Skip to main content

Advertisement

Log in

International environmental policy and poverty alleviation

  • Original Paper
  • Published:
Review of World Economics Aims and scope Submit manuscript

Abstract

We investigate how alternative national and international policies and circumstances impact the Clean Development Mechanism’s (CDM) contribution to sustainable development and the pursuit of poverty eradication goals in developing countries. In particular, we focus on the importance of technology-specific versus technology-neutral environmental regulations in the project host regions. We also consider alternative CDM benefit-sharing arrangements between the host and client regions. An analytical impure-public-good model is developed which considers CDM projects as a conditional transfer exerting price and income effects. These, in turn, induce changes in the use of environmental technologies, and with it global and local environmental protection levels. Aided by model simulations using empirical data for China and the European Union, we seek to assess conditions in which CDM transfers are more favourable towards improved environmental protection and welfare in developing regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A review of the literature concerning the CDM’s contribution to sustainable development is provided by Holm Olsen (2007).

  2. China’s market share of CDM supply was 84% in 2008 (World Bank 2009: 33–34).

  3. Sagar (2005) points out that climate policy may contribute immense social-economic benefits to the world’s poor, while Campbell-Lendrum and Corvalán (2007) stress the implications of climate policy for both, environmental health and equity.

  4. Income transfers are called neutral if they do neither affect the total public good provision nor the individual agents’ consumption of private goods. Prior to Warr (1982, 1983), the neutrality result had already been noticed by Becker (1974).

  5. Althammer and Buchholz (1993) illustrate such a paradoxical outcome in a graphical presentation.

  6. A similar approach has been employed, e.g., by Löschel and Rübbelke (2009) in their analysis of technological interdependencies between different environmental protection activities in Germany.

  7. European Union plus Norway, Iceland, Liechtenstein, and Switzerland.

  8. See its use, for example, by Dixit and Stiglitz (1977).

  9. This is taken from www.carbonpositive.net, although prices have fluctuated drastically over 2008–2009.

  10. Assuming all Eastern European hot air is allowed.

  11. The same level is also assumed for the Kyoto Protocol period by Neuhoff et al. (2006).

  12. At the time of writing, this paper was in preparation, and the value of α d changed slightly in the final revision of the paper. This change was not reflected in our calculations.

  13. Of course, such high subsidy rates are hypothetical; it is up to the industrialized region’s optimization process to decide on what are acceptable and reasonable levels of s.

References

  • Aaheim, H. A., & Rive, N. (2005). A model for global responses to anthropogenic changes in the environment (GRACE). CICERO Report 2005:05, Oslo.

  • Althammer, W., & Buchholz, W. (1993). Lindahl-equilibria as the outcome of a non-cooperative game. European Journal of Political Economy, 9(3), 399–405.

    Article  Google Scholar 

  • Amann, M., Bertok, I., Borken, J., Chambers, A., Cofala, J., Dentener, F., et al. (2008). GAINS-Asia: A tool to combat air pollution and climate change simultaneously (Methodology). Laxenburg: IIASA.

    Google Scholar 

  • Andreoni, J. (1986). Essays on private giving to public goods. UMI (Michigan).

  • Andreoni, J. (1989). Giving with impure altruism: Applications to charity and Ricardian equivalence. Journal of Political Economy, 97(6), 1447–1458.

    Article  Google Scholar 

  • Andreoni, J. (1990). Impure altruism and donations to public goods: A theory of warm-glow giving. Economic Journal, 100(401), 464–477.

    Article  Google Scholar 

  • Aunan, K., Fang, J., Vennemo, H., Oye, K., & Seip, H. M. (2004). Co-benefits of climate policy lessons learned from a study in Shanxi, China. Energy Policy, 32(4), 567–581.

    Article  Google Scholar 

  • Barrett, S. (2008). Climate treaties and the imperative of enforcement. Oxford Review of Economic Policy, 24(2), 239–258.

    Article  Google Scholar 

  • Becker, G. S. (1974). A theory of social interactions. Journal of Political Economy, 82(6), 1063–1093.

    Article  Google Scholar 

  • Bergstrom, T. (1989). Puzzles—Love and spaghetti, the opportunity cost of virtue. Journal of Economic Perspectives, 3, 165–173.

    Google Scholar 

  • Bergstrom, T. C., Blume, L., & Varian, H. (1986). On the private provision of public goods. Journal of Public Economics, 29(1), 25–49.

    Article  Google Scholar 

  • Boadway, R., Pestieau, P., & Wildasin, D. (1989). Tax-transfer policies and the voluntary provision of public goods. Journal of Public Economics, 39(2), 157–176.

    Article  Google Scholar 

  • Buchholz, W., & Konrad, K. A. (1995). Strategic transfers and private provision of public goods. Journal of Public Economics, 57(3), 489–505.

    Article  Google Scholar 

  • Bussolo, M., & O’Connor, D. (2001). Clearing the air in India: The economics of climate policy with ancillary benefits (Working Paper No. 182). Paris: OECD Development Centre.

  • Campbell-Lendrum, D., & Corvalán, C. (2007). Climate change and developing-country cities: Implications for environmental health and equity. Journal of Urban Health: Bulletin of the New York Academy of Medicine, 84(1), 109–117.

    Google Scholar 

  • China Daily. (2006). China sets new targets in five-year plan. Available online: http://www.chinadaily.com.cn/bizchina/2006-03/07/content_565019.htm.

  • China Daily. (2007). Hu urges ‘common but differentiated responsibilities’. Available online: http://www.chinadaily.com.cn/china/2007-06/08/content_889664.htm.

  • Conference of the Parties serving as the meeting of the Parties to the Kyoto Protocol. (2008). Report of the conference of the parties serving as the meeting of the Parties to the Kyoto Protocol on its third session, held in Bali from 3 to 15 December 2007, FCCC/KP/CMP/2007/9/Add.1.

  • Cornes, R. C., & Sandler, T. (1984). Easy riders, joint production, and public goods. Economic Journal, 94(375), 580–598.

    Article  Google Scholar 

  • Cornes, R. C., & Sandler, T. (1994). The comparative static properties of the impure public good model. Journal of Public Economics, 54(3), 403–421.

    Article  Google Scholar 

  • Dixit, A. K., & Stiglitz, J. E. (1977). Monopolistic competition and optimum product diversity. American Economic Review, 67(3), 297–308.

    Google Scholar 

  • Dutschke, M., & Michaelowa, A. (2003). Development aid and the CDMHow to interpret “Financial Additionality” (HWWA Discussion Paper 228). Hamburg: Hamburg Institute of International Economics.

  • European Council. (2001). Directive 2001/81/EC of the European Parliament and of the Council of 23 October 2001 on national emission ceilings for certain atmospheric pollutants.

  • European Council. (2004). Directive 2004/101/EC amending Directive 2003/87/EC establishing a scheme for greenhouse gas emission allowance trading within the Community, in respect of the Kyoto Protocol’s project mechanisms.

  • Fenhann, J. (2009). CDM pipeline overview. Risø: UNEP.

    Google Scholar 

  • Gielen, D., & Chen, C. (2001). The CO2 emission reduction benefits of Chinese energy policies and environmental policies: A case study for Shanghai, period 1995–2020. Ecological Economics, 39(2), 257–270.

    Article  Google Scholar 

  • Hepburn, C., & Stern, N. (2008). A new global deal on climate change. Oxford Review of Economic Policy, 24(2), 259–279.

    Article  Google Scholar 

  • Holm Olsen, K. (2007). The clean development mechanism’s contribution to sustainable development: A review of the literature. Climatic Change, 84(1), 59–73.

    Article  Google Scholar 

  • HTAP (2007). Hemispheric transport of air pollution, 2007. Task Force on Hemispheric Transport of Air Pollution, Air Pollution Studies No. 16. Economic Commission for Europe. ECE/EB.AIR/94, United Nations. New York and Geneva. Available online: http://www.htap.org/general/overview.htm.

  • Ihori, T. (1992). Impure public goods and transfers in a three-agent model. Journal of Public Economics, 48(3), 385–401.

    Article  Google Scholar 

  • Ihori, T. (1996). International public goods and contribution productivity differentials. Journal of Public Economics, 61(1), 139–154.

    Article  Google Scholar 

  • Löschel, A., & Rübbelke, D. T. G. (2009). Impure public goods and technological interdependencies. Journal of Economic Studies, 36(6), 596–615.

    Article  Google Scholar 

  • Neuhoff, K., Ferrario, F., Grubb, M., Gabel, E., & Keats, K. (2006). Emission projections 2008–2012 versus National Allocation Plans II. Climate Policy, 6(4), 395–410.

    Article  Google Scholar 

  • Prins, G., & Rayner, S. (2007). Time to ditch Kyoto. Nature, 449, 973–975.

    Article  Google Scholar 

  • Rive, N., & Aunan, K. (2010). Quantifying the air quality co-benefits of the CDM in China. Environmental Science & Technology (in press).

  • Rübbelke, D. T. G. (2002). International climate policy to combat global warming—An analysis of the ancillary benefits of reducing carbon emissions. Cheltenham: Edward Elgar.

    Google Scholar 

  • Rübbelke, D. T. G. (2003). An analysis of differing abatement incentives. Resource and Energy Economics, 25(3), 269–294.

    Article  Google Scholar 

  • Rypdal, K., Berntsen, T., Fuglestvedt, J. S., Aunan, K., Torvanger, A., Stordal, F., et al. (2005). Tropospheric ozone and aerosols in climate agreements: Scientific and political challenges. Environmental Science & Policy, 8(1), 29–43.

    Article  Google Scholar 

  • Sagar, A. D. (2005). Alleviating energy poverty for the world’s poor. Energy Policy, 33(11), 1367–1372.

    Article  Google Scholar 

  • Sandler, T., & Posnett, J. (1991). The private provision of public goods: A perspective on neutrality. Public Finance Quarterly, 19(1), 22–42.

    Article  Google Scholar 

  • Stavins, R. (1998). What can we learn from the grand policy experiment? Lessons from SO2 allowance trading. Journal of Economic Perspectives, 12(3), 69–88.

    Google Scholar 

  • United Nations. (2000). United National millenium declaration. General Assembly Resolution 55/2, New York.

  • Vennemo, H., Aunan, K., Jinghua, F., Holtedahl, P., Tao, H., & Seip, H. M. (2006). Domestic environmental benefits of China’s energy-related CDM potential. Climatic Change, 75(1–2), 215–239.

    Article  Google Scholar 

  • Warr, P. G. (1982). Pareto optimal redistribution and private charity. Journal of Public Economics, 19(1), 131–138.

    Article  Google Scholar 

  • Warr, P. G. (1983). The private provision of a public good is independent of the distribution of income. Economics Letters, 13(2–3), 207–211.

    Article  Google Scholar 

  • World Bank. (2009). State and trends of the carbon market 2009. Washington D.C.

  • Yang, J., Cao, D., Ge, C., Gao, S., & Schreifels, J. (2003). Implementing SO 2 emissions trading in China. OECD Global Forum on Sustainable Development: Emissions Trading, CATEP Country Forum: Greenhouse Gas Emissions Trading and Project-based Mechanisms, Paris.

  • Zabarenko, D. (2008). G8 Alone Can’t Set World Climate Goal – White House. Reuters, London. 1-7-2008.

  • Zhang, Z. X. (2000). Estimating the size of the potential market for the Kyoto flexibility mechanisms. Weltwirtschaftliches Archiv/Review of World Economics, 136(3), 491–521.

    Article  Google Scholar 

  • Zhang, Z. X. (2006). Towards an effective implementation of CDM projects in China. Energy Policy, 34(18), 3691–3701.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Asbjørn Aaheim, Anil Markandya, Torben K. Mideksa and the participants of the joint workshop “Norwegian-Spanish Dialogue on Climate Change” of BC3 and CICERO in Bilbao in September 2009 for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk T. G. Rübbelke.

Appendix

Appendix

1.1 Supplementary information: derivations

1.1.1 Case 1: Fixed z

From the first-order conditions, we know that:

$$ p_{d}^{a} = {\frac{{\left( {1 - s} \right)p_{d}^{a} }}{{\bar{\alpha }_{d} }}} $$
(3)
$$ {\frac{{dq_{d} }}{{da_{d} }}} = - {\frac{1}{{\bar{\alpha }_{d} }}}. $$
(36)

1.1 Show that dq d /ds > 0.

Rearranging Eq. (3) and obtaining the total derivative:

$$ {\frac{{dp_{d}^{q} }}{ds}} = {\frac{{p_{d}^{a} \cdot \bar{\alpha }_{d} }}{{\left( {1 - s} \right)^{2} }}} + {\frac{{\bar{\alpha }_{d} }}{{\left( {1 - s} \right)}}}\,{\frac{{dp_{d}^{a} }}{{da_{d} }}}\,{\frac{{da_{d} }}{{dq_{d} }}}\,{\frac{{dq_{d} }}{ds}}. $$
(37)

Substituting from Eq. (36) yields:

$$ {\frac{{dp_{d}^{q} }}{ds}} = {\frac{{p_{d}^{a} \cdot \bar{\alpha }_{d} }}{{\left( {1 - s} \right)^{2} }}} - {\frac{{\bar{\alpha }_{d}^{2} }}{{\left( {1 - s} \right)}}}\,{\frac{{dp_{d}^{a} }}{{da_{d} }}}\,{\frac{{dq_{d} }}{ds}}. $$
(38)

By using the chain rule we get:

$$ {\frac{{dp_{d}^{a} }}{ds}} = {\frac{{dp_{d}^{q} }}{{dq_{d} }}}\,{\frac{{dq_{d} }}{ds}}. $$
(39)

Substituting Eq. (38) into (39) yields:

$$ {\frac{{dq_{d} }}{ds}} = {\frac{{p_{d}^{a} }\cdot \bar{\alpha }_{d}}{{\left( {1 - s} \right)^{2} }}}\left[ {{\frac{{dp_{d}^{q} }}{{dq_{d} }}} + {\frac{{\bar{\alpha }_{d}^{2} }}{{\left( {1 - s} \right)}}}\,{\frac{{dp_{d}^{a} }}{{da_{d} }}}} \right]^{ - 1}. $$
(8)

Given that q and a are normal goods, dq d /ds > 0 for all s.

1.2 Show that da d /ds < 0.

Obtaining the total derivative of (3), and substituting in from Eq. (36):

$$ {\frac{{dp_{d}^{a} }}{ds}} = - {\frac{{\left( {1 - s} \right)}}{{\bar{\alpha }_{d}^{2} }}}\,{\frac{{dp_{d}^{q} }}{{dq_{d} }}}\,{\frac{{da_{d} }}{ds}} - {\frac{{p_{d}^{q} }}{{\bar{\alpha }_{d} }}}. $$
(40)

By applying the chain rule we obtain:

$$ {\frac{{dp_{d}^{a} }}{ds}} = {\frac{{dp_{d}^{a} }}{{da_{d} }}}\,{\frac{{da_{d} }}{ds}}. $$
(41)

Substituting Eq. (40) into (41) yields:

$$ {\frac{{da_{d} }}{ds}} = {\frac{{ - p_{d}^{a} }}{{\bar{\alpha }_{d} }}}\left[ {{\frac{{dp_{d}^{a} }}{{da_{d} }}} + {\frac{{\left( {1 - s} \right)}}{{\bar{\alpha }_{d}^{2} }}}\,{\frac{{dp_{d}^{q} }}{{dq_{d} }}}} \right]^{ - 1}. $$
(9)

Given that q and a are normal goods, we then see that da d /ds < 0 for s < 1.

1.3 Show that dy d /ds > 0.

According to Eq. (4) in the main text it holds that:

$$ K_{d} = \int {p_{d}^{a} \cdot da_{d} } + \left( {1 - s} \right)\int {p_{d}^{q} \cdot dq_{d} }. $$
(42)

Taking the total derivative yields:

$$ {\frac{{dK_{d} }}{ds}} = {\frac{{da_{d} }}{ds}}p_{d}^{a} + \left( {1 - s} \right)\,{\frac{{dq_{d} }}{ds}}p_{d}^{q} - \int {p_{d}^{q} \cdot dq_{d} }. $$
(43)

Application of the chain rule and substituting from Eqs. (3) and (36) yields:

$$ {\frac{{dK_{d} }}{ds}} = - \bar{\alpha }_{d} \cdot p_{d}^{a} {\frac{{dq_{d} }}{ds}} + \bar{\alpha }_{d} \cdot p_{d}^{a} {\frac{{dq_{d} }}{ds}} - \int {p_{d}^{q} \cdot dq_{d} }. $$
(44)

Hence, we get:

$$ {\frac{{dK_{d} }}{ds}} = - \int {p_{d}^{q} \cdot dq_{d} }. $$
(10)

Thus dK d /ds < 0 for all s. Given the budget constraint, we know that dy d /ds > 0 for all s.

1.1.2 Case 2: Fixed a

Starting with Eq. (17) of the main text and rearranging yields:

$$ p_{d}^{q} = {\frac{{\bar{\alpha }_{d} \cdot MRS_{z,y} }}{{\left( {1 - s} \right)}}}. $$
(45)

Taking the total derivative yields:

$$ {\frac{{dp_{d}^{a} }}{ds}} = {\frac{{\bar{\alpha }_{d} \cdot MRS_{z,y} }}{{\left( {1 - s} \right)^{2} }}} + {\frac{{\bar{\alpha }_{d} }}{{\left( {1 - s} \right)}}}\,{\frac{{dMRS_{z,y} }}{{dq_{d} }}}\,{\frac{{dq_{d} }}{ds}}. $$
(46)

By substituting from Eq. (39) we get:

$$ {\frac{{dq_{d} }}{ds}} = {\frac{{\bar{\alpha }_{d} \cdot MRS_{z,y} }}{{\left( {1 - s} \right)^{2} }}}\left[ {{\frac{{dp_{d}^{q} }}{{dq_{d} }}} - {\frac{{\bar{\alpha }_{d} }}{{\left( {1 - s} \right)}}}\,{\frac{{dMRS_{z,y} }}{{dq_{d} }}}} \right]^{ - 1} $$
(18)

As such, we see that dq d /ds > 0 if dMRS z,y /dq d  < 0 which is the case under our assumptions for the utility function with fixed a d.

1.1.3 Case 3: Standard optimization

1.1 Show that dq/ds > 0.

Here we can adopt Eq. (18) and its derivation from the previous case, and adjusting it for variable a and q in the utility function yields:

$$ {\frac{{dq_{d} }}{ds}} = {\frac{{\bar{\alpha }_{d} \cdot MRS_{z,y} }}{{\left( {1 - s} \right)^{2} }}}\left[ {{\frac{{dp_{d}^{q} }}{{dq_{d} }}} - {\frac{{\bar{\alpha }_{d} }}{{\left( {1 - s} \right)}}}\,{\frac{{dMRS_{z,y} }}{{dz_{d} }}}\,{\frac{{dz_{d} }}{{dq_{d} }}}} \right]^{ - 1}. $$
(27)

dq d /ds > 0 if dMRS z,y /dz < 0, which is the case under our assumptions for the utility function.

1.2 Derivation of da/ds.

By taking the total derivative of (3) we obtain:

$$ {\frac{{dp_{d}^{a} }}{ds}} = {\frac{1}{{\bar{\alpha }_{d} }}}\left[ {\left( {1 - s} \right){\frac{{dp_{d}^{q} }}{{dq_{d} }}}\,{\frac{{dq_{d} }}{ds}} - p_{d}^{q} } \right]. $$
(47)

Substitution in Eq. (41) and rearranging yields:

$$ {\frac{{da_{d} }}{ds}} = {\frac{{\left( {1 - s} \right){\frac{{dp_{d}^{q} }}{{dq_{d} }}}\,{\frac{{dq_{d} }}{ds}} - p_{d}^{q} }}{{\bar{\alpha }_{d} {\frac{{dp_{d}^{a} }}{da}}}}}. $$
(29)

Thus, da d /ds < 0, if pq d  > (1 − sdpq d /dq d ·dq d /ds.

About this article

Cite this article

Rive, N., Rübbelke, D.T.G. International environmental policy and poverty alleviation. Rev World Econ 146, 515–543 (2010). https://doi.org/10.1007/s10290-010-0063-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10290-010-0063-9

Keywords

JEL Classification

Navigation