:10.1371/journal.pone.0100600

    Article  CAS  Google Scholar 

  • Wright JJ, Konwar KM, Hallam SJ (2012) Microbial ecology of expanding oxygen minimum zones. Nature Rev Microbiol 10:381–394. doi:10.1038/nrmicro2778

    CAS  Google Scholar 

  • Wright JJ, Mewis K, Hanson NW, Konwar KM, Maas KR, Hallam SJ (2014) Genomic properties of Marine Group A bacteria indicate a role in the marine sulfur cycle. ISME J 8:455–468. doi:10.1038/ismej.2013.152

    Article  CAS  PubMed  Google Scholar 

  • Wright TD, Vergin KL, Boyd PW, Giovannoni SJ (1997) A novel delta-subdivision proteobacterial lineage from the lower ocean surface layer. Appl Environ Microbiol 63(4):1441–1448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Gao W, Johnson RH, Zhang W, Meldrum DR (2013) Integrated metagenomic and metatranscriptomic analyses of microbial communities in the meso- and bathypelagic realm of North Pacific Ocean. Mar Drugs 11(10):3777–3801. doi:10.3390/md11103777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damsté JSS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci 104(13):12317–12322. doi:10.1073/pnas.0600756103

    Article  CAS  Google Scholar 

  • Xiao X, Wang P, Zeng X, Bartlett DH, Wang F (2007) Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int J Syst Evol Microbiol 57:60–65. doi:10.1099/ijs.0.64500-0

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Wang P, Wang F, Xiao X (2005) Microbial diversity at a deep-sea station of the Pacific nodule province. Biodivers Conserv 14(14):3363–3380. doi:10.1007/s10531-004-0544-z

    Article  Google Scholar 

  • Xu L, Xu XW, Meng FX, Huo YY, Oren A, Yang JY, Wang CS (2013) Halomonas zincidurans sp. nov., a heavy-metal-tolerant bacterium isolated from the deep-sea environment. Int J Syst Evol Microbiol 63:4230–4236. doi:10.1099/ijs.0.051656-0

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, La Cono V, Smedile F, DeLuca TH, Juárez S, Ciordia S, Fernández M, Albar JP, Ferrer M, Golyshin PN, Giuliano L (2011) Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea). ISME J 5:945–961. doi:10.1038/ismej.2010.197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakimov MM, La Cono V, Smedile F, Crisafi F, Arcadi E, Leonardi M, Decembrini F, Catalfamo M, Bargiela R, Ferrer M, Golyshin PN, Giuliano L (2014) Heterotrophic bicarbonate assimilation is the main process of de novo organic carbon synthesis in hadal zone of the Hellenic Trench, the deepest part of Mediterranean Sea. Environ Microbiol Rep 6(6):709–722. doi:10.1111/1758-2229.12192

    Article  CAS  PubMed  Google Scholar 

  • Yanagibayashi M, Nogi Y, Li L, Kato C (1999) Changes in the microbial community in Japan Trench sediment from a depth of 6292 m during cultivation without decompression. FEMS Microbiol Lett 170:271–279. doi:10.1111/j.1574-6968.1999.tb13384.x

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson A (2014) Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc Natl Acad Sci 111(12):4461–4465. doi:10.1073/pnas.1322003111

  • Yayanos AA (1977) Simply actuated closure for a pressure vessel: design for use to trap deep-sea animals. Rev Sci Instrum 48:786–789. doi:10.1063/1.1135150

    Article  Google Scholar 

  • Yayanos AA (1986) Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci 83(24):9542–9546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yayanos AA (1995) Microbiology to 10,500 meters in the deep sea. Annu Rev Microbiol 49:777–805. doi:10.1146/annurev.mi.49.100195.004021

    Article  CAS  PubMed  Google Scholar 

  • Yayanos AA, Delong EF (1987) Deep-sea bacterial fitness to environmental temperatures and pressures. Curr perspect high pressure biol, 17–32

    Google Scholar 

  • Yayanos AA, Dietz AS (1983) Death of a hadal deep-sea bacterium after decompression. Science 220(4596):497–498. doi:10.1126/science.220.4596.497

    Article  CAS  PubMed  Google Scholar 

  • Yayanos AA, Dietz AS, Van Boxtel R (1981) Obligately barophilic bacterium from the Mariana Trench. Proc Natl Acad Sci 78(8):5212–5215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yayanos AA, Pollard EC (1969) A study of the effects of hydrostatic pressure on macromolecular synthesis in Escherichia coli. Biophys J 9(12):1464–1482. doi:10.1016/S0006-3495(69)86466-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yayanos AA, Van Boxtel R, Dietz AS (1983) Reproduction of Bacillus stearothermophilus as a function of temperature and pressure. Appl Environ Microbiol 46(6):1357–1363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, Johnson J, Montgomery R, Ferriera S, Beeson K, Williamson SJ, Tovchigrechko A, Allen AE, Zeigler LA, Sutton G, Eisenstadt E, Rogers YH, Friedman R, Frazier M, Venter JC (2010) Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 468:60–67. doi:10.1038/nature09530

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Takaki Y, Eitoku M, Nunoura T, Takai K (2013) Metagenomic analysis of viral communities in (hado)pelagic sediments. PLoS one 8(2):1–14. doi:10.1371/journal.pone.0057271

    Article  Google Scholar 

  • Zarubin M, Belkin S, Ionescu M, Genin A (2012) Bacterial bioluminescence as a lure for marine zooplankton and fish. Proc Natl Acad Sci 109(3):853–857. doi:10.1073/pnas.1116683109

    Article  CAS  PubMed  Google Scholar 

  • Zhang SD, Barbe V, Garel M, Zhang WJ, Chen H, Santini CL, Murat D, Jing H, Zhao Y, Lajus A, Martini S, Pradel N, Tamburini C, Wu LF (2014) Genome sequence of luminous piezophile Photobacterium phosphoreum ANT-2200. Genome Announc 2(2):1–2. doi:10.1128/genomeA.00096-14

    Google Scholar 

  • Zhang Y, Maignien L, Zhao X, Wang F, Boon N (2011) Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor. BMC Microbiol 11(137):1–8. doi:10.1186/1471-2180-11-137

    CAS  Google Scholar 

  • Zhao JS, Deng Y, Manno D, Hawari J (2010) Shewanella spp. genomic evolution for a cold marine lifestyle and in-situ explosive biodegradation. PLoS one 5(2):1–22. doi:10.1371/journal.pone.0009109

    Google Scholar 

  • Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, Ellisman M, Deerinck T, Sullivan MB, Giovannoni SJ (2013) Abundant SAR11 viruses in the ocean. Nature 494:357–360. doi:10.1038/nature11921

    Article  CAS  PubMed  Google Scholar 

  • Zhou MY, Chen XL, Zhao HL, Dang HY, Luan XW, Zhang XY, He HL, Zhou BC, Zhang YZ (2009) Diversity of both the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea. Microb Ecol 58(3):582–590. doi:10.1007/s00248-009-9506-z

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the National Science Foundation (grants 0801973, 0827051, and 1536776), the National Aeronautics and Space Administration (grant NNX11AG10G and PLANET14F-0048), and the Prince Albert II Foundation (Project 1265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas H. Bartlett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Peoples, L.M., Bartlett, D.H. (2017). Ecogenomics of Deep-Ocean Microbial Bathytypes. In: Chénard, C., Lauro, F. (eds) Microbial Ecology of Extreme Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-51686-8_2

Download citation

Publish with us

Policies and ethics