Skip to main content

Myosin and Actin Filaments in Muscle: Structures and Interactions

  • Chapter
  • First Online:
Fibrous Proteins: Structures and Mechanisms

Part of the book series: Subcellular Biochemistry ((SCBI,volume 82))

Abstract

In the last decade, improvements in electron microscopy and image processing have permitted significantly higher resolutions to be achieved (sometimes <1 nm) when studying isolated actin and myosin filaments. In the case of actin filaments the changing structure when troponin binds calcium ions can be followed using electron microscopy and single particle analysis to reveal what happens on each of the seven non-equivalent pseudo-repeats of the tropomyosin α-helical coiled-coil. In the case of the known family of myosin filaments not only are the myosin head arrangements under relaxing conditions being defined, but the latest analysis, also using single particle methods, is starting to reveal the way that the α-helical coiled-coil myosin rods are packed to give the filament backbones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ababou A, Rostkova E, Mistry S, Le Masurier C, Gautel M, Pfuhl M (2008) Myosin binding protein C positioned to play a key role in regulation of muscle contraction: structure and interactions of domain C1. J Mol Biol 384:615–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarkova I, Perriard JC (2005) The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere. Trends Cell Biol 15:477–485

    Article  CAS  PubMed  Google Scholar 

  • Alamo L, Wriggers W, Pinto A, Bartoli F, Salazar L, Zhao FQ, Craig R, Padron R (2008) Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity. J Mol Biol 384:780–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AL-Khayat HA, Squire JM (2006) Refined structure of bony fish muscle myosin filaments from low-angle X-ray diffraction data. J Struct Biol 155:218–229

    Article  CAS  PubMed  Google Scholar 

  • AL-Khayat HA, Yagi N, Squire JM (1995) Structural changes in actin-tropomyosin during muscle regulation: computer modelling of low-angle X-ray diffraction data. J Mol Biol 252:611–632

    Article  CAS  PubMed  Google Scholar 

  • AL-Khayat HA, Hudson L, Reedy MK, Irving TC, Squire JM (2003) Myosin head configuration in relaxed insect flight muscle: X-ray modelled resting cross-bridges in a pre-powerstroke state are poised for actin binding. Biophys J 85:1063–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AL-Khayat HA, Morris EP, Squire JM (2004) Single particle analysis: a new approach to solving the 3D structure of myosin filaments. J Mus Res Cell Motil 25:635–644

    Article  CAS  Google Scholar 

  • AL-Khayat HA, Morris EP, Powell AS, Kensler RW, Squire JM (2006) 3D structure of vertebrate (fish) muscle myosin filaments by single particle analysis. J Struct Biol 155:202–217

    Article  CAS  PubMed  Google Scholar 

  • AL-Khayat HA, Morris EP, Kensler RW, Squire JM (2008) 3D structure of relaxed mammalian (rabbit) cardiac muscle myosin filaments by electron microscopy and single particle analysis. J Struct Biol 163:117–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AL-Khayat HA, Morris EP, Squire JM (2009a) The 7-stranded structure of relaxed scallop muscle myosin filaments: support for a common head configuration in myosin-regulated muscles. J Struct Biol 166:183–194

    Article  CAS  PubMed  Google Scholar 

  • AL-Khayat HA, Morris EP, Squire JM (2009b) 3D structure of relaxed scallop striated muscle myosin filaments by electron microscopy and single particle analysis. J Struct Biol 166:183–194

    Article  CAS  PubMed  Google Scholar 

  • AL-Khayat HA, Kensler RW, Morris EP, Squire JM (2010) Three-dimensional structure of the M-region (bare zone) of vertebrate striated muscle myosin filaments by single-particle analysis. J Mol Biol 403:763–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AL-Khayat HA, Kensler RW, Squire JM, Marston SB, Morris EP (2013) Atomic model of the human cardiac muscle myosin filament. Proc Natl Acad Sci U S A 110:318–323

    Article  CAS  PubMed  Google Scholar 

  • Barral JM, Epstein HF (1999) Protein machines and self-assembly in muscle organization. BioEssays 21:813–823

    Article  CAS  PubMed  Google Scholar 

  • Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S (2015) 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 348:1147–1151

    Article  CAS  PubMed  Google Scholar 

  • Bear RS, Selby CC (1956) The structure of paramyosin fibrils according to X-ray diffraction. J Biophys Biochem Cytol 2:55–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrmann E, Muller M, Penczek PA, Mennherz HG, Manstein DJ, Raunser S (2012) Structure of the rigor actin-tropomyosin-myosin complex. Cell 150:327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett P, Craig R, Starr R, Offer G (1986) The ultrastructural location of C-protein, X-protein and H-protein in rabbit muscle. J Muscle Res Cell Motil 7:550–567

    Article  CAS  PubMed  Google Scholar 

  • Bremel RD, Weber A (1972) Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol 238:97–101

    Article  CAS  PubMed  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JH, Cohen C (2005) Regulation of muscle contraction by tropomyosin and troponin: how structure illuminates function. ‘Fibrous Proteins: Muscle & Molecular Motors’ (Ed Squire JM, Parry DAD). Adv Protein Chem 71:121–159.

    Google Scholar 

  • Caspar DL, Cohen C, Longley W (1969) Tropomyosin: crystal structure, polymorphism and molecular interactions. J Mol Biol 41:87–107

    Article  CAS  PubMed  Google Scholar 

  • Chew MW, Squire JM (1995) Packing of alpha-helical coiled-coil myosin rods in vertebrate muscle thick filaments. J Struct Biol 115:233–249

    Article  CAS  PubMed  Google Scholar 

  • Clarke M, Hoffman W, Wray JS (1986) ATP binding and crossbridge structure in muscle. J Mol Biol 191:581–585

    Article  CAS  PubMed  Google Scholar 

  • Cohen C, Szent-Györgyi AG, Kendrick-Jones J (1971) Paramyosin and the filaments of molluscan “catch” muscles. I. Paramyosin: structure and assembly. J Mol Biol 56:223–227

    Article  CAS  PubMed  Google Scholar 

  • Craig R, Lehman W (2001) Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments. J Mol Biol 311:1027–1036

    Google Scholar 

  • Craig R, Megerman J (1977) Assembly of smooth muscle myosin into side polar filaments. J Cell Biol 75:990–996

    Article  CAS  PubMed  Google Scholar 

  • Craig R, Woodhead J (2006) Structure and function of myosin filaments. Curr Opin Struct Biol 16:204–212

    Article  CAS  PubMed  Google Scholar 

  • Craig R, Lee KH, Mun JY, Torre I, Luther PK (2014) Structure, sarcomeric organization, and thin filament binding of cardiac myosin-binding protein-C. Pflugers Arch 466:425–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig R, Padron R, Alamo L (1991) Direct determination of myosin filament symmetry in scallop striated adductor muscle by rapid freezing and freeze substitution. J Mol Biol 220:125–132

    Article  CAS  PubMed  Google Scholar 

  • Crowther RA, Padron R, Craig R (1985) Arrangement of the heads of myosin in relaxed thick filaments from tarantula muscle. J Mol Biol 182:429–439

    Article  Google Scholar 

  • DeRosier DJ, Klug A (1968) Reconstruction of three-dimensional structures from electron micrographs. Nature 217:130–134

    Article  CAS  Google Scholar 

  • DeRosier DJ, Moore P (1971) Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J Mol Biol 52:355–369

    Article  Google Scholar 

  • Dewey MM, Walcott B, Colflesh DE, Terry H, Levine RJC (1977) Changes in thick filament length in Limulus striated muscle. J Cell Biol 75:366–380

    Article  CAS  PubMed  Google Scholar 

  • Dominguez R, Freyzon Y, Trybus KM, Cohen C (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-powerstroke state. Cell 94:559–571

    Article  CAS  PubMed  Google Scholar 

  • Ebashi S, Endo M (1968) Calcium ion and muscle contraction. Prog Biophys Mol Biol 18:123–183

    Article  CAS  PubMed  Google Scholar 

  • Egelman EH (2000) A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85:225–234

    Article  CAS  PubMed  Google Scholar 

  • Elliott GF (1964a) Electron microscope studies of the structure of the filaments in the opaque adductor muscle of the oyster Crassostrea Angulata. J Mol Biol 10:89–104

    Article  CAS  PubMed  Google Scholar 

  • Elliott GF (1964b) X-ray diffraction studies on striated and smooth muscles. Proc R Soc Lond B Biol Sci 160:467–472

    Article  CAS  PubMed  Google Scholar 

  • Elliott GF (1967) Variations of the contractile apparatus in smooth and striated muscles: X-ray diffraction studies at rest and in contraction. J Gen Physiol 50(Suppl):171–184

    Article  PubMed Central  Google Scholar 

  • Elliott A (1979) Structure of molluscan thick filaments: a common origin for diverse appearances. J Mol Biol 132:323–340

    Article  CAS  PubMed  Google Scholar 

  • Elliott A, Bennett P (1984) Molecular organization of paramyosin in the core of molluscan thick filaments. J Mol Biol 176:477–493

    Article  CAS  PubMed  Google Scholar 

  • Elliott A, Lowy J (1970) A model for the coarse structure of paramyosin filaments. J Mol Biol 53:181–203

    Article  CAS  PubMed  Google Scholar 

  • Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Iwane AH, Yanagida T, Namba K (2010) Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467:724–728

    Article  CAS  PubMed  Google Scholar 

  • Fusi L, Huang Z, Irving M (2015) The conformation of myosin heads in relaxed skeletal muscle: implications for myosin-based regulation. Biophys J 109:783–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govada L, Carpenter L, da Fonseca PCA, Helliwell JR, Rizkallah P, Flashman E, Chayen NE, Redwood C, Squire JM (2008) Crystal structure of the C1 domain of cardiac myosin binding protein-C: implications for hypertrophic cardiomyopathy. J Mol Biol 378:387–397

    Article  CAS  PubMed  Google Scholar 

  • Granzier HL, Labeit S (2005) Titin and its associated proteins. In ‘Fibrous Proteins: Muscle & Molecular Motors’ (Ed Squire JM, Parry DAD). Adv Protein Chem 71: 89–119.

    Google Scholar 

  • Granzier HL, Labeit S (2007) Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells. Muscle Nerve 36:740–755

    Article  CAS  PubMed  Google Scholar 

  • Hanson J, Lowy J (1963) The structure of F-actin and of actin filaments isolated from muscle. J Mol Biol 6:46–60

    Article  CAS  Google Scholar 

  • Hardwicke PM, Hanson J (1971) Separation of thick and thin myofilaments. J Mol Biol 59:509–516

    Article  CAS  PubMed  Google Scholar 

  • Harford J, Squire JM (1986) “Crystalline” myosin cross-bridge array in relaxed bony fish muscle. Low-angle X-ray diffraction from plaice fin muscle and its interpretation. Biophys J 50:145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haselgrove JC (1972) X-ray evidence for a conformational change in actin-containing filaments of vertebrate striated muscle. Cold Spring Harb Symp Quant Biol 37:341–352

    Article  Google Scholar 

  • Herzberg O, James MN (1988) Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 A resolution. J Mol Biol 203:761–779

    Google Scholar 

  • Houdusse A, Szent-Gyorgyi AG, Cohen C (2000) Three conformational states of scallop myosin S1. Proc Natl Acad Sci 97:11238–11243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes KC, Lehman W (2008) Gestalt-binding of tropomyosin to actin filaments. J Muscle Res Cell Motil 29:213–219

    Article  CAS  PubMed  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    Article  CAS  PubMed  Google Scholar 

  • Holmes KC, Schröder RR, Sweeney HL, Houdusse A (2004) The structure of the rigor complex and its implications for the power stroke. Philos Trans R Soc Lond Ser B Biol Sci 359:1819–1828

    Article  CAS  Google Scholar 

  • Hu Z, Taylor DW, Reedy MK, Edwards RJ, Taylor KA (2016) Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-em at 6 Å resolution. Sci Adv 2(9):e1600058

    Article  PubMed  PubMed Central  Google Scholar 

  • Hudson L, Harford JJ, Denny RC, Squire JM (1997) Myosin head configuration in relaxed fish muscle: resting state myosin heads must swing axially by up to 150 Å or turn upside down to reach rigor. J Mol Biol 273:440–455

    Article  CAS  PubMed  Google Scholar 

  • Huxley AF, Niedergerke R (1953) Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature 173:971–973

    Article  Google Scholar 

  • Huxley HE (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 7:281–308

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1365

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE (1972) Structural changes in actin- and myosin-containing filaments during contraction. Cold Spring Harb Symp Quant Biol 37:361–376

    Article  Google Scholar 

  • Huxley HE, Hanson EJ (1953) Structural basis of the cross-striations in muscle. Nature 172:530–532

    PubMed  Google Scholar 

  • Huxley HE, Brown W (1967) The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol 30:383–434

    Article  CAS  PubMed  Google Scholar 

  • Jung SK, Komatsu S, Ikebe M, Craig R (2008b) Head-head and head-tail interaction: a general mechanism for switching off myosin II activity in cells. Mol Biol Cell 19:3234–3242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung SK, Burgess SA, Billington N, Colegrave M, Patel H, Chalovich JM, Chantler PD, Knight PJ (2008a) Conservation of the regulated structure of folded myosin 2 in species separated by at least 600 million years of independent evolution. PNAS 105:6022–6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin: DNase I complex. Nature 347:37–44

    Article  CAS  PubMed  Google Scholar 

  • Kampourakis T, Yan Z, Gautel M, Sun YB, Irving M (2015) Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells. Proc Natl Acad Sci U S A 111:18763–18768

    Article  CAS  Google Scholar 

  • Kantha SS, Watabe S, Hashimoto K (1990) Comparative biochemistry of paramyosin – a review. J Food Biochem 14:61–88

    Article  CAS  Google Scholar 

  • Kensler RW, Harris SP (2008) The structure of isolated cardiac myosin thick filaments from cardiac myosin binding protein C knockout mice. Biophys J 94:1707–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kensler RW, Stewart M (1983) Frog skeletal muscle thick filaments are three-stranded. J Cell Biol 96:1797–1802

    Article  CAS  PubMed  Google Scholar 

  • Knupp C, Luther PK, Squire JM (2002) Titin organisation and the 3D architecture of the vertebrate-striated muscle I-band. J Mol Biol 322:731–739

    Article  CAS  PubMed  Google Scholar 

  • Kuhlbrandt W (2014) The resolution revolution. Science 343:1443–1444

    Article  PubMed  Google Scholar 

  • Kulikovskaya I, McClellan G, Flavigny J, Carrier L, Winegrad S (2003) Effect of MyBP-C binding to actin on contractility in heart muscle. J Gen Physiol 122:761–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunst G, Kress KR, Gruen M, Uttenweiler D, Gautel M, Fink RH (2000) Myosin binding protein C, a phosphorylation-dependent force regulator in muscle that controls the attachment of myosin heads by its interaction with myosin S2. Circ Res 86:51–58

    Article  CAS  PubMed  Google Scholar 

  • Labeit S, Ottenheijm CA, Granzier H (2011) Nebulin, a major player in muscle health and disease. FASEB J 25:822–829

    Google Scholar 

  • Landsverk ML, Epstein HF (2005) Genetic analysis of myosin II assembly and organization in model organisms. Cell Motil Life Sci 62:2270–2282

    Article  CAS  Google Scholar 

  • Lehman W, Craig R, Vibert P (1994) Ca(2+)-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 368:65–67

    Article  CAS  PubMed  Google Scholar 

  • Lehman W, Vibert P, Uman P, Craig R (1995) Steric-blocking by tropomyosin visualized in relaxed vertebrate muscle thin filaments. J Mol Biol 251:191–196

    Article  CAS  PubMed  Google Scholar 

  • Lehrer SS, Morris EP (1982) Dual effects of tropomyosin and troponin-tropomyosin on actomyosin subfragment 1 ATPase. J Biol Chem 257:8073–8080

    CAS  PubMed  Google Scholar 

  • Lehrer SS, Geeves MA (1998) The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol 277:1081–1089

    Article  CAS  PubMed  Google Scholar 

  • Levine RJC, Elfvin M, Dewey MM, Walcott B (1976) Paramyosin in invertebrate muscles II Content in relation to structure and function. J Cell Biol 71:273–279

    Article  CAS  PubMed  Google Scholar 

  • Li XE, Tobacman LS, Mun JY, Craig R, Fischer S, Lehman W (2011) Tropomyosin position on F-actin revealed by EM reconstruction and computational chemistry. Biophys J 100:1005–1013

    Article  CAS  PubMed  Google Scholar 

  • Liu JCY, Rottler J, Wang L, Zhang J, Pascoe CD, Lan B, Norris BA, Herrera AM, Paré PD, Seow CY (2013) Myosin filaments in smooth muscle cells do not have a constant length. J Physiol 591:5867–5878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liversage AD, Holmes D, Knight PJ, Tskhovrebova L, Trinick J (2001) Titin and the sarcomere symmetry paradox. J Mol Biol 305:401–409

    Article  CAS  PubMed  Google Scholar 

  • Lowey S, Slayter HS, Weeds AG, Baker H (1969) Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. J Mol Biol 42:1–29

    Article  CAS  PubMed  Google Scholar 

  • Lowy J, Hanson J (1962) Ultrastructure of invertebrate smooth muscles. Physiol Rev Suppl 5:34–47

    Google Scholar 

  • Lowy J, Poulsen FR, Vibert J (1970) Myosin filaments in vertebrate smooth muscle. Nature 225:1053–1054

    Article  CAS  PubMed  Google Scholar 

  • Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semi-automated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97

    Article  CAS  PubMed  Google Scholar 

  • Luther PK, Craig R (2011) Modulation of striated muscle contraction by binding of myosin binding protein C to actin. BioArchitecture 1:277–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Luther PK, Munro PMG, Squire JM (1981) Three-dimensional structure of the vertebrate muscle A-band III: M-region structure and myosin filament symmetry. J Mol Biol 151:703–730

    Article  CAS  PubMed  Google Scholar 

  • Luther PK, Bennett PM, Knupp C, Craig R, Padrón R, Harris SP, Patel J, Moss RL (2008) Understanding the organisation and role of myosin binding protein C in normal striated muscle by comparison with MyBP-C knockout cardiac muscle. J Mol Biol 384:60–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luther PK, Winkler H, Taylor K, Zoghbi ME, Craig R, Padrón R, Squire JM, Liu J (2011) Direct visualization of myosin-binding protein C bridging myosin and actin filaments in intact muscle. Proc Natl Acad Sci U S A 108:11423–11428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617–4624

    Article  CAS  PubMed  Google Scholar 

  • Manning EP, Tardiff JC, Schwartz SD (2011) A model of calcium activation of the cardiac thin filament. Biochemistry 50:7405–7413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maw MC, Rowe AJ (1980) Fraying of A-filaments into three subfilaments. Nature 286:412–414

    Article  CAS  PubMed  Google Scholar 

  • McLachlan AD, Stewart M (1976) The 14-fold periodicity in alpha-tropomyosin and the interaction with actin. J Mol Biol 103:271–298

    Google Scholar 

  • Menetret JF, Schroder RR, Hofmann W (1990) Cryo-electron microscopic studies of relaxed striated muscle thick filaments. J Mus Res Cell Motil 11:1–11

    Article  CAS  Google Scholar 

  • McElhinny AS, Kolmerer B, Fowler VM, Labeit S, Gregorio CC (2001) The N-terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments. J Biol Chem 276:583–592

    Article  CAS  PubMed  Google Scholar 

  • McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65:693–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millman BM, Bennett PM (1976) Structure of the cross-striated adductor muscle of the scallop. J Mol Biol 103:439–467

    Article  CAS  PubMed  Google Scholar 

  • Mok, NS. (2005) X-ray diffraction studies of defined states in fish muscle. PhD Thesis, Imperial College London.

    Google Scholar 

  • Moore PB, Huxley HE, DeRosier DJ (1970) Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol 50:279–295

    Article  CAS  PubMed  Google Scholar 

  • Morris EP, Squire JM, Fuller GW (1991) The 4-stranded helical arrangement of myosin heads on insect (Lethocerus) flight muscle thick filaments. J Struct Biol 107:237–249

    Article  Google Scholar 

  • Moss RL, Fitzsimons DP, Ralphe JC (2015) Cardiac MyBP-C regulates the rate and force of contraction in mammalian myocardium. Circ Res 116:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller SA, Häner M, Ortiz I, Aebi U, Epstein HF (2001) STEM analysis of Caenorhabditis elegans muscle thick filaments: evidence for microdifferentiated substructures. J Mol Biol 305:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Offer G, Moos C, Starr R (1973) A new protein of the thick filaments of vertebrate skeletal myofibrils. Extractions, purification and characterization. J Mol Biol 74:653–676

    Article  CAS  PubMed  Google Scholar 

  • Offer G, Knight PJ, Burgess S, Alamo L, Padron R (2000) A new model for the surface arrangement of myosin molecules in tarantula thick filaments. J Mol Biol 298:239–260

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki I (1979) Molecular arrangement of troponin-T in the thin filament. J Biochem 86:491–497

    CAS  PubMed  Google Scholar 

  • Ottenheijm CA, Buck D, de Winter JM, Ferrara C, Piroddi N, Tesi C, Jasper JR, Malik FI, Meng H, Stienen GJ, Beggs AH, Labeit S, Poggesi C, Lawlor MW, Granzier H (2013) Deleting exon 55 from the nebulin gene induces severe muscle weakness in a mouse model for nemaline myopathy. Brain 136:1718–1731

    Article  PubMed  PubMed Central  Google Scholar 

  • Otterbein LR, Graceffa P, Dominguez R (2001) The crystal structure of uncomplexed actin in the ADP state. Science 293:708–711

    Article  CAS  PubMed  Google Scholar 

  • Parry DAD (1975) Analysis of the primary sequence of alpha-tropomyosin from rabbit skeletal muscle. J Mol Biol 98:519–535

    Google Scholar 

  • Parry DAD, Squire JM (1973) Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles. J Mol Biol 75:33–55

    Article  CAS  PubMed  Google Scholar 

  • Patwardhan A, Paul D, HA AL-K, EP M (2004) A measure for the angle between projections based on the extent of correlation between corresponding central sections. J Mol Biol 344:707–724

    Article  CAS  PubMed  Google Scholar 

  • Paul DM, Patwardhan A, Squire JM, Morris EP (2004) Single particle analysis of filamentous and highly elongated macromolecular assemblies. J Struct Biol 148:236–250

    Article  CAS  PubMed  Google Scholar 

  • Paul DM, Squire JM, Morris EP (2017) Relaxed and active thin filament structures reveal a new regulatory mechanism: varying tropomyosin shifts within a regulatory unit. J Struct Biol (in press)

    Google Scholar 

  • Phillips GN Jr, Fillers JP, Cohen C (1986) Tropomyosin crystal structure and muscle regulation. J Mol Biol 192:111–131

    Article  CAS  PubMed  Google Scholar 

  • Pirani A, Xu C, Hatch V, Craig R, Tobacman LS, Lehman W (2005) Single particle analysis of relaxed and activated muscle thin filaments. J Mol Biol 346:761–772

    Article  CAS  PubMed  Google Scholar 

  • Poole KJ, Lorenz M, Evans G, Rosenbaum G, Pirani A, Craig R, Tobacman LS, Lehman W, Holmes KC (2006) A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle. J Struct Biol 155:273–284

    Article  CAS  PubMed  Google Scholar 

  • Previs MJ, Prosser BL, Mun JY, Previs SB, Gulick J, Lee K, Robbins J, Craig R, Lederer WJ, Warshaw DM (2015) Myosin-binding protein C corrects an intrinsic inhomogeneity in cardiac excitation-contraction coupling. Sci Adv 1:e1400205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajkumar G, HA AL-K, Eakins F, Knupp C, JM S (2007) The CCP13 Fibrefix program suite: semi-automated analysis of diffraction patterns from non-crystalline materials. J Appl Crystallogr 40:178–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayment I, Holden HM, Whittaker M, Yohn M, Lorenz M, KC H, RA M (1993a) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65

    Article  CAS  PubMed  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993b) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  CAS  PubMed  Google Scholar 

  • Reedy MK (1968) Ultrastructure of insect flight muscle. I. Screw sense and structural grouping in the rigor cross-bridge lattice. J Mol Biol 31:155–176

    Article  CAS  PubMed  Google Scholar 

  • Reedy MK, Leonard KR, Freeman R, Arad T (1981) Thick myofilament mass determination by electron scattering measurements with scanning transmission electron microscopy. J Muscle Res Cell Motil 2:45–64

    Article  CAS  PubMed  Google Scholar 

  • Rome E, Offer G, Pepe FA (1973) X-ray diffraction of muscle labelled with antibody to C-protein. Nat New Biol 244:152–154

    Article  CAS  PubMed  Google Scholar 

  • Shaffer JF, Kensler RW, Harris SP (2009) The myosin binding protein C motif binds to F-actin in a phosphorylation sensitive manner. J Biol Chem 284:12318–12327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoenberg CF (1969) An electron microscope study of the influence of divalent ions on myosin filament formation in chicken gizzard extracts and homogenates. Tissue Cell 1:83–96

    Article  CAS  PubMed  Google Scholar 

  • Sjostrom M, Squire JM (1977) Fine structure of the A-band in cryo-sections. The structure of the A-band of human skeletal muscle fibres from ultra-thin cryo-sections negatively stained. J Mol Biol 109:49–68

    Article  CAS  PubMed  Google Scholar 

  • Slayter HS, Lowey S (1967) Substructure of the myosin molecule as visualized by electron microscopy. Proc Natl Acad Sci U S A 58:1611–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small JV, Sobieszek A (1977) Studies on the function and composition of the 10-nm (100 Å) filaments of vertebrate smooth muscle. J Cell Sci 23:243–268

    CAS  PubMed  Google Scholar 

  • Small JV, Squire JM (1972) Structural basis of contraction in vertebrate smooth muscle. J Mol Biol 67:117–149

    Article  CAS  PubMed  Google Scholar 

  • Somlyo AP, Devine CE, Somlyo AV, Rice RV (1973) Filament organization in vertebrate smooth muscle. Philos Trans R Soc Lond Ser B Biol Sci 265:223–229

    Article  CAS  Google Scholar 

  • Squire JM (1971) General model for the structure of all myosin-containing filaments. Nature 233:457–462

    Article  CAS  PubMed  Google Scholar 

  • Squire JM (1972) General model of myosin filament structure. II. Myosin filaments and cross-bridge interactions in vertebrate striated and insect flight muscles. J Mol Biol 72:125–138

    Article  CAS  PubMed  Google Scholar 

  • Squire JM (1973) General model of myosin filament structure. III. Molecular packing arrangements in myosin filaments. J Mol Biol 77:291–323

    Article  CAS  PubMed  Google Scholar 

  • Squire JM (1975) Muscle filament structure and muscle contraction. Annu Rev Biophys Bioeng 4:137–163

    Article  CAS  PubMed  Google Scholar 

  • Squire JM (1981) The structural basis of muscular contraction. Plenum Press, New York

    Book  Google Scholar 

  • Squire JM (1986) Muscle myosin filaments: Internal structure and crossbridge organisation. Comments Mol Cell Biophys 3:155–177

    CAS  Google Scholar 

  • Squire JM (2016) Muscle contraction: sliding filament history, sarcomere dynamics and the two Huxleys. Glob Cardiol Sci Pract 11:1–23 (http://dx.doi.org/10.21542/gcsp.2016.11)

  • Squire JM, Morris EP (1998) A new look at thin filament regulation in vertebrate skeletal muscle. FASEB J 12:761–771

    CAS  PubMed  Google Scholar 

  • Squire JM, Harford JJ, Edman AC, Sjostrom M (1982) Fine structure of the A-band in cryo-sections III: crossbridge distribution and the axial structure of the human C-zone. J Mol Biol 155:467–494

    Article  CAS  PubMed  Google Scholar 

  • Squire JM, Luther PK, Knupp C (2003) Structural evidence for the interaction of C-protein (MyBP-C) with actin and sequence identification of a possible actin-binding domain. J Mol Biol 331:713–724

    Article  CAS  PubMed  Google Scholar 

  • Squire JM, AL-Khayat HA, Knupp C, Luther PK (2005) 3D Molecular architecture of muscle. In ‘Fibrous Proteins: Muscle & Molecular Motors’. Adv Protein Chem 71: 17–87.

    Google Scholar 

  • Stewart M, Kensler RW (1986) Arrangement of myosin heads in relaxed thick filaments from frog skeletal muscle. J Mol Biol 192:831–851

    Article  CAS  PubMed  Google Scholar 

  • Stewart M, Kensler RW, Levine RJ (1981) Structure of Limulus telson muscle thick filaments. J Mol Biol 153:781–790

    Article  CAS  PubMed  Google Scholar 

  • Stewart M, Kensler RW, Levine RJ (1985) Three-dimensional reconstruction of thick filaments from Limulus and scorpion muscle. J Cell Biol 101:402–411

    Article  CAS  PubMed  Google Scholar 

  • Straussman R, Squire JM, Ben-Yaakov A, Ravid S (2005) Molecular packing of myosin II rods relates directly to the linear sequence of charged amino acids. J Mol Biol 353:613–628

    Article  CAS  PubMed  Google Scholar 

  • Szent-Györgyi AG, Cohen C, Kendrick-Jones J (1971) Paramyosin and the filaments of molluscan “catch” muscles. II. Native filaments: isolation and characterization. J Mol Biol 56:239–258

    Article  PubMed  Google Scholar 

  • Takeda S, Yamashita A, Maeda K, Maeda Y (2003) Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form. Nature 424:35–41

    Article  CAS  PubMed  Google Scholar 

  • Topf M, Lasker K, Webb B, Wolfson H, Chiu W, Sali A (2008) Protein structure fitting and refinement guided by cryo-EM density. Structure 6:295–307

    Article  CAS  Google Scholar 

  • Trinick JA (1981) End-filaments: a new structural element of vertebrate skeletal muscle thick filaments. J Mol Biol 151:309–314

    Article  CAS  PubMed  Google Scholar 

  • Tskhovrebova L, Trinick JA (2003) Titin: properties and family relationships. Nat Rev Mol Cell Biol 4:679–689

    Article  CAS  PubMed  Google Scholar 

  • Tskhovrebova L, Trinick JA (2012) Making muscle elastic: the structural basis of myomesin stretching. PLoS Biol 10(2):e1001264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dijk SJ, Witt CC, Harris SP (2015) Normal cardiac contraction in mice lacking the proline-alanine rich region and C1 domain of cardiac myosin binding protein C. J Mol Cell Cardiol 88:124–132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116:17–24

    Article  PubMed  Google Scholar 

  • van Heel M, Gowen B, Matadeen R, Orlova EV, Finn R, Pape T, Cohen D, Stark H, Schmidt R, Schatz M, Patwardhan A (2000) Single-particle electron cryo-microscopy: towards atomic resolution. Q Rev Biophys 33:307–369

    Article  PubMed  Google Scholar 

  • Vibert PJ (1992) Helical reconstruction of frozen-hydrated scallop myosin filaments. J Mol Biol 223:661–671

    Article  CAS  PubMed  Google Scholar 

  • Vibert PJ, Craig R (1983) Electron microscopy and image analysis of filaments from scallop striated muscle. J Mol Biol 165:303–320

    Article  CAS  PubMed  Google Scholar 

  • Vibert PJ, Haselgrove JC, Lowy J, Poulsen FR (1972) Structural changes in actin-containing filaments of muscle. J Mol Biol 236:182–183

    CAS  Google Scholar 

  • Vibert P, Craig R, Lehman W (1997) Steric-model for activation of muscle thin filaments. J Mol Biol 266:8–14

    Article  CAS  PubMed  Google Scholar 

  • Vinogradova MV, Stone DB, Malanina GG, Karatzaferi C, Cooke R, Mendelson RA, Fletterick RJ (2005) Ca(2+)-regulated structural changes in troponin. Proc Natl Acad Sci U S A 102:5038–5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von der Ecken J, Muller M, Lehman W, Manstein DJ, Penczek PA, Raunser S (2015) Structure of the F-actin-tropomyosin complex. Nature 519:114–117

    Article  PubMed  CAS  Google Scholar 

  • Walcott S, Docken S, Harris SP (2015) Effects of cardiac myosin binding protein-C on actin motility are explained with a drag-activation-competition model. Biophys J 108:10–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendt T, Taylor D, Trybus KM, Taylor K (2001) Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. Proc Natl Acad Sci U S A 98:165–4366

    Article  Google Scholar 

  • Winegrad S (2003) Myosin binding protein C (MyBP-C) in cardiac muscle and contractility. Adv Exp Med Biol 538:31–40

    Article  CAS  PubMed  Google Scholar 

  • Whitten AE, Jeffries CM, Harris SP, Trewhella J (2008) Cardiac myosin-binding protein C decorates F-actin: implications for cardiac function. Proc Natl Acad Sci U S A 105:18360–18365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodhead JL, Craig R (2015) Through thick and thin: interfilament communication in muscle. Biophys J 109:665–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodhead JL, Zhao FQ, Craig R, Egelman EH, Alamo L, Padrón R (2005) Atomic model of a myosin filament in the relaxed state. Nature 436:1195–1199

    Article  CAS  PubMed  Google Scholar 

  • Woodhead JL, Zhao FQ, Craig R (2013) Structural basis of the relaxed state of a Ca2+-regulated myosin filament and its evolutionary implications. Proc Natl Acad Sci U S A 110:8561–8566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wray JS (1979) Structure of the backbone in myosin filaments of muscle. Nature 277:37–40

    Article  CAS  PubMed  Google Scholar 

  • Wray JS, Vibert PJ, Cohen C (1974) Cross-bridge arrangements in Limulus muscle. J Mol Biol 88:343–348

    Article  CAS  PubMed  Google Scholar 

  • Xu J-Q, Harder BA, Uman P, Craig R (1996) Myosin filament structure in vertebrate smooth muscle. J Cell Biol 134:53–66

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Craig R, Tobacman L, Horowitz R, Lehman W (1999) Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy. Biophys J 77:985–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao F-Q, Craig R, Woodhead JL (2009) Head–head interaction characterizes the relaxed state of Limulus muscle myosin filaments. J Mol Biol 385:423–431

    Article  CAS  PubMed  Google Scholar 

  • Zoghbi ME, Woodhead JL, Moss RL, Craig R (2008) Three-dimensional structure of vertebrate cardiac muscle myosin filaments. Proc Natl Acad Sci U S A 105:2386–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Much of our work reported here has been funded by the British Heart Foundation, with earlier work supported by the UK Medical Research Council and the Wellcome Trust. We are indebted to all these funding agencies. JMS and DP are currently funded on the BHF Fellowship grant (FS/14/18/3071). EM is funded by Cancer Research UK (grant C12209/A16749). We are indebted to Dr. John Wray for helpful comments about crustacean myosin filaments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Squire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Squire, J.M., Paul, D.M., Morris, E.P. (2017). Myosin and Actin Filaments in Muscle: Structures and Interactions. In: Parry, D., Squire, J. (eds) Fibrous Proteins: Structures and Mechanisms. Subcellular Biochemistry, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-49674-0_11

Download citation

Publish with us

Policies and ethics