Skip to main content

Thinking Local but Acting Global? The Interplay Between Local and Global Internalization of Externalities

  • Chapter
  • First Online:
The Theory of Externalities and Public Goods

Abstract

The paper analyzes the implications of local and global pollution when two types of abatement activities can be undertaken. One type reduces solely local pollution (e.g., use of particulate matter filters) while the other mitigates global pollution as well (e.g., application of fuel saving technologies). In the framework of a 2-country endogenous growth model, the implications of different assumptions about the degree to which global externalities are internalised are analysed. Subsequently, we derive policy rules adapted to the different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is of course an approximation which seems, however, justifiable when comparing the degradation rates of, e.g., SO2 induced pollution to CO2.

  2. 2.

    Exponents(i)i = 1, 2, 3, 4 refer to the respective scenarios for comparison purposes.

  3. 3.

    Please note that this unambiguous result is due to the fact that damages have a direct negative effect on production and not, for example, on utility in our model.

  4. 4.

    This case represents the majority of empirical estimates of intertemporal substitution elasticities, see e.g. Havránek (2015).

  5. 5.

    Alternatively, we could also consider all other combinations of internalization scenarios between the two countries, for example, the case in which one country internalizes only domestic externalities from P G while the other internalizes the global externality perfectly. As, however, the basic implications remain the same, we focus on the above described combination of scenarios.

  6. 6.

    Alternatively, we could assume that country h does consider international spill-overs (in which case it would maximize the Hamiltonian of Sect. 3.3). Yet—comparable to the results of Scenarios 2 and 3 presented previously—no additional qualitative effects would arise as only the magnitude of the effects would change.

References

  • Andreoni, J. (1989). Giving with impure altruism: Applications to charity and Ricardian equivalence. Journal of Political Economy, 97, 1447–1458.

    Article  Google Scholar 

  • Auld, D. A. L., & Eden, L. (1990). Public characteristics of non-public goods. Public Finance, 3, 378–391.

    Google Scholar 

  • Bahn, O., & Leach, A. (2008). The secondary benefits of climate change mitigation: An overlapping generations approach. Computational Management Science, 5, 233–257.

    Article  Google Scholar 

  • Cornes, R. (2016). Aggregative environmental games. Environmental and Resource Economics, 63, 339–365.

    Article  Google Scholar 

  • Cornes, R. C., & Sandler, T. (1984). Easy riders, joint production, and public goods. Economic Journal, 94, 580–598.

    Google Scholar 

  • Cornes, R. C., & Sandler, T. (1994). The comparative static properties of the impure public good model. Journal of Public Economics, 54, 403–421.

    Article  Google Scholar 

  • Finus, M., & Rübbelke, D. T. G. (2013). Public good provision and ancillary benefits: The case of climate agreements. Environmental and Resource Economics, 56, 211–226.

    Article  Google Scholar 

  • Gielen, D., & Chen, C. (2001). The CO2 emission reduction benefits of Chinese energy policies and environmental policies: A case study for Shanghai, period 1995–2020. Ecological Economics, 39, 257–270.

    Article  Google Scholar 

  • Gorman, W. M. (1980). A possible procedure for analysing quality differentials in the egg market. The Review of Economic Studies, 47, 843–856.

    Article  Google Scholar 

  • Grimaud, A., & Rougé, L. (2003). Non-renewable resources and growth with vertical innovations: Optimum, equilibrium and economic policies. Journal of Environmental Economics and Management, 45, 433–453.

    Article  Google Scholar 

  • Havránek, T. (2015). Measuring intertemporal substitution: The importance of method choice and selective reporting. Journal of the European Economic Association, 13, 1180–1204.

    Article  Google Scholar 

  • IPCC. (1996). Climate change 1995 - Economic and social dimensions of climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. (2001). Climate change 2001 - Mitigation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kotchen, M. J. (2005). Impure public goods and the comparative statics of environmentally friendly consumption. Journal of Environmental Economics and Management, 49, 281–300.

    Article  Google Scholar 

  • Kotchen, M. J. (2006). Green markets and private provision of public goods. Journal of Political Economy, 114, 816–834.

    Article  Google Scholar 

  • Lancaster, K. J. (1966). A new approach to consumer theory. Journal of Political Economy, 74, 132–157.

    Article  Google Scholar 

  • Lancaster, K. J. (1971). Consumer demand: A new approach. New York: Columbia University Press.

    Google Scholar 

  • Li, J. C. (2006). A multi-period analysis of a carbon tax including local health feedback: An application to Thailand. Environment and Development Economics, 11, 317–342.

    Article  Google Scholar 

  • Morgenstern, R. D. (1991). Towards a comprehensive approach to global climate change mitigation. The American Economic Review, 81, 140–145.

    Google Scholar 

  • Pearce, D. (1992). Secondary Benefits of Greenhouse Gas Control. CSERGE Working Paper 92-12, London.

    Google Scholar 

  • Pearce, D. (2000). Policy framework for the ancillary benefits of climate change policies. In Ancillary benefits and costs of greenhouse gas mitigation (pp. 517–560). Paris: OECD.

    Google Scholar 

  • Pittel, K., & Bretschger, L. (2009). The Implications of Heterogeneous Resource Intensities on Technical Change and Growth. CER-ETH Working-Paper 09/120, ETH Zürich.

    Google Scholar 

  • Pittel, K., & Rübbelke, D. T. G. (2006). What directs a terrorist? Defence and Peace Economics, 17, 311–328.

    Article  Google Scholar 

  • Pittel, K., & Rübbelke, D. T. G. (2008). Climate policy and ancillary benefits. A survey and integration into the modelling of international negotiations on climate change. Ecological Economics, 68, 210–220.

    Article  Google Scholar 

  • Plambeck, E. L., Hope, C., & Anderson, J. (1997). The Page 95 Model: Integrating the science and economics of global warming. Energy Economics, 19, 77–101.

    Article  Google Scholar 

  • Posnett, J., & Sandler, T. (1986). Joint supply and the finance of charitable activity. Public Finance Quarterly, 14, 209–222.

    Article  Google Scholar 

  • Pugliese, T., & Wagner, J. (2011). Competing impure public goods and the sustainability of the theater arts. Economics Bulletin, 31, 1295–1303.

    Google Scholar 

  • Rebelo, S. T. (1991). Long-run policy analysis and long-run growth. Journal of Political Economy, 99, 500–521.

    Article  Google Scholar 

  • Rive, N., & Rübbelke, D. T. G. (2010). International environmental policy and poverty alleviation. Review of World Economics, 146, 515–543.

    Article  Google Scholar 

  • Rübbelke, D. T. G. (2002). International climate policy to combat global warming - An analysis of the ancillary benefits of reducing carbon emissions. New horizons in environmental economics. Cheltenham, UK; Northampton, MA: Edward Elgar.

    Google Scholar 

  • Rübbelke, D. T. G. (2003). An analysis of differing abatement incentives. Resource and Energy Economics, 25, 269–295.

    Article  Google Scholar 

  • Rübbelke, D. T. G. (2005). Differing motivations for terrorism. Defence and Peace Economics, 16, 19–27.

    Article  Google Scholar 

  • Sandler, T. (1996). A game-theoretic analysis of carbon emissions. In R. D. Congleton (Ed.), The political economy of environmental protection - Analysis and evidence (pp. 251–272). Ann Arbor: The University of Michigan Press.

    Google Scholar 

  • Sandler, T., & Hartley, K. (2001). Economics of alliances: The lessons for collective action. Journal of Economic Literature, 39, 869–896.

    Article  Google Scholar 

  • Sandler, T., & Murdoch, J. C. (1990). Nash-Cournot or Lindahl behavior? An empirical test for the NATO allies. Quarterly Journal of Economics, 105, 875–894.

    Article  Google Scholar 

  • Schou, P. (2000). Polluting non-renewable resources and growth. Environmental and Resource Economics, 16, 211–227.

    Article  Google Scholar 

  • Schou, P. (2002). When environmental policy is superfluous: Growth and polluting resources. Scandinavian Journal of Economics, 104, 605–620.

    Article  Google Scholar 

  • Smulders, S., & Gradus, R. (1996). Pollution abatement and long-term growth. European Journal of Political Economy, 12, 505–532.

    Article  Google Scholar 

  • Vicary, S. (1997). Joint production and the private provision of public goods. Journal of Public Economics, 63, 429–445.

    Article  Google Scholar 

  • Withagen, C. (1995). Pollution, abatement and balanced growth. Environmental and Resource Economics, 5, 1–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Pittel .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Scenario 2: Derivation of K A i and g C i Along the BGP

From the FOCs for A L G i and K i, (20) and (21), we get

$$\displaystyle{ g_{\lambda ^{i}} = -(1-\alpha \gamma )Y _{K}^{i} + K_{ A}{^{i}}^{-1} }$$
(47)

while combining (20) and (22) gives

$$\displaystyle{ g_{\mu ^{i}} =\delta \frac{1} {S}P_{G}^{i}Y _{ K}^{i}\left (\gamma (1-\alpha )Y _{ K}^{i} - K_{ A}{^{i}}^{-1}\right )^{-1} + a. }$$
(48)

From differentiating (20) with respect to time, we get a second expression for the dynamics of \(g_{\mu ^{i}}\)

$$\displaystyle{ g_{\mu ^{i}} = g_{\lambda ^{i}} + g_{A_{LG}^{i}} - g_{K}^{i} + \frac{\gamma (1-\alpha )g_{Y }^{i} \frac{Y ^{i}} {A_{LG}^{i}} - g_{A_{LG}^{i}}} {\gamma (1-\alpha ) \frac{Y ^{i}} {A_{LG}^{i}} - 1}. }$$
(49)

Along the BGP \(g_{C^{i}} = g_{Y ^{i}} = g_{K^{i}} = g_{A_{L}^{i}} = g_{A_{LG}^{i}}\) again has to hold, such that we get from (49) that along the BGP \(g_{\mu ^{i}} = g_{\lambda ^{i}} + g_{K^{i}}\). Using also

$$\displaystyle{ g_{K^{i}} = (1-\alpha \gamma )Y _{K}^{i} - C_{ K}^{i} - K_{ A}^{i^{-1} } }$$
(50)

from (5) where we employed (9), we get

$$\displaystyle{ g_{\mu ^{i}} = -C_{K}^{i} }$$
(51)

and from equating (48) and (51)

$$\displaystyle{ -(C_{K}^{i} + a) \frac{S} {\delta P_{G}^{i}} = \left (\gamma (1-\alpha ) - (K_{A}^{i}Y _{ K}^{i})^{-1}\right )^{-1}. }$$
(52)

Using (26) gives

$$\displaystyle{ K_{A}^{i} = \left (\gamma (1-\alpha ) + \frac{\delta a} {C_{K}^{i} + a} \frac{K_{A}^{i}} {K_{A}^{i} + K_{A}^{j}}\right )^{-\frac{1-\alpha \gamma } {1-\gamma }}\left (\frac{p_{L}^{\gamma }S^{\delta }} {(\alpha \gamma )^{\alpha \gamma }} \right )^{ \frac{1} {1-\gamma }}. }$$
(53)

Finally, by employing (15) we can now derive (23), the capital-abatement ratio along the BGP.

To derive the optimal output-capital ratio rearrange (20) to get

$$\displaystyle{ Y _{K}^{i}K_{ A}^{i} = (\gamma (1-\alpha ))^{-1}\left (\frac{\mu ^{i}} {\lambda ^{i}}\left (\,p_{G} \frac{K_{A}^{i}} {A_{LG}^{i}}\right ) + 1\right ). }$$
(54)

Inserting this expression into (52) gives

$$\displaystyle{ \frac{\mu ^{i}} {\lambda ^{i}}\left (\,p_{G} \frac{K_{A}^{i}} {A_{LG}^{i}}\right ) = - \frac{\frac{1} {2} \frac{\delta a} {C_{K}^{i}+a}} {\frac{1} {2} \frac{\delta a} {C_{K}^{i}+a} +\gamma (1-\alpha )} }$$
(55)

such that Y K i can be rewritten as

$$\displaystyle{ Y _{K}^{i} = \frac{1} {K_{A}^{i}}\left [ \frac{1} {\frac{1} {2} \frac{\delta a} {C_{K}^{i}+a} +\gamma (1-\alpha )}\right ]. }$$
(56)

The BGP growth rate in Scenario 2 can be derived from (8), (20) and (21) to equal

$$\displaystyle{ g_{C}^{i} = \frac{1} {\sigma } \left ((1-\alpha \gamma )Y _{K}^{i} - (K_{ A}^{i})^{-1}-\rho \right ). }$$
(57)

Using (56) we get (25) and (27) respectively.

To show that the growth rate in Scenario 2, (27), is higher than in Scenario 1, (14), consider the following: Inserting K A i from (16) and (23) into (14) and (27) respectively shows that g C i(27) > g C i(14) holds for

$$\displaystyle{ A> 1\ \text{with}\ A = \left (1 -\frac{1} {2} \frac{1} {1-\gamma } \frac{\delta a} {C_{K}^{i} + a}\right )^{1-\gamma -\delta }\left (1 + \frac{1} {2} \frac{1} {\gamma (1-\alpha )} \frac{\delta a} {C_{K}^{i} + a}\right )^{\gamma (1-\alpha )+\delta } }$$

Remembering that 0 < δ < (1 −γ), we get

$$\displaystyle\begin{array}{rcl} \lim _{\delta \rightarrow 0}A& =& 1 {}\\ \lim _{\delta \rightarrow (1-\gamma )}A& =& \left (1 + \frac{1} {2} \frac{1-\gamma } {\gamma (1-\alpha )} \frac{\delta a} {C_{K}^{i} + a}\right )^{\gamma (1-\alpha )}> 1 {}\\ \end{array}$$

with A rising monotonously in δ for δ ∈ [0, 1 −γ]:

$$\displaystyle\begin{array}{rcl} \frac{\partial A} {\partial \delta } = \frac{A \cdot \log \left [\left (\frac{1+\frac{1} {2} \frac{1} {\gamma (1-\alpha )} \frac{\delta a} {C_{K}^{i}+a}} {1-\frac{1} {2} \frac{1} {1-\gamma } \frac{\delta a} {C_{K}^{i}+a}} \right )^{\left (\gamma (1-\alpha )-\frac{1} {2} \frac{\delta a} {C_{K}^{i}+a}\right ) \left (1-\gamma +\frac{1} {2} \frac{\delta a} {C_{K}^{i}+a}\right ) }\right ]} {\left (1 -\gamma -\frac{1} {2} \frac{1} {1-\gamma } \frac{\delta a} {C_{K}^{i}+a}\right )\left (\gamma (1-\alpha ) + \frac{1} {2} \frac{\delta a} {C_{K}^{i}+a}\right )}> 0.& & {}\\ \end{array}$$

As A > 1 holds for 0 < δ < 1 −γ, internalization of the global externality raises the growth rate (i.e. g C i(27) > g C i(14)).

1.2 Reaction of C K i to an Increasing Degree of Internalization of Global Damages

To derive the effect an increasing degree of internalization of the global externality has in the symmetric scenarios, consider the following slightly more general version of (30)

$$\displaystyle{ K_{A}^{i} = \left (\gamma (1-\alpha ) + \Delta \frac{\delta a} {C_{K}^{i} + a}\right )^{- \frac{1-\alpha \gamma } {1-\gamma -\delta }}\left (\frac{p_{L}^{\gamma }\left (\frac{2p_{G}} {a} \right )^{\delta }} {(\alpha \gamma )^{\alpha \gamma }} \right )^{ \frac{1} {1-\gamma -\delta }} }$$
(58)

where \(0 <\Delta <1\) represents the degree of symmetric internalization of the global damages (recall that for Scenario 2, \(\Delta = \frac{1} {2}\), while for Scenario 3, \(\Delta = 1\), holds).

Inserting (58) into (26) gives

$$\displaystyle{ Y _{K}^{i} = \left (\gamma (1-\alpha ) + \Delta \frac{\delta a} {C_{K}^{i} + a}\right )^{\frac{(1-\alpha )\gamma +\delta } {1-\gamma -\delta } }\left (\frac{p_{L}^{\gamma }\left (\frac{2p_{G}} {a} \right )^{\delta }} {(\alpha \gamma )^{\alpha \gamma }} \right )^{- \frac{1} {1-\gamma -\delta }}. }$$
(59)

From equating

$$\displaystyle{ g_{C}^{i} = \frac{1} {\sigma } \left (\left (1 -\gamma -\Delta \frac{\delta a} {C_{K}^{i} + a}\right )Y _{K}^{i}-\rho \right ) }$$
(60)

which represents the BGP growth rate (31) for a degree of internalization of \(\Delta\), to (50) under consideration of \(g_{C^{i}} = g_{K^{i}}\), we get C K i as a function of parameters only after inserting (56) and (59), where \(\frac{1} {2}\) in (56) was substituted by \(\frac{1} {\Delta }\):

$$\displaystyle{ C_{K}^{i} = \frac{\rho } {\sigma } + \frac{\sigma -1} {\sigma } \left (1-\gamma -\Delta \frac{\delta a} {C_{K}^{i} + a}\right )\left (\gamma (1-\alpha ) + \Delta \frac{\delta a} {C_{K}^{i} + a}\right )^{\frac{\gamma (1-\alpha )+\delta } {1-\gamma -\delta } }\Omega }$$
(61)

with \(\Omega = \left (\,p_{L}^{\gamma }\left (\frac{2p_{G}} {a} \right )^{\delta }(\alpha \gamma )^{-\alpha \gamma }\right )^{- \frac{1} {1-\gamma -\delta }}\).

The reaction of the consumption-capital ratio to a marginal increase in the degree of internalization is then given by

$$\displaystyle{ \frac{\partial LHS} {\partial C_{K}^{i}} \,dC_{K}^{i} = \frac{\partial RHS} {\partial C_{K}^{i}} \,dC_{K}^{i} + \frac{\partial RHS} {\partial \Delta } \,d\Delta. }$$
(62)

As \(\frac{\partial LHS} {\partial C_{K}^{i}} = 1\), we get

$$\displaystyle{ \frac{dC_{K}^{i}} {d\Delta } = \frac{\partial RHS} {\partial \Delta } \left (1 -\frac{\partial RHS} {\partial C_{K}^{i}} \right )^{-1} }$$
(63)

where

$$\displaystyle\begin{array}{rcl} \frac{\partial RHS} {\partial C_{K}^{i}} & =& -\frac{\sigma -1} {\sigma } \left [1 - \Delta \frac{a} {C_{K}^{i} + a}\right ]\Theta {}\end{array}$$
(64)
$$\displaystyle\begin{array}{rcl} \frac{\partial RHS} {\partial \Delta } & =& -\frac{C_{K}^{i} + a} {\Delta } \frac{\partial RHS} {\partial C_{K}^{i}}{}\end{array}$$
(65)

with \(\Theta = \frac{(1-\alpha \gamma )\delta } {1-\gamma -\delta }\,\Omega \left (\gamma (1-\alpha ) + \Delta \frac{\delta a} {C_{K}+a}\right )^{\frac{\gamma (1-\alpha )+\delta } {1-\gamma -\delta } -1}\left (\Delta \frac{\delta a} {(C_{K}+a)^{2}} \right )> 0\). Collecting terms we get

$$\displaystyle{ \frac{dC_{K}^{i}} {d\Delta } = \frac{C_{K}^{i} + a} {\Delta } \frac{\frac{\sigma -1} {\sigma } \left [1 - \Delta \frac{a} {C_{K}^{i}+a}\right ]\Theta } {1 + \frac{\sigma -1} {\sigma } \left [1 - \Delta \frac{a} {C_{K}^{i}+a}\right ]\Theta }. }$$
(66)

The sign of (66) clearly depends on \(\sigma \gtrless 1\): For σ > 1, we get an unambiguous increase in C K i for a marginal increase in \(\Delta\). For σ < 1, C K i can increase or decrease depending on the parametrization of the model.

To see whether \(\Delta \frac{\delta a} {C_{K}^{i}(\Delta )+a}\) could decrease following an increase in \(\Delta\), consider that in this case

$$\displaystyle{ \frac{d \frac{\Delta \delta a} {C_{K}^{i}+a}} {d\Delta } <0\qquad \Leftrightarrow \qquad \frac{dC_{K}^{i}} {d\Delta }> \frac{(C_{K}^{i} + a)} {\Delta } }$$
(67)

would have to hold. Comparison with (66) shows that this condition would only be met for \(1 + \frac{\sigma -1} {\sigma } \left [1 - \Delta \frac{a} {C_{K}^{i}+a}\right ]\Omega <0\). In this case, however, \(\frac{\partial RHS} {\partial C_{K}^{i}}> 1\) in (61) such that (61) would have no interior solution for C K i in the long-run equilibrium.

Having determined that \(\Delta \frac{\delta a} {C_{K}^{i}(\Delta )+a}\) is unambiguously higher for a higher degree of internalization, it follows directly from (58) that the capital-abatement ratio is lower. From (59) and (60) we get for the reaction of the growth rate to an increase in the degree of internalization:

$$\displaystyle{ \frac{dg_{C}^{i}} {d\Delta } = \frac{\Theta } {\sigma (1-\alpha \gamma )}\left (\Delta \frac{\delta a} {(C_{K}^{i} + a)^{2}}\right )^{-1}\left [1 - \Delta \frac{a} {C_{K}^{i} + a}\right ]\frac{d\left (\Delta \frac{\delta a} {C_{K}^{i}(\Delta )+a}\right )} {d\Delta }> 0. }$$
(68)

For local pollution, \(P_{L}^{i} = p_{L}\left ( \frac{K^{i}} {A_{L}^{i}}\right )^{\alpha }(K_{A}^{i})^{1-\alpha }\) we get from the FOC for A L i, (9),

$$\displaystyle{ \frac{d \frac{K^{i}} {A_{L}^{i}}} {d\Delta } = -\frac{(Y _{K}^{i})^{-2}} {\alpha \gamma } \frac{\partial Y _{K}^{i}} {\partial K_{A}^{i}} \frac{dK_{A}^{i}} {d\left (\Delta \frac{\delta a} {C_{K}^{i}(\Delta )+a}\right )}\left [1 - \Delta \frac{a} {C_{K}^{i} + a}\right ]\frac{d\left (\Delta \frac{\delta a} {C_{K}^{i}(\Delta )+a}\right )} {d\Delta } <0. }$$
(69)

As K A i and \(\frac{K^{i}} {A_{L}^{i}}\) both decrease, local pollution falls unambiguously.

1.3 Scenario 2: Derivation of Optimal τ G

To determine the optimal τ G , first insert τ L from (41) into (43) which gives

$$\displaystyle{ \tau _{G} \frac{P_{G}} {A_{LG}} = 1 - (1-\alpha )\gamma Y _{K}K_{A}. }$$
(70)

From (20) we know that \(1 - (1-\alpha )\gamma Y _{K}K_{A} = -\frac{\mu }{\lambda } \frac{P_{G}} {A_{LG}}\) has to hold in the optimum. Equating the two expressions shows that the tax rate has to equal the negative ratio of the shadow prices of stock pollution and capital,

$$\displaystyle{ \tau _{G} = -\frac{\mu } {\lambda }. }$$
(71)

Equating the two expressions for g μ from (22) and (50) gives

$$\displaystyle{ -C_{K} = \frac{\delta } {S}\left (\frac{\mu } {\lambda } \frac{1} {A_{LG}}\right )^{-1}Y _{ K}K_{A} + a }$$
(72)

which reads after some rearranging

$$\displaystyle{ -\frac{\mu } {\lambda } =\delta \frac{Y } {S} \frac{1} {C_{K} + a}. }$$
(73)

Combining (71) and (73) finally gives the optimal tax rate τ G in (45).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pittel, K., Rübbelke, D. (2017). Thinking Local but Acting Global? The Interplay Between Local and Global Internalization of Externalities. In: Buchholz, W., Rübbelke, D. (eds) The Theory of Externalities and Public Goods. Springer, Cham. https://doi.org/10.1007/978-3-319-49442-5_14

Download citation

Publish with us

Policies and ethics