Skip to main content

Conventional Methods for Measurements of Chemo-Mechanical Coupling

  • Chapter
  • First Online:
Electro-Chemo-Mechanics of Solids

Part of the book series: Electronic Materials: Science & Technology ((EMST))

Abstract

Energy-related oxide materials are often used at elevated temperatures under both oxidizing and reducing conditions and, therefore, their chemical composition with respect to oxygen may change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsvetkov, D. S., Ananjev, M. V., Eremin, V. A., Zuev A. Yu., & Kurumchin, E. K. (2014). Oxygen nonstoichiometry, defect structure and oxygen diffusion in the double perovskite GdBaCo2O6−δ. Dalton Transaction, 43, 15937–15943.

    Google Scholar 

  2. Taskin, A. A., Lavrov, A. N., & Ando, Y. (2005). Achieving fast oxygen diffusion in perovskites by cation ordering. Applied Physics Letters, 86, 091910.

    Article  Google Scholar 

  3. Tsvetkov, D. S., Sereda, V. V., & Zuev, A. Yu. (2010). Oxygen nonstoichiometry and defect structure of the double perovskite GdBaCo2O6−δ. Solid State Ionics, 180(40), 1620–1625.

    Article  Google Scholar 

  4. Kroeger, F. A., & Vink, H. J. (1956). Relations between the concentrations of imperfections in crystalline solids. Solid State Physics, 3, 307–435.

    Article  Google Scholar 

  5. Hilpert, K., Steinbrech, R. W., Boroomand, F., et al. (2003). Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC). Journal of the European Ceramic Society, 23(16), 3009–3020.

    Article  Google Scholar 

  6. Zuev, A. Yu., & Tsvetkov, D. S. (2013). In J. Zhang & H. Li (Eds.), Perovskite: crystallography, chemistry and catalytic performance (p. 141). New York: Nova Science Publisher.

    Google Scholar 

  7. Zuev, A. Yu., Singheiser, L., & Hilpert, K. (2002). Defect structure and isothermal expansion of A-site and B-site substituted lanthanum chromites. Solid State Ionics, 147(1), 1–11.

    Article  Google Scholar 

  8. Laredo, E. (1969). Etude par rayons X de la dilatation de NaCl a haute temperature. Journal of Physics and Chemistry of Solids, 30(5), 1037–1042.

    Article  Google Scholar 

  9. Lidiard, A. (1957). Ionic conductivity. Berlin: Springer.

    Google Scholar 

  10. Adler, S. B. (2001). Chemical expansivity of electrochemical ceramics. Journal of the American Ceramic Society, 84(9), 2117–2119.

    Article  Google Scholar 

  11. Bishop, S. R., Duncan, K. L., & Wachsman, E. D. (2010). Thermo‐chemical expansion in strontium‐doped lanthanum cobalt iron oxide. Journal of the American Ceramic Society, 93(12), 4115–4121.

    Article  Google Scholar 

  12. Chatzichristodoulou, C., Norby, P., Hendriksen, P. V., & Mogensen, M. B. (2015). Size of oxide vacancies in fluorite and perovskite structured oxides. Journal of Electroceramics, 34(1), 100–107.

    Article  Google Scholar 

  13. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32(5), 751–767.

    Article  Google Scholar 

  14. Marrocchelli, D., Perry, N. H., & Bishop, S. R. (2015). Understanding chemical expansion in perovskite-structured oxides. Physical Chemistry Chemical Physics, 17(15), 10028–10039.

    Article  Google Scholar 

  15. Zuev, A. Yu., & Tsvetkov, D. S. (2010). Oxygen nonstoichiometry, defect structure and defect-induced expansion of undoped perovskite LaMnO3±δ. Solid State Ionics, 181(11), 557–563.

    Article  Google Scholar 

  16. Zuev, A. Yu., Petrov, A. N., Vylkov, A. I., & Tsvetkov, D. S. (2007). Oxygen nonstoichiometry and defect structure of undoped and doped lanthanum cobaltites. Journal Materials Science, 42, 1901–1908.

    Google Scholar 

  17. Zuev, A. Yu., Sereda, V. V., & Tsvetkov, D. S. (2014). Oxygen nonstoichiometry, defect structure, thermal and chemical expansion of pseudo-cubic La0.8Sr0.2Co0.9Ni0.1O3−δ and double perovskite GdBaCo2O6−δ, Journal of the Electrochemical Society, 161(11), F3032–F3038.

    Google Scholar 

  18. Zuev, A. Yu., Sereda, V. V., & Tsvetkov, D. S. (2014). Defect structure and defect-induced expansion of doped perovskite La0.7Sr0.3Co0.9Fe0.1O3−δ. International Journal of Hydrogen Energy, 39(36), 21553–21560.

    Article  Google Scholar 

  19. Zuev, A. Yu., Sereda, V. V., & Tsvetkov, D. S. (2012). Defect structure and defect-induced expansion of MIEC oxides: Doped lanthanum cobaltites. Journal of the Electrochemical Society, 159(9), F594–F599.

    Article  Google Scholar 

  20. Asai, K., Yoneda, A., Yokokura, O., Tranquauda, J. M., Shirane, G., & Kohn, K. (1998). Two spin-state transitions in LaCoO3. Journal of the Physical Society of Japan, 67(1), 290–296.

    Article  Google Scholar 

  21. Zuev, A. Yu., Vylkov, A. I., Petrov, A. N., & Tsvetkov, D. S. (2008). Defect structure and defect-induced expansion of undoped oxygen deficient perovskite LaCoO3−δ. Solid State Ionics, 179, 1876–1879.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Yu. Zuev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zuev, A.Y., Tsvetkov, D.S. (2017). Conventional Methods for Measurements of Chemo-Mechanical Coupling. In: Bishop, S., Perry, N., Marrocchelli, D., Sheldon, B. (eds) Electro-Chemo-Mechanics of Solids. Electronic Materials: Science & Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-51407-9_2

Download citation

Publish with us

Policies and ethics