Skip to main content

Tighter Reachability Criteria for Deadlock-Freedom Analysis

  • Conference paper
  • First Online:
FM 2016: Formal Methods (FM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9995))

Included in the following conference series:

Abstract

We combine a prior incomplete deadlock-freedom-checking approach with two new reachability techniques to create a more precise deadlock-freedom-checking framework for concurrent systems. The reachability techniques that we propose are based on the analysis of individual components of the system; we use static analysis to summarise the behaviour that might lead components to this system state, and we analyse this summary to assess whether components can cooperate to reach a given system state. We implement this new framework on a tool called DeadlOx. This implementation encodes the proposed deadlock-freedom analysis as a satisfiability problem that is later checker by a SAT solver. We demonstrate by a series of practical experiments that this tool is more accurate than (and as efficient as) similar incomplete techniques for deadlock-freedom analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Formal proofs for all theorems in this work can be found in [4].

  2. 2.

    The cases where \(|\varSigma |=1\) or \(|occurs|=1\) are trivially possibly-reachable.

References

  1. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: Experiment package (2016). http://www.cs.ox.ac.uk/people/pedro.antonino/pkg.zip

  2. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: Efficient Deadlock-Freedom Checking Using Local Analysis and SAT Solving. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 345–360. Springer, Heidelberg (2016). doi:10.1007/978-3-319-33693-0_22

    Chapter  Google Scholar 

  3. Antonino, P.R.G., Oliveira, M.M., Sampaio, A.C.A., Kristensen, K.E., Bryans, J.W.: Leadership election: an industrial SoS application of compositional deadlock verification. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 31–45. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06200-6_3

    Chapter  Google Scholar 

  4. Antonino, P., Roscoe, A.W., Gibson-Robinson, T.: Tighter reachability criteria for deadlock-freedom analysis. Technical report, University of Oxford (2016). http://www.cs.ox.ac.uk/people/pedro.antonino/reach_techreport.pdf

  5. Antonino, P., Sampaio, A., Woodcock, J.: A refinement based strategy for local deadlock analysis of networks of CSP processes. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 62–77. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06410-9_5

    Chapter  Google Scholar 

  6. Attie, P.C., Bensalem, S., Bozga, M., Jaber, M., Sifakis, J., Zaraket, F.A.: An abstract framework for deadlock prevention in BIP. In: Beyer, D., Boreale, M. (eds.) FMOODS/FORTE -2013. LNCS, vol. 7892, pp. 161–177. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38592-6_12

    Chapter  Google Scholar 

  7. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: IJCAI 2009, San Francisco, CA, USA, pp. 399–404 (2009)

    Google Scholar 

  8. Dathi, N.: Deadlock and deadlock freedom. Ph.D. thesis, University of Oxford (1989)

    Google Scholar 

  9. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3—a modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8_13

    Chapter  Google Scholar 

  10. Gibson-Robinson, T., Hansen, H., Roscoe, A.W., Wang, X.: Practical partial order reduction for CSP. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 188–203. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17524-9_14

    Google Scholar 

  11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle River (1985)

    MATH  Google Scholar 

  12. Lambertz, C., Majster-Cederbaum, M.: Analyzing component-based systems on the basis of architectural constraints. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 64–79. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29320-7_5

    Chapter  Google Scholar 

  13. Martin, J.M.R.: The design and construction of deadlock-free concurrent systems. Ph.D. thesis, University of Buckingham (1996)

    Google Scholar 

  14. Martin, J.M.R., Jassim, S.A.: An efficient technique for deadlock analysis of large scale process networks. In: Fitzgerald, J., Jones, C.B., Lucas, P. (eds.) FME 1997. LNCS, vol. 1313, pp. 418–441. Springer, Heidelberg (1997). doi:10.1007/3-540-63533-5_22

    Chapter  Google Scholar 

  15. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Secaucus (1999)

    Book  MATH  Google Scholar 

  16. Oliveira, M.V.M., Antonino, P., Ramos, R., Sampaio, A., Mota, A., Roscoe, A.W.: Rigorous development of component-based systems using component metadata and patterns. Formal Aspects Comput. 28, 1–68 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Roscoe, A.W., Dathi, N.: The pursuit of deadlock freedom. Inf. Comput. 75(3), 289–327 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M., Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to check 1020 dining philosophers for deadlock. In: Brinksma, E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 133–152. Springer, Heidelberg (1995). doi:10.1007/3-540-60630-0_7

    Chapter  Google Scholar 

  19. Roscoe, A.W.: Understanding Concurrent Systems. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The first author is a CAPES Foundation scholarship holder (Process no: 13201/13-1). The second and third authors are partially sponsored by DARPA under agreement number FA8750-12-2-0247. We thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Antonino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Antonino, P., Gibson-Robinson, T., Roscoe, A.W. (2016). Tighter Reachability Criteria for Deadlock-Freedom Analysis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds) FM 2016: Formal Methods. FM 2016. Lecture Notes in Computer Science(), vol 9995. Springer, Cham. https://doi.org/10.1007/978-3-319-48989-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48989-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48988-9

  • Online ISBN: 978-3-319-48989-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics