Skip to main content

Analytical Techniques to Assess Medicinal Plants Value Addition After Microbial Associations

  • Chapter
  • First Online:
Modern Tools and Techniques to Understand Microbes

Abstract

In the high-throughput era of science, technologies like high-performance liquid chromatography (HPLC) are growing in importance for their accurate and precise analysis of chemicals and drugs of diverse nature. It is used widely in the pharmaceutical, medicinal, and aromatic plant industry for the isolation and purification of phytomolecules of therapeutic and commercial interest. Due to the gradual increase in the demand for phytochemicals in food and pharmaceutical industries, the importance of process-scale HPLC as a purification tool has been increasing. The most challenging and thrilling field of recent scientific research is the in vitro production of plant secondary metabolites. Therefore, in order to supply required phytochemicals, the in vitro protocol for the establishment of plant culture and production of phytochemicals has to be carefully monitored. In this chapter, the HPLC analysis of secondary metabolite content of an important medicinal plant Aloe vera L. has been performed under unstressed and salt-stressed environment. The secondary metabolite content has also been compared upon inoculation of A. vera with a symbiotic endophytic fungus Piriformospora indica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadi DH, Kaviani B (2010) In vitro proliferation of an important medicinal plant Aloe – a method for rapid production. Aust J Crop Sci 4:216–222

    CAS  Google Scholar 

  • Abdi G, Hedayat M, Modarresi M (2013) In vitro micro propagation of Aloe vera – impacts of plant growth regulators, media and type of explants. J Biol Environ Sci 7:19–24

    Google Scholar 

  • Abrie AL, Staden JV (2001) Micro propagation of the endangered Aloe polyphylla. Plant Growth Regul 33:19–23

    Article  CAS  Google Scholar 

  • Ammar NM, Singab ANB, Ahmady SH, Anssary AA, Haggag EG, Shabban RS (2010) Phytochemical and biological studies of some polysaccharides isolated from Aloe, Tamarindus. Opuntia and citrus. J Arab Soc Med Res 5:141–152

    Google Scholar 

  • Bertoli A, Ruffoni B, Pistelli L, Pistelli L (2010) Analytical methods for the extraction and identification of secondary metabolite production in ‘in vitro’ plant cell cultures. Adv Exp Med Biol 698:250–266

    Article  CAS  PubMed  Google Scholar 

  • Binutu OA, Cordell GA (2000) Gallic acid derivatives from Mezoneuron benthamianum leaves. Pharm Biol 34:284–286

    Article  Google Scholar 

  • Cannell RJP (1998) Natural products isolation. Human Press, Totowa, pp. 165–208

    Book  Google Scholar 

  • Choi S, Chung MH (2003) A review on the relationship between Aloe vera components and their biologic effects. Semin Integr Med 1:53–62

    Article  Google Scholar 

  • Corneanu M, Corneanu G, Vekas M, Minea R (1994) In vitro organogenesis of Aloe arborescencs (Liliaceae). Rev Roum Biol 39:45–52

    Google Scholar 

  • Das A, Kamal S, Shakil NA, Sherameti I, Oelmuller R, Dua M, Tuteja N, Johri AK, Varma A (2012a) The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal Behav 7:1–10

    Article  Google Scholar 

  • Das A, Sheramati I, Varma A (2012b) Contaminated soils: physical, chemical and biological components. In: Varma A, Kothe E (eds) Bio-geo interactions in metal-contaminated soils. Springer, Heidelberg, pp 1–16

    Chapter  Google Scholar 

  • Fan XH, Cheng YY, Ye ZL, Lin RC, Qian ZZ (2006) Multiple chromatographic fingerprinting and its application to the quality control of herbal medicines. Anal Chim Acta 555:217–224

    Article  CAS  Google Scholar 

  • Fernandez MA, Saenz MT, Garcia MD (1998) Anti inflammatory activity in rats and mice of phenolic acids isolated from Scrophularia frutescens. J Pharm Pharmacol 50:1183–1186

    Article  CAS  PubMed  Google Scholar 

  • Fester T, Maier W, Strack D (1998) Accumulation of secondary compounds in barley and wheat roots in response to inoculation with arbuscular mycorrhizal fungi and co-inoculation with rhizosphere bacteria. Mycorrhiza 8:241–246

    Article  Google Scholar 

  • Foster A (2001) The quality control of herbal medicinal products. In: Sandberg F, Corrigan D (eds) Natural remedies: their origins and uses. Taylor and Francis, London, pp 11–21

    Google Scholar 

  • Gupta MM, Shanker K (2008) Process-scale high performance liquid chromatography for medicinal and aromatic plants. In: Khanda SS, Singh Khanuja SP, Longo G, Rakesh DD, Khanda SS, Singh Khanuja SP, Longo G, Rakesh DD (eds) Extraction technologies for medicinal and aromatic plants. International Center for Science and High Technology, Trieste, Italy, p 260

    Google Scholar 

  • Harman GE (2011) Multifunctional fungal plant symbiont: new tools to enhance plant growth and productivity. New Phytol 189:647–649

    Article  PubMed  Google Scholar 

  • Joseph B, Raj SJ (2010) Pharmacognostic and phytochemical properties of Aloe vera linn–an overview. Int J Pharm Sci Rev Res 4:106–110

    Google Scholar 

  • Khan NS, Ahmed A, Hadi SN (2000) Antioxidant, pro-oxidant properties of tannic acid and its binding to DNA. Chem Biol Interact 125:177–189

    Article  CAS  PubMed  Google Scholar 

  • Kispotta A, Srivastava MK, Dutta M (2012) Free radical scavenging activity of ethanolic extracts and determination of aloin from Aloe vera L. leaf extract. Int J Med Arom Plants 2:612–618

    Google Scholar 

  • Krinsky DL, Hawkins EB, Pelton R, Willis NA, Lavalle JB (2003) Natural therapeutics pocket guide, 2nd edn. Lexi-Comp, Cleveland, p. 379

    Google Scholar 

  • Kroes BH, Van den Berg AJJ, Quarles Van Offord HC, Van Dijk H, Labodie RP (1992) Anti-inflammatory activity of gallic acid. Planta Med 58:499–503

    Article  CAS  PubMed  Google Scholar 

  • Li HB, Jiang Y, Chen F (2004) Separation methods used for Scutellariabaicalensis active components. J Chromatogr B 812:277–290

    Article  CAS  Google Scholar 

  • Maier W, Peipp H, Schmidt J, Wray V, Strack D (1995) Level of a terpenoid glycoside (blumenin) and cell wall bound phenolics in some cereal mycorrhizal. Plant Physiol 109:465–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marfori EC, Malasa AB (2005) Tissue culture for the rapid clonal propagation of Aloe barbadensis Miller Philipp. Agric Sci 88:167–170

    Google Scholar 

  • Martha, W, Susan, B, Rosemary, FB, Elizabeth, SO (1983) The Merck index, 10th edn. Merc, Rathway, pp 4218, 2268, 6784, 8189

    Google Scholar 

  • Mehrotra RS (1997) Defense mechanism in plants. In: Walker JC (ed) Plant pathology. Tata-McGrew Hil, New Delhi, p 544

    Google Scholar 

  • Meyer HJ, Staden JV (1991) Rapid in vitro propagation of Aloe barbadensis Mill. Plant Cell Tissue Organ Cult 26:167–171

    Article  Google Scholar 

  • Natali L, Sanchez IC, Cavallini A (1990) In vitro culture of Aloe barbadensis Mill: micro propagation from vegetative meristems. Plant Cell Tissue Organ Cult 20:71–74

    Article  CAS  Google Scholar 

  • Pandhair V, Diviya J, Joginder S, Gosal SS (2011) Biochemical studies of Aloe vera (Aloe barbadensis Miller) gel of the field grown and micro propagated plants at different developmental stages. J Plant Biochem Biotechnol 20:283–287

    Article  CAS  Google Scholar 

  • Roy SC, Sarkar A (1991) In vitro regeneration and micro propagation of Aloe vera. Sci Hortic 47:107–114

    Article  Google Scholar 

  • Sakakibara H, Honda Y, Nakagawa S, Ashida H, Kanazawa K (2003) Simultaneous determination of all polyphenols in vegetables, fruits and teas. J Agric Food Chem 51:571–581

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Kharkwal AC, Abdin MZ, Varma A (2014a) Piriformospora indica improves micro propagation, growth and phyto chemical content of Aloe vera L. Plants. Symbiosis 64:11–23

    Article  CAS  Google Scholar 

  • Sharma P, Kharkwal AC, Kharkwal H, Abdin MZ, Varma A (2014b) A review on pharmacological properties of Aloe vera. Int J Pharm Sci Rev Res 29:31–37

    Google Scholar 

  • Tanaka N, Kobayashi H, Ishizuka N (2002) Monolithic silica columns for high efficiency chromatographic separations. J Chromatogr 965:35–49

    Article  CAS  Google Scholar 

  • Tanaka N, Kimura H, Tokuda D, Hosoya K, Ikegami T, Ishizuka N, Minakuchi H, Nakanishi K, Shintani Y, Furuno M, Cabrera K (2004) Simple and comprehensive two dimensional reversed phase HPLC using monolithic silica columns. Anal Chem 76:1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Tarro, V.E., (1993). The honest herbal: a sensible guide to the use of herbs and related remedies 3rdrd ed., Pharmaceutical Products Press, New York, pp 25–28

    Google Scholar 

  • Tsao R, Deng Z (2004) Separation procedures for naturally occurring antioxidant phytochemicals. J Chromatogr B 812:85–99

    Article  CAS  Google Scholar 

  • Varma A, Verma S, Sudha, Sahay N, Buttehorn B, Franken P (1999) Piriformospora indica, a cultivable plant growth promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varma A, Singh A, Sudha, Sahay N, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Hurek T, Blechert O, Rexer KH, Kost G, Hahn A, Hock B, Maier W, Walter M, Strack D, Kranner I (2000) Mycota IX, vol 8. Springer, New York, pp. 225–253

    Google Scholar 

  • Varma A, Singh A, Sudha S, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Hurek T, Blechert O, Rexer KH, Kost G, Hahn A, Maier W, Walter M, Strack D, Kranner I (2001) Piriformosporaindica – an axenicallyculturable mycorrhiza-like endosymbiotic fungus. In: HOCK B (ed) Mycota IX. Springer, Berlin, pp 123–150

    Google Scholar 

  • Verma S, Varma A, Rexer K, Hassel A, Kost G, Sarbhoy A, Bisen P, Butehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903

    Article  CAS  Google Scholar 

  • Vogler B, Ernst E (1999) Aloe vera: a systematic review of its clinical effectiveness. Br J Gen Pract 49:823–828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiß M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1002–1010

    Google Scholar 

  • Wynn RL (2005) Aloe vera gel: update for dentistry. Pharmacol Today: Gen Dent 1:6–9

    Google Scholar 

  • Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285:26532–26544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates A (2002) Yates garden guide. HarperCollins, Moss Vale

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to University Grant Commission, Government of India, for providing financial assistance during the course of the study. Authors are thankful to Jamia Hamdard for providing the HPLC facility.

Ajit Varma is thankful to Department of Science and Technology and Department of Biotechnology for partial financial funding and to DST-FIST for providing confocal microscope facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit C Kharkwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sharma, P., Joshi, H., Abdin, M., Kharkwal, A.C., Varma, A. (2017). Analytical Techniques to Assess Medicinal Plants Value Addition After Microbial Associations. In: Varma, A., Sharma, A. (eds) Modern Tools and Techniques to Understand Microbes. Springer, Cham. https://doi.org/10.1007/978-3-319-49197-4_17

Download citation

Publish with us

Policies and ethics