Skip to main content

Environmental Biodegradation of Xenobiotics: Role of Potential Microflora

  • Chapter
  • First Online:
Xenobiotics in the Soil Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 49))

Abstract

As a significance of industrial growth and advancement, ecological pollution triggered by release of varied types of inorganic and organic compounds has posed serious magnitudes. Worldwide, several thousands of dangerous and risky waste dumping sites have been created resulting in the accumulation of xenobiotics in water and soil since long time. Many unnatural compounds such as nitroaromatic compounds (NACs) and polycyclic aromatics and hydrocarbons (PAHs) are the by-products of crude petro products. Along with these, also the halogenated organic compounds constitute a huge and varied group of chemicals that are accountable for causing extensive environmental pollution. The conventional physicochemical corrective strategies to cleanse the sites contaminated by these pollutants are not cost economical. Consequently, much research work has been focused on biological means and techniques for degradation and removal of such pollutants. The sites contaminated by these compounds demand serious corrective answers, and the research has exposed a varied range of microflora that can exploit these xenobiotic compounds as carbon substrates, mineralizing them or changing them into innocuous products. Novel genes, enzymes, and metabolic ways involved in microbial biodegradation of PAHs, NACs, and other halogenated organic compounds (HOCs) have also been discovered; moreover, advanced technologies have also been developed which allow unearthing and broad flexibility of microbes in the environment cleaning. More studies are needed to understand the interface between xenobiotics and benign microbes in the environment to crisscross with biochemical and biotechnological areas. Such a novel approach will definitely provide the ground for effective interferences into environmental procedures and eventually lead to the enhanced tactics for appointing microbial diversity for effectual and actual bioremediation of xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora PK, Srivastava A, Singh VP (2010) Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Bioremed Biodegrad 1:1–8

    Article  Google Scholar 

  • Batisson I, Pesce S, Hoggan PB, Sancelme M, Bohatier J (2007) Isolation and characterization of diuron degrading bacteria from lotic surface water. Microbial Ecol 54(4):761–770

    Article  CAS  Google Scholar 

  • Baun A, Sørensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C(60). Aquat Toxicol 86(3):379–387

    Article  CAS  PubMed  Google Scholar 

  • Bidlan R, Manonmani HK (2002) Aerobic degradation of dichlorodiphenyl trichloroethane (DDT) by Serratia marcescens DT-1P. Process Biochem 38:49–56

    Article  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgense BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Chang YC, Ikeutsu K, Toyama T, Choi DB, Kikuchi S (2011) Isolation and characterization of tetrachloroethylene- and cis-1, 2-dichloroethylene-dechlorinating Propionibacteria. J Ind Microbiol Biotechnol 38:1667–1677

    Article  CAS  PubMed  Google Scholar 

  • Copley SD (1998) Microbial dehalogenases: enzymes recruited to convert xenobiotic substrates. Curr Opin Chem Biol 2:613–617

    Article  CAS  PubMed  Google Scholar 

  • Devers-Lamrani M, Pesce S, Rouard N, Martin-Laurent F (2014) Evidence for cooperative mineralization of diuron by Arthrobacter sp. BS2 and Achromobacter sp. SP1 isolated from a mixed culture enriched from diuron exposed environments. Chemosphere 117:208–215

    Article  CAS  PubMed  Google Scholar 

  • Dixit R, Wasiullah MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Eltis LD, Bolin JT (1996) Evolutionary relationships among extradioldioxygenases. J Bacteriol 178:5930–5937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson JF, Pietari JM (2000) Anaerobic transformations and bioremediation of chlorinated solvents. Environ Pollut 107(2):209–215

    Article  CAS  PubMed  Google Scholar 

  • Ferradji FZ, Mnif S, Badis A, Rebbani S, Fodil D, Eddouaouda K, Sayadi S (2014) Naphthalene and crude oil degradation by biosurfactant producing Streptomyces spp. isolated from Mitidja plain soil (North of Algeria). Int Biodeterior Biodegrad 86(C):300–308

    Article  CAS  Google Scholar 

  • Gojgic-Cvijovic GD, Milic JS, Solevic TM, Beskoski VP, Ilic MV, Djokic LS, Narancic TM, Vrvic MM (2012) Biodegradation of petroleum sludge and petroleum polluted soil by a bacterial consortium: a laboratory study. Biodegradation 23:1–14

    Article  CAS  PubMed  Google Scholar 

  • Gren I (2012) Microbial transformation of xenobiotics. Chemik 66(8):835–842

    CAS  Google Scholar 

  • Guermouche M’rassi A, Bensalah F, Gury J, Duran R (2015) Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res Int 22(20):15332–15346

    Article  PubMed  Google Scholar 

  • Gursahani YH, Gupta SG (2011) Decolourization of textile effluent by a thermophilic bacteria Anoxybacillus rupiensis. J Pet Environ Biotechnol 2:111–120

    Google Scholar 

  • Hamzah A, Rabu A, Farzarul R, Yussoff NA (2010) Isolation and characterization of bacteria degrading Sumandak and South Angsi oils. Sains Malaysiana 39(2):161–168

    CAS  Google Scholar 

  • Hemapriya J, Vijayanand S (2014) Ecofriendly bioremediation of a triphenylmethane dye by textile effluent adapted bacterial strain vp-64. Int J Curr Microbiol Appl Sci 3(9):983–992

    CAS  Google Scholar 

  • Herrera-Gonzalez VE, Ruiz-Ordaz N, Galindez-Mayer J, Juarez-Ramirez C, Santoyo-Tepole F, Montiel EM (2013) Biodegradation of the herbicide propanil, and its 3, 4-dichloroaniline by product in a continuously operated biofilm reactor. World J Microbiol Biotechnol 29:467–474

    Article  CAS  PubMed  Google Scholar 

  • Hongsawat P, Vangnai AS (2011) Biodegradation pathways of chloroanilines by Acinetobacter baylyi strain GFJ2. J Hazard Mater 186(2/3):1300–1307

    Article  CAS  PubMed  Google Scholar 

  • Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26(4):201–221

    Article  CAS  PubMed  Google Scholar 

  • Iovdijová A, Bencko V (2010) Potential risk of exposure to selected xenobiotic residues and their fate in the food chain-part I: classification of xenobiotics. Ann Agric Environ Med 17(2):183–192

    PubMed  Google Scholar 

  • Itoh K, Fujita M, Kumano K, Suyama K, Yamamoto H (2000) Phenolic acids affect transformations of chlorophenols by a Coriolus versicolor laccase. Soil Biol Biochem 32:85–91

    Article  CAS  Google Scholar 

  • Iyovo GD, Du G, Chen J (2010) Sustainable bioenergy bioprocessing: biomethane production, digestate as biofertilizer and as supplemental feed in algae cultivation to promote algae biofuel commercialization. J Microb Biochem Technol 2(4):100–106

    Article  CAS  Google Scholar 

  • Jiang W, Fan W (2008) Bioremediation of heavy metal contaminated soils by sulfate reducing bacteria. Ann NY Acad Sci 1140:446–454

    Article  CAS  PubMed  Google Scholar 

  • Kafilzadeh F, Nikvarz M, Jabbari S, Tahery Y (2012) Evaluation of biodegradation of 2-chlorobenzoic acid by isolated bacteria from landfill soils in Shiraz, Iran. Afr J Microbiol 6(27):5708–5714

    CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res 2011:11, 805187

    Google Scholar 

  • Karn SK, Chakrabarti SK, Reddy MS (2011) Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill. Biodegradation 22:63–69

    Article  CAS  PubMed  Google Scholar 

  • Karpouzas DG, Singh BK (2006) Microbial degradation of organophosphorus xenobiotics: metabolic pathways and molecular basis. Adv Microb Physiol 51:119–185

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan K (2003) Polythene and plastic degrading microbes in an Indian mangrove soil. Rev Biol Trop 51(3–4):629–633

    CAS  PubMed  Google Scholar 

  • Kranzioch I, Ganz S, Tiehm A (2014) Chloroethene degradation and expression of Dehalococcoides dehalogenase genes in cultures originating from Yangtze sediments. Environ Sci Pollut Res 22(4):3138–3148

    Article  Google Scholar 

  • Kumar ARC, Singh R (1998) Methanogenesis by enrichment cultures from distillery effluent. Indian J Microbiol 38:109–110

    Google Scholar 

  • Kumar V, Anand RC, Singh R (1994a) Enrichment and isolation of acetoclastic methanogens from distillery effluent. Ann Biol 10(2):253–256

    Google Scholar 

  • Kumar V, Anand RC, Singh R (1994b) Methanogenesis by pure isolates from distillery effluent digester. Ann Biol 10(2):257–260

    Google Scholar 

  • Kumar K, Devi SS, Krishnamurthi K, Kanade GS, Chakrabarti T (2007) Enrichment and isolation of endosulfan degrading and detoxifying bacteria. Chemosphere 68(2):317–322

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Varma A, Kumar V (2016) Ecogenomics based microbial enzyme for biofuel industry. Sci Int 4:1–11

    Article  Google Scholar 

  • Kumari M, Ghosh P, Swati, Thakur IS (2014) Microcosmic study of endosulfan degradation by Paenibacillus sp. ISTP10 and its toxicological evaluation using mammalian cell line. Int Biodeter Biodegrad 96:33–40

    Article  Google Scholar 

  • Kwon GS, Kim JK, Kim TK, Sohn HY, Koh SC, Shin KS, Kim DG (2002) Klebsiella pneumoniae KE-1 degrades endosulfan without formation of the toxic metabolite, endosulfan sulphate. Microbiol Lett 215:255–259

    Article  CAS  Google Scholar 

  • Kyrikou J, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15:125–150

    Article  CAS  Google Scholar 

  • Le NB, Coleman NV (2011) Biodegradation of vinyl chloride, cis-dichloroethene and 1,2-dichloroethane in the alkene/alkane oxidising Mycobacterium strain NBB4. Biodegradation 22:1095–1108

    Article  CAS  PubMed  Google Scholar 

  • Leys NM, Bastiaens L, Verstraete W, Springael D (2005) Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbons degradation by Mycobacterium and Sphingomonas in soil. Appl Microbiol Biotechnol 66:726–736

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Gan L, Chen ZL (2010) Biodegradation of naphthalene by strain Bacillus fusiformis (BFN). J Hazard Mater 182(1/3):771–777

    Article  CAS  PubMed  Google Scholar 

  • Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA, Huang HI, Young CC (2014) Novosphingobium arabidopsis sp. nov., a DDT resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana. Int J Syst Evol Microbiol 64(2):594–598

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yao J, Yuan Z, Shang Y, Chen H, Wang F, Masakorala K, Yu C, Cai M, Blake RE, Choi MMF (2014a) Isolation and characterization of crude oil degrading bacteria from oil water mixture in Dagang oil field, China. Int Biodet Biodegrad 87:52–59

    Article  Google Scholar 

  • Liu XM, Chen K, Meng C, Zhang C, Zhu JC, Huang X, Li SP, Jiang JD (2014b) Pseudoxanthobacter liyangensis sp. nov., isolated from dichlorodiphenyl trichloroethane contaminated soil. Int J Syst Evol Microbiol 64:3390–3394

    Article  PubMed  Google Scholar 

  • Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR (1998) Reductive dechlorination of tetrachloroethene to ethene by a two component enzyme pathway. Appl Environ Microbiol 64:1270–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meer JR, van der de Vos WM, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694

    PubMed  PubMed Central  Google Scholar 

  • Milić JS, BeÅ¡koski VP, Iilic MV, Ali SAM, Gojgic-Cvijovic GD, Vric MM (2009) Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium. J Serb Chem Soc 74(4):455–460

    Article  Google Scholar 

  • Niharika N, Moskalikova H, Kaur J, Khan F, Sedlackova M, Hampl A, Damborsky J, Prokop Z, Lal R (2013) Sphingobium czechense sp. nov. isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 63:723–728

    Article  CAS  PubMed  Google Scholar 

  • Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJ, Arshad M, Mahmood S, Ali A, Khan AA (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Hernandez ML, Quintero-Ramirez R, Nava-Ocampo AA, Bello-Ramirez AM (2003) Study of the mechanism of Flavobacterium sp. for hydrolyzing organophosphate pesticides. Fundam Clin Pharmacol 17(6):717–723

    Article  CAS  PubMed  Google Scholar 

  • Patil R, Bagde US (2012) Isolation of polyvinyl chloride degrading bacterial strains from environmental samples using enrichment culture technique. Afr J Biotechnol 11(31):7947–7956

    CAS  Google Scholar 

  • Pradeep S, Josh MKS, Binod P, Devi RS, Balachandran S, Anderson RC, Benjamin S (2015) Achromobacter denitrificans strain SP1 efficiently remediates di (2-ethylhexyl) phthalate. Ecotoxicol Environ Saf 112:114–121

    Article  CAS  PubMed  Google Scholar 

  • Prakash A, Bisht S, Singh J, Teotia P, Kela R, Kumar V (2014) Biodegradation potential of petroleum hydrocarbons (PHCs) by bacteria and mixed bacterial consortium isolated from contaminated sites. Turk J Eng Environ Sci 38(1):31–40

    Google Scholar 

  • Prpich GP, Adams RL, Daugulis AJ (2006) Ex situ bioremediation of phenol contaminated soil using polymer beads. Biotechnol Lett 28(24):2027–2031

    Article  CAS  PubMed  Google Scholar 

  • Raaman N, Rajitha N, Jayshree A, Jegadeesh R (2012) Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J Acad Indus Res 1(6):313–317

    CAS  Google Scholar 

  • Rani B, Kumar V, Singh J, Bisht S, Teotia P, Sharma S, Kela R (2014) Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz J Microbiol 45(3):1055–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salam LB, Obayori OS, Olatoye NO (2014) Biodegradation of anthracene by a novel actinomycete, microbacterium sp. isolated from tropical hydrocarbon contaminated soil. World J Microbiol Biotechnol 30(1):335–341

    Article  CAS  PubMed  Google Scholar 

  • Schumacher W, Holliger C (1996) The proton/electron ration of themenaquinone dependent electron transport from dihydrogen to tetrachloroethene in Dehalobacter restrictu. J Bacteriol 178:2328–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvam K, Vishnupriya B (2013) Bioremediation of xenobiotic compounds and heavy metals by the novel actinobacteria. Int Pharm Chem Sci 2(3):1589–1597

    Google Scholar 

  • Sethy NK, Jha VN, Sahoo SK, Shukla AK, Tripathi RM (2011) Ground water ingestion dose due to intake of radionuclide (Natural U and 226Ra) to population around uranium mining complex at Jaduguda. J Ecosyst Ecograph 1:104

    Google Scholar 

  • Shahid A, Singh J, Bisht S, Teotia P, Kumar V (2013) Biodegradation of textile dyes by fungi isolated from North Indian field soil. Env Asia 6(2):51–57

    Google Scholar 

  • Sharma J, Fulekar MH (2009) Potential of Citrobacter freundii for bioaccumulation of heavy metal copper. Biol Med 1(3):7–14

    CAS  Google Scholar 

  • Sharma SK, Saxena M, Mandal TK, Ahammed YN, Pathak H (2011) Variations in mixing ratios of ambient ammonia, nitric oxide and nitrogen dioxide in different environments of India. J Food Process Technol 1:101

    Google Scholar 

  • Shen YJ, Lu P, Mei H, Yu HJ, Hong Q, Li SP (2010) Isolation of a methyl parathion degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegradation 21:785–792

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Singh P, Sharma R (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proc Int Acad Ecol Environ Sci 4(1):1–6

    CAS  Google Scholar 

  • Sun K, Liu J, Gao Y, Jin L, GuY, Wang, W (2014) Isolation, plant colonization potential and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp. Sci Rep 4(5462): 1–11

    Google Scholar 

  • Swissa N, Nitzan Y, Langzam Y, Cahan R (2014) Atrazine biodegradation by a monoculture of Raoultella planticola isolated from a herbicides wastewater treatment facility. Int Biodeterior Biodegrad 92:6–11

    Article  CAS  Google Scholar 

  • Takami H, Kudo T, Horikoshi K (1997) Isolation of extradiol dioxygenasegenes that is phylogenetically distant from other meta cleavage dioxygenase genes. Biosci Biotechnol Biochem 61:530–532

    Article  CAS  PubMed  Google Scholar 

  • Theriot CM, Grunden AM (2010) Hydrolysis of organophosphorus compounds by microbial enzymes. Appl Microbiol Biotechnol 89:35–43

    Article  PubMed  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vigneeswaran M, Prabakaran V, Arthysurendr S (2012) Biodegradation and bioremediation of azo dye entrenched soil by Pseudomonas sp. Int J Chem Anal Sci 3(5):1381–1384

    Google Scholar 

  • Wang F, Grundmanna S, Schmid M, Dorflera U, Rohererb S, Muncha JC, Hartmann A, Jiang X, Schroll R (2007) Isolation and characterization of 1,2,4-trichlorobenzene mineralizing Bordetella sp. and its bioremediation potential in soil. Chemosphere 67(5):896–902

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhu L, Liu A, Ma T, Wang Q, Xie H, Wang J, Jiang T, Zhao R (2011) Isolation and characterization of an Arthrobacter sp. Strain HB-5 that transforms atrazine. Environ Geochem Health 33:259–266

    Article  PubMed  Google Scholar 

  • Wang J, Zhu L, Wang Q, Wang J, Xie H (2014) Isolation and characterization of atrazine mineralizing Bacillus subtilis Strain HB-6. PLoS One 9(9):1–8

    Google Scholar 

  • Wen ZD, Gao DW, Wu WM (2014) Biodegradation and kinetic analysis of phthalates by an arthrobacter strain isolated from constructed wetland soil. Appl Microbiol Biotechnol 98:4683–4690

    Article  CAS  PubMed  Google Scholar 

  • Wu XL, Wang YY, Liang RX, Dai QY, Chao WL (2010) Degradation of Di-n-butyl phthalate by newly isolated Ochrobactrum sp. Bull Environ Contamin Toxicol 85:235–237

    Article  CAS  Google Scholar 

  • Xu HX, Wu HY, Qiu YP, Shi XQ, He GH, Zhang JF, Wu JC (2011) Degradation of fluoranthene by a newly isolated strain of Herbaspirillum chlorophenolicum from activated sludge. Biodegradation 22:335–345

    Article  CAS  PubMed  Google Scholar 

  • Yamatsu A, Matsumi R, Atomi H, Imanaka T (2006) Isolation and characterization of a novel poly (vinyl alcohol) degrading bacterium, Sphingopyxis sp. PVA3. Appl Microbiol Biotechnol 72(4):804–811

    Article  CAS  PubMed  Google Scholar 

  • Yeom SH, Daugulis AJ, Lee SH (2010) Bioremediation of phenol contaminated water and soil using magnetic polymer beads. Process Biochem 45(9):1582–1586

    Article  CAS  Google Scholar 

  • Zhang C, Bennett GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Zhu L (2012) Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. Environ Pollut 164:169–174

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chen SA, Zheng JW, Cai S, Hang BJ, He J, Li SP (2012) Catellibacterium nanjingense sp. nov., a propanil degrading bacterium isolated from activated sludge, and emended description of the genus Catellibacterium. Int J Syst Evol Microbiol 62:495–499

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kumar, M. et al. (2017). Environmental Biodegradation of Xenobiotics: Role of Potential Microflora. In: Hashmi, M., Kumar, V., Varma, A. (eds) Xenobiotics in the Soil Environment. Soil Biology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-47744-2_21

Download citation

Publish with us

Policies and ethics