Skip to main content

Auditory Object Formation and Selection

  • Chapter
  • First Online:
The Auditory System at the Cocktail Party

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 60))

Abstract

Most normal-hearing listeners can understand a conversational partner in an everyday setting with an ease that is unmatched by any computational algorithm available today. This ability to reliably extract meaning from a sound source in a mixture of competing sources relies on the fact that natural, meaningful sounds have structure in both time and frequency. Such structure supports two processes that enable humans and animals to solve the cocktail party problem: auditory object formation and auditory object selection. These processes, which are closely intertwined and difficult to isolate, are linked to previous work on auditory scene analysis and auditory attention, respectively. This chapter considers how the brain may implement object formation and object selection. Specifically, the chapter focuses on how different regions of the brain cooperate to isolate the neural representation of sound coming from a source of interest and enhance it while suppressing the responses to distracting or unimportant sounds in a sound mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alain, C., Arnott, S. R., & Picton, T. W. (2001). Bottom-up and top-down influences on auditory scene analysis: Evidence from event-related brain potentials. Journal of Experimental Psychology: Human Perception and Performance, 27(5), 1072–1089.

    CAS  PubMed  Google Scholar 

  • Alain, C., & Woods, D. L. (1997). Attention modulates auditory pattern memory as indexed by event-related brain potentials. Psychophysiology, 34(5), 534–546.

    Article  CAS  PubMed  Google Scholar 

  • Alho, K., Salmi, J., Koistinen, S., Salonen, O., & Rinne, T. (2015). Top-down controlled and bottom-up triggered orienting of auditory attention to pitch activate overlapping brain networks. Brain Research, 1626, 136–145.

    Article  CAS  PubMed  Google Scholar 

  • Arbogast, T. L., & Kidd, G., Jr. (2000). Evidence for spatial tuning in informational masking using the probe-signal method. The Journal of the Acoustical Society of America, 108(4), 1803–1810.

    Article  CAS  PubMed  Google Scholar 

  • Benard, M. R., Mensink, J. S., & Başkent, D. (2014). Individual differences in top-down restoration of interrupted speech: Links to linguistic and cognitive abilities. The Journal of the Acoustical Society of America, 135, EL88–94.

    Google Scholar 

  • Best, V., Gallun, F. J., Carlile, S., & Shinn-Cunningham, B. G. (2007a). Binaural interference and auditory grouping. The Journal of the Acoustical Society of America, 121(2), 1070–1076.

    Article  PubMed  Google Scholar 

  • Best, V., Gallun, F. J., Ihlefeld, A., & Shinn-Cunningham, B. G. (2006). The influence of spatial separation on divided listening. The Journal of the Acoustical Society of America, 120(3), 1506–1516.

    Article  PubMed  Google Scholar 

  • Best, V., Ozmeral, E. J., Kopco, N., & Shinn-Cunningham, B. G. (2008). Object continuity enhances selective auditory attention. Proceedings of the National Academy of Sciences of the USA, 105(35), 13174–13178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Best, V., Ozmeral, E. J., & Shinn-Cunningham, B. G. (2007b). Visually-guided attention enhances target identification in a complex auditory scene. Journal of the Association for Research in Otolaryngology, 8(2), 294–304.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bharadwaj, H. M., Lee, A. K. C., & Shinn-Cunningham, B. G. (2014). Measuring auditory selective attention using frequency tagging. Frontiers in Integrative Neuroscience, 8, 6.

    Google Scholar 

  • Bharadwaj, H. M., Masud, S., Mehraei, G., Verhulst, S., & Shinn-Cunningham, B. G. (2015). Individual differences reveal correlates of hidden hearing deficits. The Journal of Neuroscience, 35(5), 2161–2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.

    Article  CAS  PubMed  Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bressler, S., Masud, S., Bharadwaj, H., & Shinn-Cunningham, B. (2014). Bottom-up influences of voice continuity in focusing selective auditory attention. Psychological Research, 78(3), 349–360.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bressler, S. L., Tang, W., Sylvester, C. M., Shulman, G. L., & Corbetta, M. (2008). Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. The Journal of Neuroscience, 28(40), 10056–10061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broadbent, D. E. (1954). The role of auditory localization in attention and memory span. Journal of Experimental Psychology, 47(3), 191–196.

    Article  CAS  PubMed  Google Scholar 

  • Broadbent, D. E. (1956). Successive responses to simultaneous stimuli. Quarterly Journal of Experimental Psychology, 145–152.

    Google Scholar 

  • Broadbent, D. E. (1957). Immediate memory and simultaneous stimuli. Quarterly Journal of Experimental Psychology, 9, 1–11.

    Article  Google Scholar 

  • Broadbent, D. E. (1958). Perception and communication. New York: Pergamon Press.

    Book  Google Scholar 

  • Brungart, D. S. (2001). Informational and energetic masking effects in the perception of two simultaneous talkers. The Journal of the Acoustical Society of America, 109(3), 1101–1109.

    Article  CAS  PubMed  Google Scholar 

  • Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.

    Article  CAS  PubMed  Google Scholar 

  • Carlyon, R. P. (2004). How the brain separates sounds. Trends in Cognitive Sciences, 8(10), 465–471.

    Article  PubMed  Google Scholar 

  • Carlyon, R. P., Plack, C. J., Fantini, D. A., & Cusack, R. (2003). Cross-modal and non-sensory influences on auditory streaming. Perception, 32(11), 1393–1402.

    Article  PubMed  Google Scholar 

  • Chait, M., de Cheveigne, A., Poeppel, D., & Simon, J. Z. (2010). Neural dynamics of attending and ignoring in human auditory cortex. Neuropsychologia, 48(11), 3262–3271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. The Journal of the Acoustical Society of America, 25, 975–979.

    Article  Google Scholar 

  • Cherry, E. C., & Taylor, W. K. (1954). Some further experiments upon the recognition of speech, with one and with two ears. The Journal of the Acoustical Society of America, 26, 554–559.

    Article  Google Scholar 

  • Choi, I., Rajaram, S., Varghese, L. A., & Shinn-Cunningham, B. G. (2013). Quantifying attentional modulation of auditory-evoked cortical responses from single-trial electroencephalography. Frontiers in Human Neuroscience, 7, 115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Conway, A. R., Cowan, N., & Bunting, M. F. (2001). The cocktail party phenomenon revisited: The importance of working memory capacity. Psychonomic Bulletin Review, 8(2), 331–335.

    Article  CAS  PubMed  Google Scholar 

  • Cooke, M. (2006). A glimpsing model of speech perception in noise. The Journal of the Acoustical Society of America, 119(3), 1562–1573.

    Article  PubMed  Google Scholar 

  • Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.

    Article  CAS  PubMed  Google Scholar 

  • Culling, J. F., & Darwin, C. J. (1993a). Perceptual separation of simultaneous vowels: Within and across-formant grouping by F0. The Journal of the Acoustical Society of America, 93(6), 3454–3467.

    Article  CAS  PubMed  Google Scholar 

  • Culling, J. F., & Darwin, C. J. (1993b). The role of timbre in the segregation of simultaneous voices with intersecting F0 contours. Perception and Psychophysics, 54(3), 303–309.

    Article  CAS  PubMed  Google Scholar 

  • Culling, J. F., Hodder, K. I., & Toh, C. Y. (2003). Effects of reverberation on perceptual segregation of competing voices. The Journal of the Acoustical Society of America, 114(5), 2871–2876.

    Article  PubMed  Google Scholar 

  • Culling, J. F., Summerfield, Q., & Marshall, D. H. (1994). Effects of simulated reverberation on the use of binaural cues and fundamental-frequency differences for separating concurrent vowels. Speech Communication, 14, 71–95.

    Article  Google Scholar 

  • Cusack, R., Deeks, J., Aikman, G., & Carlyon, R. P. (2004). Effects of location, frequency region, and time course of selective attention on auditory scene analysis. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 643–656.

    PubMed  Google Scholar 

  • Cusack, R., & Roberts, B. (2000). Effects of differences in timbre on sequential grouping. Perception and Psychophysics, 62(5), 1112–1120.

    Article  CAS  PubMed  Google Scholar 

  • Dalton, P., & Fraenkel, N. (2012). Gorillas we have missed: Sustained inattentional deafness for dynamic events. Cognition, 124(3), 367–372.

    Article  PubMed  Google Scholar 

  • Dannenbring, G. L. (1976). Perceived auditory continuity with alternately rising and falling frequency transitions. Canadian Journal of Psychology, 30(2), 99–114.

    Article  CAS  PubMed  Google Scholar 

  • Darwin, C. J. (2005). Simultaneous grouping and auditory continuity. Perception and Psychophysics, 67(8), 1384–1390.

    Article  CAS  PubMed  Google Scholar 

  • Darwin, C. J. (2006). Contributions of binaural information to the separation of different sound sources. International Journal of Audiology, 45(Supplement 1), S20–S24.

    Article  PubMed  Google Scholar 

  • Darwin, C. J., Brungart, D. S., & Simpson, B. D. (2003). Effects of fundamental frequency and vocal-tract length changes on attention to one of two simultaneous talkers. The Journal of the Acoustical Society of America, 114(5), 2913–2922.

    Article  PubMed  Google Scholar 

  • Darwin, C. J., & Carlyon, R. P. (1995). Auditory grouping. In B. C. J. Moore (Ed.), Hearing (pp. 387–424). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Darwin, C. J., & Ciocca, V. (1992). Grouping in pitch perception: Effects of onset asynchrony and ear of presentation of a mistuned component. The Journal of the Acoustical Society of America, 91(6), 3381–3390.

    Article  CAS  PubMed  Google Scholar 

  • Darwin, C. J., & Hukin, R. W. (1997). Perceptual segregation of a harmonic from a vowel by interaural time difference and frequency proximity. The Journal of the Acoustical Society of America, 102(4), 2316–2324.

    Article  CAS  PubMed  Google Scholar 

  • Darwin, C. J., & Hukin, R. W. (2000). Effects of reverberation on spatial, prosodic, and vocal-tract size cues to selective attention. The Journal of the Acoustical Society of America, 108(1), 335–342.

    Article  CAS  PubMed  Google Scholar 

  • Darwin, C. J., Hukin, R. W., & al-Khatib, B. Y. (1995). Grouping in pitch perception: Evidence for sequential constraints. The Journal of the Acoustical Society of America, 98(2 Pt 1), 880–885.

    Google Scholar 

  • Darwin, C. J., & Sutherland, N. S. (1984). Grouping frequency components of vowels: When is a harmonic not a harmonic? Quarterly Journal of Experimental Psychology, 36A, 193–208.

    Article  Google Scholar 

  • de Cheveigne, A., McAdams, S., & Marin, C. M. H. (1997). Concurrent vowel identification. II. Effects of phase, harmonicity, and task. The Journal of the Acoustical Society of America, 101, 2848–2856.

    Article  Google Scholar 

  • De Sanctis, P., Ritter, W., Molholm, S., Kelly, S. P., & Foxe, J. J. (2008). Auditory scene analysis: The interaction of stimulation rate and frequency separation on pre-attentive grouping. European Journal of Neuroscience, 27(5), 1271–1276.

    Article  PubMed  PubMed Central  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review Neuroscience, 18, 193–222.

    Article  CAS  Google Scholar 

  • Devergie, A., Grimault, N., Tillmann, B., & Berthommier, F. (2010). Effect of rhythmic attention on the segregation of interleaved melodies. The Journal of the Acoustical Society of America, 128(1), EL1–7.

    Google Scholar 

  • Ding, N., & Simon, J. Z. (2012a). Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. Journal of Neurophysiology, 107(1), 78–89.

    Article  PubMed  Google Scholar 

  • Ding, N., & Simon, J. Z. (2012b). Emergence of neural encoding of auditory objects while listening to competing speakers. Proceedings of the National Academy of Sciences of the USA, 109(29), 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172–179.

    Article  PubMed  Google Scholar 

  • Elhilali, M., Ma, L., Micheyl, C., Oxenham, A. J., & Shamma, S. A. (2009a). Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron, 61(2), 317–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elhilali, M., Xiang, J., Shamma, S. A., & Simon, J. Z. (2009b). Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene. PLoS Biology, 7(6), e1000129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2(10), 704–716.

    Article  CAS  PubMed  Google Scholar 

  • Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences, 5(1), 16–25.

    Article  PubMed  Google Scholar 

  • Eramudugolla, R., Irvine, D. R., McAnally, K. I., Martin, R. L., & Mattingley, J. B. (2005). Directed attention eliminates ‘change deafness’ in complex auditory scenes. Current Biology, 15(12), 1108–1113.

    Article  CAS  PubMed  Google Scholar 

  • Feldman, J. (2003). What is a visual object? Trends in Cognitive Sciences, 7(6), 252–256.

    Article  PubMed  Google Scholar 

  • Foxe, J. J., & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers of Psychology, 2, 154.

    Article  Google Scholar 

  • Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Auditory attention: Focusing the searchlight on sound. Current Opinion in Neurobiology, 17(4), 437–455.

    Article  CAS  PubMed  Google Scholar 

  • Fujisaki, W., & Nishida, S. (2005). Temporal frequency characteristics of synchrony-asynchrony discrimination of audio-visual signals. Experimental Brain Research, 166(3–4), 455–464.

    Article  PubMed  Google Scholar 

  • Gallun, F. J., Mason, C. R., & Kidd, G., Jr. (2007). The ability to listen with independent ears. The Journal of the Acoustical Society of America, 122(5), 2814–2825.

    Article  PubMed  Google Scholar 

  • Giraud, A. L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg, M. E., & Bruce, C. J. (1985). Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey. Vision Research, 25(3), 471–481.

    Article  CAS  PubMed  Google Scholar 

  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg, S., Carvey, H., Hitchcock, L., & Chang, S. (2003). Temporal properties of spontaneous speech—A syllable-centric perspective. Journal of Phonetics, 31(3–4), 465–485.

    Article  Google Scholar 

  • Greenberg, G. Z., & Larkin, W. D. (1968). Frequency-response characteristic of auditory observers detecting signals of a single frequency in noise: The probe-signal method. The Journal of the Acoustical Society of America, 44(6), 1513–1523.

    Article  CAS  PubMed  Google Scholar 

  • Gregoriou, G. G., Gotts, S. J., Zhou, H., & Desimone, R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324(5931), 1207–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths, T. D., & Warren, J. D. (2004). What is an auditory object? Nature Reviews Neuroscience, 5(11), 887–892.

    Article  CAS  PubMed  Google Scholar 

  • Grimault, N., Bacon, S. P., & Micheyl, C. (2002). Auditory stream segregation on the basis of amplitude-modulation rate. The Journal of the Acoustical Society of America, 111(3), 1340–1348.

    Article  PubMed  Google Scholar 

  • Hall, J. W., 3rd, & Grose, J. H. (1990). Comodulation masking release and auditory grouping. The Journal of the Acoustical Society of America, 88(1), 119–125.

    Article  PubMed  Google Scholar 

  • Heller, L. M., & Richards, V. M. (2010). Binaural interference in lateralization thresholds for interaural time and level differences. The Journal of the Acoustical Society of America, 128(1), 310–319.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heller, L. M., & Trahiotis, C. (1996). Extents of laterality and binaural interference effects. The Journal of the Acoustical Society of America, 99(6), 3632–3637.

    Article  CAS  PubMed  Google Scholar 

  • Hill, K. T., & Miller, L. M. (2010). Auditory attentional control and selection during cocktail party listening. Cerebral Cortex, 20(3), 583–590.

    Article  PubMed  Google Scholar 

  • Hukin, R. W., & Darwin, C. J. (1995). Comparison of the effect of onset asynchrony on auditory grouping in pitch matching and vowel identification. Perception and Psychophysics, 57(2), 191–196.

    Article  CAS  PubMed  Google Scholar 

  • Hupe, J. M., Joffo, L. M., & Pressnitzer, D. (2008). Bistability for audiovisual stimuli: Perceptual decision is modality specific. Journal of Vision, 8(7), 11–15.

    Google Scholar 

  • Ihlefeld, A., & Shinn-Cunningham, B. G. (2011). Effect of source spectrum on sound localization in an everyday reverberant room. The Journal of the Acoustical Society of America, 130(1), 324–333.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, M. R., Kidd, G., & Wetzel, R. (1981). Evidence for rhythmic attention. Journal of Experimental Psychology: Human Perception and Performance, 7(5), 1059–1073.

    CAS  PubMed  Google Scholar 

  • Kastner, S., & Ungerleider, L. G. (2001). The neural basis of biased competition in human visual cortex. Neuropsychologia, 39(12), 1263–1276.

    Article  CAS  PubMed  Google Scholar 

  • Kaya, E. M., & Elhilali, M. (2014). Investigating bottom-up auditory attention. Frontiers in Human Neuroscience, 8(327), 1–12.

    Google Scholar 

  • Kayser, C., Montemurro, M. A., Logothetis, N. K., & Panzeri, S. (2009). Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron, 61(4), 597–608.

    Article  CAS  PubMed  Google Scholar 

  • Kerlin, J. R., Shahin, A. J., & Miller, L. M. (2010). Attentional gain control of ongoing cortical speech representations in a “cocktail party”. The Journal of Neuroscience, 30(2), 620–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidd, G., Jr., Arbogast, T. L., Mason, C. R., & Gallun, F. J. (2005a). The advantage of knowing where to listen. The Journal of the Acoustical Society of America, 118(6), 3804–3815.

    Article  PubMed  Google Scholar 

  • Kidd, G., Mason, C. R., Brughera, A., & Hartmann, W. M. (2005b). The role of reverberation in release from masking due to spatial separation of sources for speech identification. Acta Acustica united with Acustica, 91(3), 526–536.

    Google Scholar 

  • Kidd, G., Jr., Mason, C. R., Richards, V. M., Gallun, F. J., & Durlach, N. I. (2008). Informational Masking. In W. Yost, A. Popper, & R. Fay (Eds.), Auditory perception of sound sources (pp. 143–189). New York: Springer Science+Business Media.

    Google Scholar 

  • Kitterick, P. T., Clarke, E., O’Shea, C., Seymour, J., & Summerfield, A. Q. (2013). Target identification using relative level in multi-talker listening. The Journal of the Acoustical Society of America, 133(5), 2899–2909.

    Article  PubMed  Google Scholar 

  • Kong, L., Michalka, S. W., Rosen, M. L., Sheremata, S. L., et al. (2014). Auditory spatial attention representations in the human cerebral cortex. Cerebral Cortex, 24(3), 773–784.

    Article  PubMed  Google Scholar 

  • Koreimann, S., Gula, B., & Vitouch, O. (2014). Inattentional deafness in music. Psychological Research, 78, 304–312.

    Article  PubMed  Google Scholar 

  • Lachter, J., Forster, K. I., & Ruthruff, E. (2004). Forty-five years after Broadbent (1958): Still no identification without attention. Psychological Review, 111(4), 880–913.

    Article  PubMed  Google Scholar 

  • Lakatos, P., Musacchia, G., O’Connel, M. N., Falchier, A. Y., Javitt, D. C., & Schroeder, C. E. (2013). The spectrotemporal filter mechanism of auditory selective attention. Neuron, 77(4), 750–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalor, E. C., & Foxe, J. J. (2010). Neural responses to uninterrupted natural speech can be extracted with precise temporal resolution. European Journal of Neuroscience, 31(1), 189–193.

    Article  PubMed  Google Scholar 

  • Lalor, E. C., Power, A. J., Reilly, R. B., & Foxe, J. J. (2009). Resolving precise temporal processing properties of the auditory system using continuous stimuli. Journal of Neurophysiology, 102(1), 349–359.

    Article  PubMed  Google Scholar 

  • Larson, E., & Lee, A. K. C. (2013). Influence of preparation time and pitch separation in switching of auditory attention between streams. The Journal of the Acoustical Society of America, 134(2), EL165–171.

    Google Scholar 

  • Larson, E., & Lee, A. K. C. (2014). Switching auditory attention using spatial and non-spatial features recruits different cortical networks. NeuroImage, 84, 681–687.

    Article  PubMed  Google Scholar 

  • Lawo, V., & Koch, I. (2014). Dissociable effects of auditory attention switching and stimulus–response compatibility. Psychological Research, 78, 379–386.

    Article  PubMed  Google Scholar 

  • Lee, A. K. C., Rajaram, S., Xia, J., Bharadwaj, H., et al. (2013). Auditory selective attention reveals preparatory activity in different cortical regions for selection based on source location and source pitch. Frontiers in Neuroscience, 6, 190.

    Google Scholar 

  • Lepisto, T., Kuitunen, A., Sussman, E., Saalasti, S., et al. (2009). Auditory stream segregation in children with Asperger syndrome. Biological Psychology, 82(3), 301–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loizou, P. C., Hu, Y., Litovsky, R., Yu, G., et al. (2009). Speech recognition by bilateral cochlear implant users in a cocktail-party setting. The Journal of the Acoustical Society of America, 125(1), 372–383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macken, W. J., Tremblay, S., Houghton, R. J., Nicholls, A. P., & Jones, D. M. (2003). Does auditory streaming require attention? Evidence from attentional selectivity in short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 43–51.

    PubMed  Google Scholar 

  • Maddox, R. K., Atilgan, H., Bizley, J. K., & Lee, A. K. (2015). Auditory selective attention is enhanced by a task-irrelevant temporally coherent visual stimulus in human listeners. Elife, 4. doi:10.7554/eLife.04995

  • Maddox, R. K., & Shinn-Cunningham, B. G. (2012). Influence of task-relevant and task-irrelevant feature continuity on selective auditory attention. Journal of the Association for Research in Otolaryngology, 13(1), 119–129.

    Article  PubMed  Google Scholar 

  • Marrocco, R. T., & Davidson, M. C. (1998). Neurochemistry of attention. In R. Parasuraman (Ed.), The attentive brain (Vol. xii, pp. 35–50). Cambridge, MA: MIT Press.

    Google Scholar 

  • McCloy, D. R., & Lee, A. K. (2015). Auditory attention strategy depends on target linguistic properties and spatial configuration. The Journal of the Acoustical Society of America, 138(1), 97–114.

    Article  PubMed  PubMed Central  Google Scholar 

  • McDermott, J. H., Wrobleski, D., & Oxenham, A. J. (2011). Recovering sound sources from embedded repetition. Proceedings of the National Academy of Sciences of the USA, 108, 1188–1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesgarani, N., & Chang, E. F. (2012). Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485(7397), 233–236.

    Article  CAS  PubMed  Google Scholar 

  • Michalka, S. W., Kong, L., Rosen, M. L., Shinn-Cunningham, B. G., & Somers, D. C. (2015). Short-term memory for space and time flexibly recruit complementary sensory-biased frontal lobe attention networks. Neuron, 87(4), 882–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalka, S. W., Rosen, M. L., Kong, L., Shinn-Cunningham, B. G., & Somers, D. C. (2016). Auditory spatial coding flexibly recruits anterior, but not posterior, visuotopic parietal cortex. Cerebral Cortex, 26(3), 1302–1308.

    Article  PubMed  Google Scholar 

  • Micheyl, C., Tian, B., Carlyon, R. P., & Rauschecker, J. P. (2005). Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron, 48(1), 139–148.

    Article  CAS  PubMed  Google Scholar 

  • Molholm, S., Martinez, A., Shpaner, M., & Foxe, J. J. (2007). Object-based attention is multisensory: Co-activation of an object’s representations in ignored sensory modalities. European Journal of Neuroscience, 26(2), 499–509.

    Article  PubMed  Google Scholar 

  • Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instructions. Quarterly Journal of Experimental Psychology, 11, 56–60.

    Article  Google Scholar 

  • Naatanen, R., Teder, W., Alho, K., & Lavikainen, J. (1992). Auditory attention and selective input modulation: A topographical ERP study. NeuroReport, 3(6), 493–496.

    Article  CAS  PubMed  Google Scholar 

  • Noyce, A. L., Cestero, N., Shinn-Cunningham, B. G., & Somers, D. C. (2016). Short-term memory stores organized by information domain. Attention, Perception, & Psychophysics, 78(30), 960–970.

    Google Scholar 

  • O’Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., et al. (2014). Attentional selection in a cocktail party environment can be decoded from single-trial EEG. Cerebral Cortex, 25(7), 1697–1706.

    PubMed  PubMed Central  Google Scholar 

  • O’Sullivan, J. A., Shamma, S. A., & Lalor, E. C. (2015). Evidence for neural computations of temporal coherence in an auditory scene and their enhancement during active listening. The Journal of Neuroscience, 35(18), 7256–7263.

    Article  PubMed  CAS  Google Scholar 

  • Osher, D., Tobyne, S., Congden, K., Michalka, S., & Somers, D. (2015). Structural and functional connectivity of visual and auditory attentional networks: Insights from the Human Connectome Project. Journal of Vision, 15(12), 223.

    Article  Google Scholar 

  • Oxenham, A. J. (2008). Pitch perception and auditory stream segregation: Implications for hearing loss and cochlear implants. Trends in Amplification, 12(4), 316–331.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oxenham, A. J. (2012). Pitch perception. The Journal of Neuroscience, 32(39), 13335–13338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oxenham, A. J., & Dau, T. (2001). Modulation detection interference: Effects of concurrent and sequential streaming. The Journal of the Acoustical Society of America, 110(1), 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Palomaki, K. J., Brown, G. J., & Wang, D. L. (2004). A binaural processor for missing data speech recognition in the presence of noise and small-room reverberation. Speech Communication, 43(4), 361–378.

    Article  Google Scholar 

  • Pasley, B. N., David, S. V., Mesgarani, N., Flinker, A., et al. (2012). Reconstructing speech from human auditory cortex. PLoS Biology, 10(1), e1001251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavani, F., & Turatto, M. (2008). Change perception in complex auditory scenes. Perception and Psychophysics, 70(4), 619–629.

    Article  PubMed  Google Scholar 

  • Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plack, C. J., Barker, D., & Prendergast, G. (2014). Perceptual consequences of “hidden” hearing loss. Trends in Hearing, 18. doi:10.1177/2331216514550621

  • Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review Neuroscience, 13, 25–42.

    Article  CAS  Google Scholar 

  • Power, A. J., Foxe, J. J., Forde, E. J., Reilly, R. B., & Lalor, E. C. (2012). At what time is the cocktail party? A late locus of selective attention to natural speech. European Journal of Neuroscience, 35(9), 1497–1503.

    Article  PubMed  Google Scholar 

  • Ptak, R. (2012). The frontoparietal attention network of the human brain: Action, saliency, and a priority map of the environment. Neuroscientist, 18(5), 502–515.

    Article  PubMed  Google Scholar 

  • Pugh, K. R., Offywitz, B. A., Shaywitz, S. E., Fulbright, R. K., et al. (1996). Auditory selective attention: An fMRI investigation. NeuroImage, 4(3 Pt 1), 159–173.

    Article  CAS  PubMed  Google Scholar 

  • Ruggles, D., Bharadwaj, H., & Shinn-Cunningham, B. G. (2011). Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proceedings of the National Academy of Sciences of the USA, 108(37), 15516–15521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuel, A. G. (1981). The role of bottom-up confirmation in the phonemic restoration illusion. Journal of Experimental Psychology: Human Perception and Performance, 7(5), 1124–1131.

    CAS  PubMed  Google Scholar 

  • Schaal, N. K., Williamson, V. J., & Banissy, M. J. (2013). Anodal transcranial direct current stimulation over the supramarginal gyrus facilitates pitch memory. European Journal of Neuroscience, 38(10), 3513–3518.

    Article  PubMed  Google Scholar 

  • Scharf, B., Quigley, S., Aoki, C., Peachey, N., & Reeves, A. (1987). Focused auditory attention and frequency selectivity. Perception and Psychophysics, 42(3), 215–223.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, A., McDermott, J. H., & Shinn-Cunningham, B. (2012). Spatial cues alone produce inaccurate sound segregation: The effect of interaural time differences. The Journal of the Acoustical Society of America, 132(1), 357–368.

    Article  PubMed  PubMed Central  Google Scholar 

  • Serences, J. T., & Yantis, S. (2006a). Selective visual attention and perceptual coherence. Trends in Cognitive Sciences, 10(1), 38–45.

    Article  PubMed  Google Scholar 

  • Serences, J. T., & Yantis, S. (2006b). Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex. Cerebral Cortex, 17(2), 284–293.

    Article  PubMed  Google Scholar 

  • Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34(3), 114–123.

    Article  CAS  PubMed  Google Scholar 

  • Shinn-Cunningham, B. G. (2008). Object-based auditory and visual attention. Trends in Cognitive Sciences, 12(5), 182–186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinn-Cunningham, B. G., & Best, V. (2008). Selective attention in normal and impaired hearing. Trends in Amplification, 12(4), 283–299.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinn-Cunningham, B. G., Lee, A. K. C., & Oxenham, A. J. (2007). A sound element gets lost in perceptual competition. Proceedings of the National Academy of Sciences of the USA, 104(29), 12223–12227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuai, L., & Elhilali, M. (2014). Task-dependent neural representations of salient events in dynamic auditory scenes. Frontiers in Neuroscience, 8(203), 1–11.

    Google Scholar 

  • Strauss, A., Wostmann, M., & Obleser, J. (2014). Cortical alpha oscillations as a tool for auditory selective inhibition. Frontiers in Human Neuroscience, 8, 350.

    PubMed  PubMed Central  Google Scholar 

  • Sussman, E. S., Horvath, J., Winkler, I., & Orr, M. (2007). The role of attention in the formation of auditory streams. Perception and Psychophysics, 69(1), 136–152.

    Article  PubMed  Google Scholar 

  • Tark, K. J., & Curtis, C. E. (2009). Persistent neural activity in the human frontal cortex when maintaining space that is off the map. Nature Neuroscience, 12(11), 1463–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teki, S., Chait, M., Kumar, S., Shamma, S., & Griffiths, T. D. (2013). Segregation of complex acoustic scenes based on temporal coherence. Elife, 2, e00699.

    Article  PubMed  PubMed Central  Google Scholar 

  • Terhardt, E. (1974). Pitch, consonance, and harmony. The Journal of the Acoustical Society of America, 55(5), 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  • Toscani, M., Marzi, T., Righi, S., Viggiano, M. P., & Baldassi, S. (2010). Alpha waves: A neural signature of visual suppression. Experimental Brain Research, 207(3–4), 213–219.

    Article  PubMed  Google Scholar 

  • Treisman, A. M. (1960). Contextual cues in selective listening. Quarterly Journal of Experimental Psychology, 12, 157–167.

    Article  Google Scholar 

  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.

    Article  CAS  PubMed  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behaviour (pp. 549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  • Varghese, L., Bharadwaj, H. M., & Shinn-Cunningham, B. G. (2015). Evidence against attentional state modulating scalp-recorded auditory brainstem steady-state responses. Brain Research, 1626, 146–164.

    Article  CAS  PubMed  Google Scholar 

  • Varghese, L. A., Ozmeral, E. J., Best, V., & Shinn-Cunningham, B. G. (2012). How visual cues for when to listen aid selective auditory attention. Journal of the Association for Research in Otolaryngology, 13(3), 359–368.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vines, B. W., Schnider, N. M., & Schlaug, G. (2006). Testing for causality with transcranial direct current stimulation: Pitch memory and the left supramarginal gyrus. NeuroReport, 17(10), 1047–1050.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vliegen, J., Moore, B. C., & Oxenham, A. J. (1999). The role of spectral and periodicity cues in auditory stream segregation, measured using a temporal discrimination task. The Journal of the Acoustical Society of America, 106(2), 938–945.

    Article  CAS  PubMed  Google Scholar 

  • von Békésy, G. (1960). Experiments in hearing (1989th ed.). New York: Acoustical Society of America Press.

    Google Scholar 

  • Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist, 20(2), 150–159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wardak, C., Ibos, G., Duhamel, J. R., & Olivier, E. (2006). Contribution of the monkey frontal eye field to covert visual attention. The Journal of Neuroscience, 26(16), 4228–4235.

    Article  CAS  PubMed  Google Scholar 

  • Warren, R. M. (1970). Perceptual restoration of missing speech sounds. Science, 167(917), 392–393.

    Article  CAS  PubMed  Google Scholar 

  • Warren, R. M., Wrightson, J. M., & Puretz, J. (1988). Illusory continuity of tonal and infratonal periodic sounds. The Journal of the Acoustical Society of America, 84(4), 1338–1342.

    Article  CAS  PubMed  Google Scholar 

  • Welch, R. B., & Warren, D. H. (1980). Immediate perceptual response to intersensory discrepancy. Psychological Bulletin, 88, 638–667.

    Article  CAS  PubMed  Google Scholar 

  • Whittingstall, K., & Logothetis, N. K. (2009). Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron, 64(2), 281–289.

    Article  CAS  PubMed  Google Scholar 

  • Woldorff, M. G., Gallen, C. C., Hampson, S. A., Hillyard, S. A., et al. (1993). Modulation of early sensory processing in human auditory-cortex during auditory selective attention. Proceedings of the National Academy of Sciences of the USA, 90(18), 8722–8726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, N., & Cowan, N. (1995). The cocktail party phenomenon revisited: How frequent are attention shifts to one’s name in an irrelevant auditory channel? Journal of Experimental Psychology. Learning, Memory, and Cognition, 21(1), 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Woodruff, P. W., Benson, R. R., Bandettini, P. A., Kwong, K. K., et al. (1996). Modulation of auditory and visual cortex by selective attention is modality-dependent. NeuroReport, 7(12), 1909–1913.

    Article  CAS  PubMed  Google Scholar 

  • Wright, B. A., & Fitzgerald, M. B. (2004). The time course of attention in a simple auditory detection task. Perception and Psychophysics, 66(3), 508–516.

    Article  PubMed  Google Scholar 

  • Xiang, J., Simon, J., & Elhilali, M. (2010). Competing streams at the cocktail party: Exploring the mechanisms of attention and temporal integration. The Journal of Neuroscience, 30(36), 12084–12093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zion-Golumbic, E. M., Ding, N., Bickel, S., Lakatos, P., et al. (2013). Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron, 77(5), 980–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zion-Golumbic, E., & Schroeder, C. E. (2012). Attention modulates ‘speech-tracking’ at a cocktail party. Trends in Cognitive Sciences, 16(7), 363–364.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Compliance with Ethics Requirements

Barbara Shinn-Cunningham has no conflicts of interest.

Virginia Best has no conflicts of interest.

Adrian K. C. Lee has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Shinn-Cunningham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shinn-Cunningham, B., Best, V., Lee, A.K.C. (2017). Auditory Object Formation and Selection. In: Middlebrooks, J., Simon, J., Popper, A., Fay, R. (eds) The Auditory System at the Cocktail Party. Springer Handbook of Auditory Research, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-319-51662-2_2

Download citation

Publish with us

Policies and ethics